mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
Add an extra opaque field to AddressSpace, which can be used by clients of RemoteInspection to distinguish between different address spaces. LLDB employs an optimization where it reads memory from files instead of the running process whenever it can to speed up memory reads (these can be slow when debugging something over a network). To do this, it needs to keep track whether an address originated from a process or a file. It currently distinguishes addresses by setting an unused high bit on the address, but because of pointer authentication this is not a reliable solution. In order to keep this optimization working, this patch adds an extra opaque AddressSpace field to RemoteAddress, which LLDB can use on its own implementation of MemoryReader to distinguish between addresses. This patch is NFC for the other RemoteInspection clients, as it adds extra information to RemoteAddress, which is entirely optional and if unused should not change the behavior of the library. Although this patch is quite big the changes are largely mechanical, replacing threading StoredPointer with RemoteAddress. rdar://148361743 (cherry picked from commit58df5534d2) (cherry picked from commit8f3862b5e7)
632 lines
20 KiB
C++
632 lines
20 KiB
C++
//===------------ ObjectFileContext.cpp - Swift Compiler ----------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2021 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/StaticMirror/ObjectFileContext.h"
|
|
#include "swift/Basic/Assertions.h"
|
|
#include "swift/Basic/Unreachable.h"
|
|
#include "swift/Demangling/Demangler.h"
|
|
#include "swift/RemoteInspection/ReflectionContext.h"
|
|
#include "swift/RemoteInspection/TypeLowering.h"
|
|
#include "swift/RemoteInspection/TypeRefBuilder.h"
|
|
#include "swift/Remote/CMemoryReader.h"
|
|
|
|
#include "llvm/ADT/StringSet.h"
|
|
#include "llvm/Object/Archive.h"
|
|
#include "llvm/Object/MachOUniversal.h"
|
|
|
|
#include "llvm/Object/Archive.h"
|
|
#include "llvm/Object/ELF.h"
|
|
#include "llvm/Object/ELFObjectFile.h"
|
|
#include "llvm/Object/ELFTypes.h"
|
|
#include "llvm/Object/MachOUniversal.h"
|
|
#include "llvm/Object/RelocationResolver.h"
|
|
#include "llvm/Support/Error.h"
|
|
#include "llvm/Support/StringSaver.h"
|
|
|
|
#include <sstream>
|
|
|
|
using namespace llvm::object;
|
|
|
|
namespace swift {
|
|
namespace static_mirror {
|
|
|
|
// Since ObjectMemoryReader maintains ownership of the ObjectFiles and their
|
|
// raw data, we can vend ReadBytesResults with no-op destructors.
|
|
static void no_op_destructor(const void *) {}
|
|
|
|
void Image::scanMachO(const llvm::object::MachOObjectFile *O) {
|
|
using namespace llvm::MachO;
|
|
|
|
HeaderAddress = UINT64_MAX;
|
|
|
|
// Collect the segment preferred vm mappings.
|
|
for (const auto &Load : O->load_commands()) {
|
|
if (Load.C.cmd == LC_SEGMENT_64) {
|
|
auto Seg = O->getSegment64LoadCommand(Load);
|
|
if (Seg.filesize == 0)
|
|
continue;
|
|
|
|
auto contents =
|
|
O->getData().slice(Seg.fileoff, Seg.fileoff + Seg.filesize);
|
|
|
|
if (contents.empty() || contents.size() != Seg.filesize)
|
|
continue;
|
|
|
|
Segments.push_back({Seg.vmaddr, contents});
|
|
HeaderAddress = std::min(HeaderAddress, Seg.vmaddr);
|
|
} else if (Load.C.cmd == LC_SEGMENT) {
|
|
auto Seg = O->getSegmentLoadCommand(Load);
|
|
if (Seg.filesize == 0)
|
|
continue;
|
|
|
|
auto contents =
|
|
O->getData().slice(Seg.fileoff, Seg.fileoff + Seg.filesize);
|
|
|
|
if (contents.empty() || contents.size() != Seg.filesize)
|
|
continue;
|
|
|
|
Segments.push_back({Seg.vmaddr, contents});
|
|
HeaderAddress = std::min(HeaderAddress, (uint64_t)Seg.vmaddr);
|
|
}
|
|
}
|
|
|
|
// Walk through the bindings list to collect all the external references
|
|
// in the image.
