Files
swift-mirror/lib/SIL/SILFunction.cpp
John McCall e249fd680e Destructure result types in SIL function types.
Similarly to how we've always handled parameter types, we
now recursively expand tuples in result types and separately
determine a result convention for each result.

The most important code-generation change here is that
indirect results are now returned separately from each
other and from any direct results.  It is generally far
better, when receiving an indirect result, to receive it
as an independent result; the caller is much more likely
to be able to directly receive the result in the address
they want to initialize, rather than having to receive it
in temporary memory and then copy parts of it into the
target.

The most important conceptual change here that clients and
producers of SIL must be aware of is the new distinction
between a SILFunctionType's *parameters* and its *argument
list*.  The former is just the formal parameters, derived
purely from the parameter types of the original function;
indirect results are no longer in this list.  The latter
includes the indirect result arguments; as always, all
the indirect results strictly precede the parameters.
Apply instructions and entry block arguments follow the
argument list, not the parameter list.

A relatively minor change is that there can now be multiple
direct results, each with its own result convention.
This is a minor change because I've chosen to leave
return instructions as taking a single operand and
apply instructions as producing a single result; when
the type describes multiple results, they are implicitly
bound up in a tuple.  It might make sense to split these
up and allow e.g. return instructions to take a list
of operands; however, it's not clear what to do on the
caller side, and this would be a major change that can
be separated out from this already over-large patch.

Unsurprisingly, the most invasive changes here are in
SILGen; this requires substantial reworking of both call
emission and reabstraction.  It also proved important
to switch several SILGen operations over to work with
RValue instead of ManagedValue, since otherwise they
would be forced to spuriously "implode" buffers.
2016-02-18 01:26:28 -08:00

520 lines
17 KiB
C++

//===--- SILFunction.cpp - Defines the SILFunction data structure ---------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILBasicBlock.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/CFG.h"
// FIXME: For mapTypeInContext
#include "swift/AST/ArchetypeBuilder.h"
#include "llvm/ADT/Optional.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/GraphWriter.h"
using namespace swift;
using namespace Lowering;
SILFunction *SILFunction::create(SILModule &M, SILLinkage linkage,
StringRef name,
CanSILFunctionType loweredType,
GenericParamList *contextGenericParams,
Optional<SILLocation> loc,
IsBare_t isBareSILFunction,
IsTransparent_t isTrans,
IsFragile_t isFragile,
IsThunk_t isThunk,
ClassVisibility_t classVisibility,
Inline_t inlineStrategy, EffectsKind E,
SILFunction *insertBefore,
const SILDebugScope *debugScope,
DeclContext *DC) {
// Get a StringMapEntry for the function. As a sop to error cases,
// allow the name to have an empty string.
llvm::StringMapEntry<SILFunction*> *entry = nullptr;
if (!name.empty()) {
entry = &*M.FunctionTable.insert(std::make_pair(name, nullptr)).first;
assert(!entry->getValue() && "function already exists");
name = entry->getKey();
}
auto fn = new (M) SILFunction(M, linkage, name,
loweredType, contextGenericParams, loc,
isBareSILFunction, isTrans, isFragile, isThunk,
classVisibility, inlineStrategy, E,
insertBefore, debugScope, DC);
if (entry) entry->setValue(fn);
return fn;
}
SILFunction::SILFunction(SILModule &Module, SILLinkage Linkage,
StringRef Name, CanSILFunctionType LoweredType,
GenericParamList *contextGenericParams,
Optional<SILLocation> Loc,
IsBare_t isBareSILFunction,
IsTransparent_t isTrans,
IsFragile_t isFragile,
IsThunk_t isThunk,
ClassVisibility_t classVisibility,
Inline_t inlineStrategy, EffectsKind E,
SILFunction *InsertBefore,
const SILDebugScope *DebugScope,
DeclContext *DC)
: Module(Module),
Name(Name),
LoweredType(LoweredType),
// FIXME: Context params should be independent of the function type.
ContextGenericParams(contextGenericParams),
Location(Loc),
DeclCtx(DC),
DebugScope(DebugScope),
Bare(isBareSILFunction),
Transparent(isTrans),
Fragile(isFragile),
Thunk(isThunk),
ClassVisibility(classVisibility),
GlobalInitFlag(false),
InlineStrategy(inlineStrategy),
Linkage(unsigned(Linkage)),
KeepAsPublic(false),
ForeignBody(false),
EffectsKindAttr(E) {
if (InsertBefore)
Module.functions.insert(SILModule::iterator(InsertBefore), this);
else
Module.functions.push_back(this);
Module.removeFromZombieList(Name);
// Set our BB list to have this function as its parent. This enables us to
// splice efficiently basic blocks in between functions.