|
|
llvm::Error error = llvm::Error::success();
|
|
auto OO = const_cast<llvm::object::MachOObjectFile *>(O);
|
|
|
|
for (auto bind : OO->bindTable(error)) {
|
|
if (error) {
|
|
llvm::consumeError(std::move(error));
|
|
break;
|
|
}
|
|
|
|
// The offset from the symbol is stored at the target address.
|
|
uint64_t Offset = 0;
|
|
auto OffsetContent =
|
|
getContentsAtAddress(bind.address(), O->getBytesInAddress());
|
|
if (OffsetContent.empty())
|
|
continue;
|
|
|
|
if (O->getBytesInAddress() == 8) {
|
|
memcpy(&Offset, OffsetContent.data(), sizeof(Offset));
|
|
} else if (O->getBytesInAddress() == 4) {
|
|
uint32_t OffsetValue;
|
|
memcpy(&OffsetValue, OffsetContent.data(), sizeof(OffsetValue));
|
|
Offset = OffsetValue;
|
|
} else {
|
|
assert(false && "unexpected word size?!");
|
|
}
|
|
|
|
DynamicRelocations.insert({bind.address(), {bind.symbolName(), Offset}});
|
|
}
|
|
if (error) {
|
|
llvm::consumeError(std::move(error));
|
|
}
|
|
}
|
|
|
|
// We only support these for AArch64, ARM and x86-64 at present
|
|
static uint32_t getELFGlobDatRelocationType(uint32_t machine) {
|
|
switch (machine) {
|
|
case llvm::ELF::EM_AARCH64:
|
|
return llvm::ELF::R_AARCH64_GLOB_DAT;
|
|
case llvm::ELF::EM_ARM:
|
|
return llvm::ELF::R_ARM_GLOB_DAT;
|
|
case llvm::ELF::EM_X86_64:
|
|
return llvm::ELF::R_X86_64_GLOB_DAT;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
template <typename ELFT>
|
|
void Image::scanELFType(const llvm::object::ELFObjectFile<ELFT> *O) {
|
|
using namespace llvm::ELF;
|
|
|
|
HeaderAddress = UINT64_MAX;
|
|
|
|
auto phdrs = O->getELFFile().program_headers();
|
|
if (!phdrs) {
|
|
llvm::consumeError(phdrs.takeError());
|
|
}
|
|
|
|
for (auto &ph : *phdrs) {
|
|
if (ph.p_filesz == 0)
|
|
continue;
|
|
|
|
auto contents = O->getData().slice(ph.p_offset, ph.p_offset + ph.p_filesz);
|
|
if (contents.empty() || contents.size() != ph.p_filesz)
|
|
continue;
|
|
|
|
Segments.push_back({ph.p_vaddr, contents});
|
|
HeaderAddress = std::min(HeaderAddress, (uint64_t)ph.p_vaddr);
|
|
}
|
|
|
|
// Collect the dynamic relocations.
|
|
auto resolver = getRelocationResolver(*O);
|
|
auto resolverSupports = resolver.first;
|
|
auto resolve = resolver.second;
|
|
|
|
if (!resolverSupports || !resolve)
|
|
return;
|
|
|
|
auto machine = O->getELFFile().getHeader().e_machine;
|
|
auto relativeRelocType = llvm::object::getELFRelativeRelocationType(machine);
|
|
auto globDatRelocType = getELFGlobDatRelocationType(machine);
|
|
|
|
for (auto &S : static_cast<const llvm::object::ELFObjectFileBase *>(O)
|
|
->dynamic_relocation_sections()) {
|
|
bool isRela =
|
|
O->getSection(S.getRawDataRefImpl())->sh_type == llvm::ELF::SHT_RELA;
|
|
|
|
for (const llvm::object::RelocationRef &R : S.relocations()) {
|
|
// `getRelocationResolver` doesn't handle RELATIVE relocations, so we
|
|
// have to do that ourselves.
|
|
if (isRela && R.getType() == relativeRelocType) {
|
|
auto rela = O->getRela(R.getRawDataRefImpl());
|
|
DynamicRelocations.insert(
|
|
{R.getOffset(), {{}, HeaderAddress + rela->r_addend}});
|
|
continue;
|
|
}
|
|
|
|
// `getRelocationResolver` doesn't handle GLOB_DAT relocations, so we
|
|
// also have to do that ourselves.
|
|
if (globDatRelocType && R.getType() == globDatRelocType) {
|
|
auto symbol = R.getSymbol();
|
|
auto name = symbol->getName();
|
|
if (!name) {
|
|
llvm::consumeError(name.takeError());
|
|
continue;
|
|
}
|
|
|
|
// On x86-64, this is just S, but on other architectures it is
|
|
// usually S + A.
|
|
uint64_t addend = 0;
|
|
if (isRela && machine != llvm::ELF::EM_X86_64) {
|
|
auto rela = O->getRela(R.getRawDataRefImpl());
|
|
addend = rela->r_addend;
|
|
}
|
|
|
|
DynamicRelocations.insert({R.getOffset(), {*name, addend}});
|
|
continue;
|
|
}
|
|
|
|
if (!resolverSupports(R.getType()))
|
|
continue;
|
|
auto symbol = R.getSymbol();
|
|
auto name = symbol->getName();
|
|
if (!name) {
|
|
llvm::consumeError(name.takeError());
|
|
continue;
|
|
}
|
|
uint64_t offset = resolve(R.getType(), R.getOffset(), 0, 0, 0);
|
|
DynamicRelocations.insert({R.getOffset(), {*name, offset}});
|
|
}
|
|
}
|
|
}
|
|
|
|
void Image::scanELF(const llvm::object::ELFObjectFileBase *O) {
|
|
if (auto le32 =
|
|
dyn_cast<llvm::object::ELFObjectFile<llvm::object::ELF32LE>>(O)) {
|
|
scanELFType(le32);
|
|
} else if (auto be32 =
|
|
dyn_cast<llvm::object::ELFObjectFile<llvm::object::ELF32BE>>(
|
|
O)) {
|
|
scanELFType(be32);
|
|
} else if (auto le64 =
|
|
dyn_cast<llvm::object::ELFObjectFile<llvm::object::ELF64LE>>(
|
|
O)) {
|
|
scanELFType(le64);
|
|
} else if (auto be64 =
|
|
dyn_cast<llvm::object::ELFObjectFile<llvm::object::ELF64BE>>(
|
|
O)) {
|
|
scanELFType(be64);
|
|
} else {
|
|
return;
|
|
}
|
|
|
|
// FIXME: ReflectionContext tries to read bits of the ELF structure that
|
|
// aren't normally mapped by a phdr. Until that's fixed,
|
|
// allow access to the whole file 1:1 in address space that isn't otherwise
|
|
// mapped.
|
|
Segments.push_back({HeaderAddress, O->getData()});
|
|
}
|
|
|
|
void Image::scanCOFF(const llvm::object::COFFObjectFile *O) {
|
|
HeaderAddress = O->getImageBase();
|
|
|
|
for (auto SectionRef : O->sections()) {
|
|
auto Section = O->getCOFFSection(SectionRef);
|
|
|
|
if (Section->SizeOfRawData == 0)
|
|
continue;
|
|
|
|
auto SectionBase = O->getImageBase() + Section->VirtualAddress;
|
|
auto SectionContent =
|
|
O->getData().slice(Section->PointerToRawData,
|
|
Section->PointerToRawData + Section->SizeOfRawData);
|
|
if (SectionContent.empty() ||
|
|
SectionContent.size() != Section->SizeOfRawData)
|
|
continue;
|
|
|
|
Segments.push_back({SectionBase, SectionContent});
|
|
}
|
|
|
|
// FIXME: We need to map the header at least, but how much of it does
|
|
// Windows typically map?