BlockList.Parent = this;
}
SILFunction::~SILFunction() {
// If the function is recursive, a function_ref inst inside of the function
// will give the function a non-zero ref count triggering the assertion. Thus
// we drop all instruction references before we erase.
// We also need to drop all references if instructions are allocated using
// an allocator that may recycle freed memory.
dropAllReferences();
auto &M = getModule();
for (auto &BB : *this) {
for (auto I = BB.begin(), E = BB.end(); I != E;) {
auto Inst = &*I;
++I;
SILInstruction::destroy(Inst);
// TODO: It is only safe to directly deallocate an
// instruction if this BB is being removed in scope
// of destructing a SILFunction.
M.deallocateInst(Inst);
}
BB.InstList.clearAndLeakNodesUnsafely();
}
assert(RefCount == 0 &&
"Function cannot be deleted while function_ref's still exist");
}
void SILFunction::setDeclContext(Decl *D) {
if (!D)
return;
switch (D->getKind()) {
// These four dual-inherit from DeclContext.
case DeclKind::Func: DeclCtx = cast<FuncDecl>(D); break;
case DeclKind::Constructor: DeclCtx = cast<ConstructorDecl>(D); break;
case DeclKind::Extension: DeclCtx = cast<ExtensionDecl>(D); break;
case DeclKind::Destructor: DeclCtx = cast<DestructorDecl>(D); break;
default:
DeclCtx = D->getDeclContext();
}
assert(DeclCtx);
}
void SILFunction::setDeclContext(Expr *E) {
DeclCtx = dyn_cast_or_null<AbstractClosureExpr>(E);
}
void SILFunction::numberValues(llvm::DenseMap<const ValueBase*,
unsigned> &ValueToNumberMap) const {
unsigned idx = 0;
for (auto &BB : *this) {
for (auto I = BB.bbarg_begin(), E = BB.bbarg_end(); I != E; ++I)
ValueToNumberMap[*I] = idx++;
for (auto &I : BB)
ValueToNumberMap[&I] = idx++;
}
}
ASTContext &SILFunction::getASTContext() const {
return getModule().getASTContext();
}
bool SILFunction::shouldOptimize() const {
if (Module.getStage() == SILStage::Raw)
return true;
return !hasSemanticsAttr("optimize.sil.never");
}
Type SILFunction::mapTypeIntoContext(Type type) const {
return ArchetypeBuilder::mapTypeIntoContext(getModule().getSwiftModule(),
getContextGenericParams(),
type);
}
namespace {
template<typename SubstFn>
struct SubstDependentSILType
: CanTypeVisitor<SubstDependentSILType<SubstFn>, CanType>
{
SILModule &M;
SubstFn Subst;
SubstDependentSILType(SILModule &M, SubstFn Subst)
: M(M), Subst(std::move(Subst))
{}
using super = CanTypeVisitor<SubstDependentSILType<SubstFn>, CanType>;
using super::visit;
CanType visitDependentMemberType(CanDependentMemberType t) {
// If a dependent member type appears in lowered position, we need to lower
// its context substitution against the associated type's abstraction
// pattern.
CanType astTy = Subst(t);
AbstractionPattern origTy(t->getAssocType()->getArchetype());
return M.Types.getLoweredType(origTy, astTy)
.getSwiftRValueType();
}
CanType visitTupleType(CanTupleType t) {
// Dependent members can appear in lowered position inside tuples.
SmallVector<TupleTypeElt, 4> elements;
for (auto &elt : t->getElements())
elements.push_back(elt.getWithType(visit(CanType(elt.getType()))));
return TupleType::get(elements, t->getASTContext())
->getCanonicalType();
}
CanType visitSILFunctionType(CanSILFunctionType t) {
// Dependent members can appear in lowered position inside SIL functions.
SmallVector<SILParameterInfo, 4> params;
for (auto &param : t->getParameters())
params.push_back(param.map([&](CanType pt) -> CanType {
return visit(pt);
}));
SmallVector<SILResultInfo, 4> results;
for (auto &result : t->getAllResults())
results.push_back(result.map([&](CanType pt) -> CanType {
return visit(pt);
}));
Optional<SILResultInfo> errorResult;
if (t->hasErrorResult()) {
errorResult = t->getErrorResult().map([&](CanType elt) -> CanType {
return visit(elt);
});
}
return SILFunctionType::get(t->getGenericSignature(),
t->getExtInfo(),
t->getCalleeConvention(),
params, results, errorResult,
t->getASTContext());
}
CanType visitType(CanType t) {
// Other types get substituted into context normally.