|
|
Segments.push_back({HeaderAddress, O->getData()});
|
|
}
|
|
|
|
bool Image::isMachOWithPtrAuth() const {
|
|
auto macho = dyn_cast<llvm::object::MachOObjectFile>(O);
|
|
if (!macho)
|
|
return false;
|
|
|
|
auto &header = macho->getHeader();
|
|
|
|
return header.cputype == llvm::MachO::CPU_TYPE_ARM64 &&
|
|
header.cpusubtype == llvm::MachO::CPU_SUBTYPE_ARM64E;
|
|
}
|
|
|
|
Image::Image(const llvm::object::ObjectFile *O) : O(O) {
|
|
// Unfortunately llvm doesn't provide a uniform interface for iterating
|
|
// loadable segments or dynamic relocations in executable images yet.
|
|
if (auto macho = dyn_cast<llvm::object::MachOObjectFile>(O)) {
|
|
scanMachO(macho);
|
|
} else if (auto elf = dyn_cast<llvm::object::ELFObjectFileBase>(O)) {
|
|
scanELF(elf);
|
|
} else if (auto coff = dyn_cast<llvm::object::COFFObjectFile>(O)) {
|
|
scanCOFF(coff);
|
|
} else {
|
|
fputs("unsupported image format\n", stderr);
|
|
abort();
|
|
}
|
|
}
|
|
|
|
uint64_t Image::getEndAddress() const {
|
|
uint64_t max = 0;
|
|
for (auto &Segment : Segments) {
|
|
max = std::max(max, Segment.Addr + Segment.Contents.size());
|
|
}
|
|
return max;
|
|
}
|
|
|
|
StringRef Image::getContentsAtAddress(uint64_t Addr, uint64_t Size) const {
|
|
for (auto &Segment : Segments) {
|
|
auto addrInSegment = Segment.Addr <= Addr &&
|
|
Addr + Size <= Segment.Addr + Segment.Contents.size();
|
|
|
|
if (!addrInSegment)
|
|
continue;
|
|
|
|
auto offset = Addr - Segment.Addr;
|
|
auto result = Segment.Contents.drop_front(offset);
|
|
return result;
|
|
}
|
|
return {};
|
|
}
|
|
|
|
remote::RemoteAbsolutePointer
|
|
Image::resolvePointer(uint64_t Addr, uint64_t pointerValue) const {
|
|
// In Mach-O images with ptrauth, the pointer value has an offset from the
|
|
// base address in the low 32 bits, and ptrauth discriminator info in the top
|
|
// 32 bits.
|
|
if (isMachOWithPtrAuth()) {
|
|
return remote::RemoteAbsolutePointer(remote::RemoteAddress(
|
|
HeaderAddress + (pointerValue & 0xffffffffull), 0));
|
|
} else {
|
|
return remote::RemoteAbsolutePointer(remote::RemoteAddress(
|
|
pointerValue, reflection::RemoteAddress::DefaultAddressSpace));
|
|
}
|
|
}
|
|
|
|
remote::RemoteAbsolutePointer Image::getDynamicSymbol(uint64_t Addr) const {
|
|
auto found = DynamicRelocations.find(Addr);
|
|
if (found == DynamicRelocations.end())
|
|
return nullptr;
|
|
if (!found->second.Symbol.empty())
|
|
return remote::RemoteAbsolutePointer(found->second.Symbol,
|
|
found->second.OffsetOrAddress,
|
|
remote::RemoteAddress());
|
|
return remote::RemoteAbsolutePointer(
|
|
remote::RemoteAddress(found->second.OffsetOrAddress,
|
|
remote::RemoteAddress::DefaultAddressSpace));
|
|
}
|
|
|
|
std::pair<const Image *, uint64_t>
|
|
ObjectMemoryReader::decodeImageIndexAndAddress(uint64_t Addr) const {
|
|
for (auto &Image : Images) {
|
|
if (Image.TheImage.getStartAddress() + Image.Slide <= Addr &&
|
|
Addr < Image.TheImage.getEndAddress() + Image.Slide) {
|
|
return {&Image.TheImage, Addr - Image.Slide};
|
|
}
|
|
}
|
|
return {nullptr, 0};
|
|
}
|
|
|
|
remote::RemoteAddress ObjectMemoryReader::encodeImageIndexAndAddress(
|
|
const Image *image, remote::RemoteAddress imageAddr) const {
|
|
auto entry = (const ImageEntry *)image;
|
|
return imageAddr + entry->Slide;
|
|
}
|
|
|
|
StringRef ObjectMemoryReader::getContentsAtAddress(uint64_t Addr,
|
|
uint64_t Size) {
|
|
const Image *image;
|
|
uint64_t imageAddr;
|
|
std::tie(image, imageAddr) = decodeImageIndexAndAddress(Addr);
|
|
|
|
if (!image)
|
|
return StringRef();
|
|
|
|
return image->getContentsAtAddress(imageAddr, Size);
|
|
}
|
|
|
|
ObjectMemoryReader::ObjectMemoryReader(
|
|
const std::vector<const llvm::object::ObjectFile *> &ObjectFiles) {
|
|
if (ObjectFiles.empty()) {
|
|
fputs("no object files provided\n", stderr);
|
|
abort();
|
|
}
|
|
unsigned WordSize = 0;
|
|
for (const llvm::object::ObjectFile *O : ObjectFiles) {
|
|
// All the object files we look at should share a word size.
|
|
if (!WordSize) {
|
|
WordSize = O->getBytesInAddress();
|
|
} else if (WordSize != O->getBytesInAddress()) {
|
|
fputs("object files must all be for the same architecture\n", stderr);
|
|
abort();
|
|
}
|
|
Images.push_back({Image(O), 0});
|
|
}
|
|
|
|
// If there is more than one image loaded, try to fit them into one address
|
|
// space.
|
|
if (Images.size() > 1) {
|
|
uint64_t NextAddrSpace = 0;
|
|
for (auto &Image : Images) {
|
|
Image.Slide = NextAddrSpace - Image.TheImage.getStartAddress();
|
|
NextAddrSpace +=
|
|
Image.TheImage.getEndAddress() - Image.TheImage.getStartAddress();
|
|
NextAddrSpace = (NextAddrSpace + 16383) & ~16383;
|
|
}
|
|
|
|
if (WordSize < 8 && NextAddrSpace > 0xFFFFFFFFu) {
|
|
fputs("object files did not fit in address space", stderr);
|
|
abort();
|
|
}
|
|
}
|
|
}
|
|
|
|
bool ObjectMemoryReader::queryDataLayout(DataLayoutQueryType type,
|
|
void *inBuffer, void *outBuffer) {
|
|
auto wordSize = Images.front().TheImage.getBytesInAddress();
|
|
// TODO: The following should be set based on inspecting the image.
|
|
// This code sets it to match the platform this code was compiled for.
|
|
#if defined(__APPLE__) && __APPLE__
|
|
auto applePlatform = true;
|
|
#else
|
|
auto applePlatform = false;
|
|
#endif
|
|
#if defined(__APPLE__) && __APPLE__ && \
|
|
((defined(TARGET_OS_IOS) && TARGET_OS_IOS) || \
|
|
(defined(TARGET_OS_IOS) && TARGET_OS_WATCH) || \
|
|
(defined(TARGET_OS_TV) && TARGET_OS_TV) || defined(__arm64__))
|
|
auto iosDerivedPlatform = true;
|
|
#else
|
|
auto iosDerivedPlatform = false;
|
|
#endif
|
|
|
|
switch (type) {
|
|
case DLQ_GetPointerSize: {
|
|
auto result = static_cast<uint8_t *>(outBuffer);
|
|
*result = wordSize;
|
|
return true;
|
|
}
|
|
case DLQ_GetSizeSize: {
|
|
auto result = static_cast<uint8_t *>(outBuffer);
|
|
*result = wordSize;
|
|
return true;
|
|
}
|
|
case DLQ_GetPtrAuthMask: {
|
|
// We don't try to sign pointers at all in our view of the object
|
|
// mapping.