return Subst(t);
}
};
template<typename SubstFn>
SILType doSubstDependentSILType(SILModule &M,
SubstFn Subst,
SILType t) {
CanType result = SubstDependentSILType<SubstFn>(M, std::move(Subst))
.visit(t.getSwiftRValueType());
return SILType::getPrimitiveType(result, t.getCategory());
}
} // end anonymous namespace
SILType SILFunction::mapTypeIntoContext(SILType type) const {
return doSubstDependentSILType(getModule(),
[&](CanType t) { return mapTypeIntoContext(t)->getCanonicalType(); },
type);
}
SILType ArchetypeBuilder::substDependentType(SILModule &M, SILType type) {
return doSubstDependentSILType(M,
[&](CanType t) { return substDependentType(t)->getCanonicalType(); },
type);
}
SILBasicBlock *SILFunction::createBasicBlock() {
return new (getModule()) SILBasicBlock(this);
}
//===----------------------------------------------------------------------===//
// View CFG Implementation
//===----------------------------------------------------------------------===//
#ifndef NDEBUG
static llvm::cl::opt<unsigned>
MaxColumns("view-cfg-max-columns", llvm::cl::init(80),
llvm::cl::desc("Maximum width of a printed node"));
namespace {
enum class LongLineBehavior { None, Truncate, Wrap };
} // end anonymous namespace
static llvm::cl::opt<LongLineBehavior>
LLBehavior("view-cfg-long-line-behavior",
llvm::cl::init(LongLineBehavior::Truncate),
llvm::cl::desc("Behavior when line width is greater than the "
"value provided my -view-cfg-max-columns "
"option"),
llvm::cl::values(
clEnumValN(LongLineBehavior::None, "none", "Print everything"),
clEnumValN(LongLineBehavior::Truncate, "truncate",
"Truncate long lines"),
clEnumValN(LongLineBehavior::Wrap, "wrap", "Wrap long lines"),
clEnumValEnd));
static llvm::cl::opt<bool>
RemoveUseListComments("view-cfg-remove-use-list-comments",
llvm::cl::init(false),
llvm::cl::desc("Should use list comments be removed"));
template <typename InstTy, typename CaseValueTy>
inline CaseValueTy getCaseValueForBB(const InstTy *Inst,
const SILBasicBlock *BB) {
for (unsigned i = 0, e = Inst->getNumCases(); i != e; ++i) {
auto P = Inst->getCase(i);
if (P.second != BB)
continue;
return P.first;
}
llvm_unreachable("Error! should never pass in BB that is not a successor");
}
namespace llvm {
template <>
struct DOTGraphTraits<SILFunction *> : public DefaultDOTGraphTraits {
DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
static std::string getGraphName(const SILFunction *F) {
return "CFG for '" + F->getName().str() + "' function";
}
static std::string getSimpleNodeLabel(const SILBasicBlock *Node,
const SILFunction *F) {
std::string OutStr;
raw_string_ostream OSS(OutStr);
const_cast<SILBasicBlock *>(Node)->printAsOperand(OSS, false);
return OSS.str();
}
static std::string getCompleteNodeLabel(const SILBasicBlock *Node,
const SILFunction *F) {
std::string Str;
raw_string_ostream OS(Str);
OS << *Node;
std::string OutStr = OS.str();
if (OutStr[0] == '\n')
OutStr.erase(OutStr.begin());
// Process string output to make it nicer...
unsigned ColNum = 0;
unsigned LastSpace = 0;
for (unsigned i = 0; i != OutStr.length(); ++i) {
if (OutStr[i] == '\n') { // Left justify
OutStr[i] = '\\';
OutStr.insert(OutStr.begin() + i + 1, 'l');
ColNum = 0;
LastSpace = 0;
} else if (RemoveUseListComments && OutStr[i] == '/' &&
i != (OutStr.size() - 1) && OutStr[i + 1] == '/') {
unsigned Idx = OutStr.find('\n', i + 1); // Find end of line
OutStr.erase(OutStr.begin() + i, OutStr.begin() + Idx);
--i;
} else if (ColNum == MaxColumns) { // Handle long lines.
if (LLBehavior == LongLineBehavior::Wrap) {
if (!LastSpace)
LastSpace = i;
OutStr.insert(LastSpace, "\\l...");
ColNum = i - LastSpace;
LastSpace = 0;
i += 3; // The loop will advance 'i' again.
} else if (LLBehavior == LongLineBehavior::Truncate) {
unsigned Idx = OutStr.find('\n', i + 1); // Find end of line
OutStr.erase(OutStr.begin() + i, OutStr.begin() + Idx);
--i;
}
// Else keep trying to find a space.