|
|
if (wordSize == 4) {
|
|
auto result = static_cast<uint32_t *>(outBuffer);
|
|
*result = (uint32_t)~0ull;
|
|
return true;
|
|
} else if (wordSize == 8) {
|
|
auto result = static_cast<uint64_t *>(outBuffer);
|
|
*result = (uint64_t)~0ull;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
case DLQ_GetObjCReservedLowBits: {
|
|
auto result = static_cast<uint8_t *>(outBuffer);
|
|
if (applePlatform && !iosDerivedPlatform && wordSize == 8) {
|
|
// Obj-C reserves low bit on 64-bit macOS only.
|
|
// Other Apple platforms don't reserve this bit (even when
|
|
// running on x86_64-based simulators).
|
|
*result = 1;
|
|
} else {
|
|
*result = 0;
|
|
}
|
|
return true;
|
|
}
|
|
case DLQ_GetLeastValidPointerValue: {
|
|
auto result = static_cast<uint64_t *>(outBuffer);
|
|
if (applePlatform && wordSize == 8) {
|
|
// Swift reserves the first 4GiB on 64-bit Apple platforms
|
|
*result = 0x100000000;
|
|
} else {
|
|
// Swift reserves the first 4KiB everywhere else
|
|
*result = 0x1000;
|
|
}
|
|
return true;
|
|
}
|
|
case DLQ_GetObjCInteropIsEnabled:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
reflection::RemoteAddress
|
|
ObjectMemoryReader::getImageStartAddress(unsigned i) const {
|
|
assert(i < Images.size());
|
|
|
|
return reflection::RemoteAddress(encodeImageIndexAndAddress(
|
|
&Images[i].TheImage,
|
|
remote::RemoteAddress(Images[i].TheImage.getStartAddress(),
|
|
reflection::RemoteAddress::DefaultAddressSpace)));
|
|
}
|
|
|
|
ReadBytesResult ObjectMemoryReader::readBytes(reflection::RemoteAddress Addr,
|
|
uint64_t Size) {
|
|
auto addrValue = Addr.getRawAddress();
|
|
auto resultBuffer = getContentsAtAddress(addrValue, Size);
|
|
return ReadBytesResult(resultBuffer.data(), no_op_destructor);
|
|
}
|
|
|
|
bool ObjectMemoryReader::readString(reflection::RemoteAddress Addr,
|
|
std::string &Dest) {
|
|
auto addrValue = Addr.getRawAddress();
|
|
auto resultBuffer = getContentsAtAddress(addrValue, 1);
|
|
if (resultBuffer.empty())
|
|
return false;
|
|
|
|
// Make sure there's a null terminator somewhere in the contents.
|
|
unsigned i = 0;
|
|
for (unsigned e = resultBuffer.size(); i < e; ++i) {
|
|
if (resultBuffer[i] == 0)
|
|
goto found_terminator;
|
|
}
|
|
return false;
|
|
|
|
found_terminator:
|
|
Dest.append(resultBuffer.begin(), resultBuffer.begin() + i);
|
|
return true;
|
|
}
|
|
|
|
remote::RemoteAbsolutePointer
|
|
ObjectMemoryReader::resolvePointer(reflection::RemoteAddress Addr,
|
|
uint64_t pointerValue) {
|
|
auto addrValue = Addr.getRawAddress();
|
|
const Image *image;
|
|
uint64_t imageAddr;
|
|
std::tie(image, imageAddr) = decodeImageIndexAndAddress(addrValue);
|
|
|
|
if (!image)
|
|
return remote::RemoteAbsolutePointer();
|
|
|
|
auto resolved = image->resolvePointer(imageAddr, pointerValue);
|
|
// Mix in the image index again to produce a remote address pointing into the
|
|
// same image.
|
|
return remote::RemoteAbsolutePointer(remote::RemoteAddress(
|
|
encodeImageIndexAndAddress(image, resolved.getResolvedAddress())));
|
|
}
|
|
|
|
remote::RemoteAbsolutePointer
|
|
ObjectMemoryReader::getDynamicSymbol(reflection::RemoteAddress Addr) {
|
|
auto addrValue = Addr.getRawAddress();
|
|
const Image *image;
|
|
uint64_t imageAddr;
|
|
std::tie(image, imageAddr) = decodeImageIndexAndAddress(addrValue);
|
|
|
|
if (!image)
|
|
return nullptr;
|
|
|
|
return image->getDynamicSymbol(imageAddr);
|
|
}
|
|
|
|
uint64_t ObjectMemoryReader::getPtrauthMask() {
|
|
auto initializePtrauthMask = [&]() -> uint64_t {
|
|
uint8_t pointerSize = 0;
|
|
if (!queryDataLayout(DataLayoutQueryType::DLQ_GetPointerSize, nullptr,
|
|
&pointerSize))
|
|
return ~0ull;
|
|
|
|
if (pointerSize == 4) {
|
|
uint32_t ptrauthMask32 = 0;
|
|
if (queryDataLayout(DataLayoutQueryType::DLQ_GetPtrAuthMask, nullptr,
|
|
&ptrauthMask32))
|
|
return (uint64_t)ptrauthMask32;
|
|
} else if (pointerSize == 8) {
|
|
uint64_t ptrauthMask64 = 0;
|
|
if (queryDataLayout(DataLayoutQueryType::DLQ_GetPtrAuthMask, nullptr,
|
|
&ptrauthMask64))
|
|
return ptrauthMask64;
|
|
}
|
|
return ~0ull;
|
|
};
|
|
if (!PtrauthMask)
|
|
PtrauthMask = initializePtrauthMask();
|
|
return PtrauthMask;
|
|
}
|
|
|
|
template <typename Runtime>
|
|
std::unique_ptr<ReflectionContextHolder> makeReflectionContextForMetadataReader(
|
|
std::shared_ptr<ObjectMemoryReader> reader, uint8_t pointerSize) {
|
|
using ReflectionContext = reflection::ReflectionContext<Runtime>;
|
|
auto context = new ReflectionContext(reader);
|
|
auto &builder = context->getBuilder();
|
|
for (unsigned i = 0, e = reader->getImages().size(); i < e; ++i) {
|
|
context->addImage(reader->getImageStartAddress(i));
|
|
}
|
|
|
|
ReflectionContextHolder *holder = new ReflectionContextHolder{
|
|
ReflectionContextOwner(context,
|
|
[](void *x) { delete (ReflectionContext *)x; }),
|
|
builder, *reader, pointerSize};
|
|
return std::unique_ptr<ReflectionContextHolder>(holder);
|
|
}
|
|
|
|
std::unique_ptr<ReflectionContextHolder> makeReflectionContextForObjectFiles(
|
|
const std::vector<const ObjectFile *> &objectFiles, bool ObjCInterop) {
|
|
auto Reader = std::make_shared<ObjectMemoryReader>(objectFiles);
|
|
|
|
uint8_t pointerSize;
|
|
Reader->queryDataLayout(DataLayoutQueryType::DLQ_GetPointerSize, nullptr,
|
|
&pointerSize);
|
|
|
|
switch (pointerSize) {
|
|
case 4:
|
|
#define MAKE_CONTEXT(INTEROP, PTRSIZE) \
|
|
makeReflectionContextForMetadataReader< \
|
|
External<INTEROP<RuntimeTarget<PTRSIZE>>>>(std::move(Reader), \
|
|
pointerSize)
|
|
#if SWIFT_OBJC_INTEROP
|
|
if (ObjCInterop)
|
|
return MAKE_CONTEXT(WithObjCInterop, 4);
|
|
else
|
|
return MAKE_CONTEXT(NoObjCInterop, 4);
|
|
#else
|
|
return MAKE_CONTEXT(NoObjCInterop, 4);
|
|
#endif
|
|
case 8:
|
|
#if SWIFT_OBJC_INTEROP
|
|
if (ObjCInterop)
|
|
return MAKE_CONTEXT(WithObjCInterop, 8);
|
|
else
|
|
return MAKE_CONTEXT(NoObjCInterop, 8);
|
|
#else
|
|
return MAKE_CONTEXT(NoObjCInterop, 8);
|
|
#endif
|
|
default:
|
|
fputs("unsupported word size in object file\n", stderr);
|
|
abort();
|
|
}
|
|
}
|
|
} // end namespace static_mirror
|
|
} // end namespace swift
|