} else
++ColNum;
if (OutStr[i] == ' ')
LastSpace = i;
}
return OutStr;
}
std::string getNodeLabel(const SILBasicBlock *Node,
const SILFunction *Graph) {
if (isSimple())
return getSimpleNodeLabel(Node, Graph);
else
return getCompleteNodeLabel(Node, Graph);
}
static std::string getEdgeSourceLabel(const SILBasicBlock *Node,
SILBasicBlock::const_succ_iterator I) {
SILBasicBlock *Succ = I->getBB();
const TermInst *Term = Node->getTerminator();
// Label source of conditional branches with "T" or "F"
if (auto *CBI = dyn_cast<CondBranchInst>(Term))
return (Succ == CBI->getTrueBB()) ? "T" : "F";
// Label source of switch edges with the associated value.
if (auto *SI = dyn_cast<SwitchValueInst>(Term)) {
if (SI->hasDefault() && SI->getDefaultBB() == Succ)
return "def";
std::string Str;
raw_string_ostream OS(Str);
SILValue I = getCaseValueForBB<SwitchValueInst, SILValue>(SI, Succ);
OS << I; // TODO: or should we output the literal value of I?
return OS.str();
}
if (auto *SEIB = dyn_cast<SwitchEnumInst>(Term)) {
std::string Str;
raw_string_ostream OS(Str);
EnumElementDecl *E =
getCaseValueForBB<SwitchEnumInst, EnumElementDecl *>(SEIB, Succ);
OS << E->getFullName();
return OS.str();
}
if (auto *SEIB = dyn_cast<SwitchEnumAddrInst>(Term)) {
std::string Str;
raw_string_ostream OS(Str);
EnumElementDecl *E =
getCaseValueForBB<SwitchEnumAddrInst, EnumElementDecl *>(SEIB, Succ);
OS << E->getFullName();
return OS.str();
}
if (auto *DMBI = dyn_cast<DynamicMethodBranchInst>(Term))
return (Succ == DMBI->getHasMethodBB()) ? "T" : "F";
if (auto *CCBI = dyn_cast<CheckedCastBranchInst>(Term))
return (Succ == CCBI->getSuccessBB()) ? "T" : "F";
if (auto *CCBI = dyn_cast<CheckedCastAddrBranchInst>(Term))
return (Succ == CCBI->getSuccessBB()) ? "T" : "F";
return "";
}
};
} // end llvm namespace
#endif
#ifndef NDEBUG
static llvm::cl::opt<std::string>
TargetFunction("view-cfg-only-for-function", llvm::cl::init(""),
llvm::cl::desc("Only print out the cfg for this function"));
#endif
void SILFunction::viewCFG() const {
/// When asserts are disabled, this should be a NoOp.
#ifndef NDEBUG
// If we have a target function, only print that function out.
if (!TargetFunction.empty() && !(getName().str() == TargetFunction))
return;
ViewGraph(const_cast<SILFunction *>(this), "cfg" + getName().str());
#endif
}
/// Returns true if this function has either a self metadata argument or
/// object from which Self metadata may be obtained.
bool SILFunction::hasSelfMetadataParam() const {
auto paramTypes = getLoweredFunctionType()->getParameterSILTypes();
if (paramTypes.empty())
return false;
auto silTy = paramTypes.back();
if (!silTy.isClassOrClassMetatype())
return false;
auto metaTy = dyn_cast<MetatypeType>(silTy.getSwiftRValueType());
(void)metaTy;
assert(!metaTy || metaTy->getRepresentation() != MetatypeRepresentation::Thin
&& "Class metatypes are never thin.");
return true;
}
bool SILFunction::hasName(const char *Name) const {
return getName() == Name;
}
/// Helper method which returns true if the linkage of the SILFunction
/// indicates that the objects definition might be required outside the
/// current SILModule.
bool
SILFunction::isPossiblyUsedExternally() const {
return swift::isPossiblyUsedExternally(getLinkage(),
getModule().isWholeModule());
}
bool SILFunction::isExternallyUsedSymbol() const {
return swift::isPossiblyUsedExternally(getEffectiveSymbolLinkage(),
getModule().isWholeModule());
}
void SILFunction::convertToDeclaration() {
assert(isDefinition() && "Can only convert definitions to declarations");
dropAllReferences();
getBlocks().clear();
}
ArrayRef<Substitution> SILFunction::getForwardingSubstitutions() {
auto *params = getContextGenericParams();
if (!params)
return {};
return params->getForwardingSubstitutions(getASTContext());
}