Files
swift-mirror/tools/swift-remoteast-test/swift-remoteast-test.cpp
Augusto Noronha e2c8b761cd [NFC][RemoteInspection] Add an opaque AddressSpace field to RemoteAddress
Add an extra opaque field to AddressSpace, which can be used by clients
of RemoteInspection to distinguish between different address spaces.

LLDB employs an optimization where it reads memory from files instead of
the running process whenever it can to speed up memory reads (these can
be slow when debugging something over a network). To do this, it needs
to keep track whether an address originated from a process or a file. It
currently distinguishes addresses by setting an unused high bit on the
address, but because of pointer authentication this is not a reliable
solution. In order to keep this optimization working, this patch adds an
extra opaque AddressSpace field to RemoteAddress, which LLDB can use on
its own implementation of MemoryReader to distinguish between addresses.

This patch is NFC for the other RemoteInspection clients, as it adds
extra information to RemoteAddress, which is entirely optional and if
unused should not change the behavior of the library.

Although this patch is quite big the changes are largely mechanical,
replacing threading StoredPointer with RemoteAddress.

rdar://148361743
(cherry picked from commit 58df5534d2)
(cherry picked from commit 8f3862b5e7)
2025-07-11 16:36:40 -07:00

231 lines
7.5 KiB
C++

//===--- swift-remoteast-test.cpp - RemoteAST testing application ---------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
// This file supports performing target-specific remote reflection tests
// on live swift executables.
//===----------------------------------------------------------------------===//
#include "swift/RemoteAST/RemoteAST.h"
#include "swift/Remote/InProcessMemoryReader.h"
#include "swift/Remote/MetadataReader.h"
#include "swift/Runtime/Metadata.h"
#include "swift/Frontend/Frontend.h"
#include "swift/FrontendTool/FrontendTool.h"
#include "swift/Basic/LLVM.h"
#include "swift/Basic/LLVMInitialize.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#if defined(__ELF__)
#define SWIFT_REMOTEAST_TEST_ABI __attribute__((__visibility__("default")))
#elif defined(__MACH__)
#define SWIFT_REMOTEAST_TEST_ABI __attribute__((__visibility__("default")))
#else
#define SWIFT_REMOTEAST_TEST_ABI __declspec(dllexport)
#endif
using namespace swift;
using namespace swift::remote;
using namespace swift::remoteAST;
#if defined(__APPLE__) && defined(__MACH__)
#include <dlfcn.h>
static unsigned long long computeClassIsSwiftMask(void) {
uintptr_t *objc_debug_swift_stable_abi_bit_ptr =
(uintptr_t *)dlsym(RTLD_DEFAULT, "objc_debug_swift_stable_abi_bit");
return objc_debug_swift_stable_abi_bit_ptr ?
*objc_debug_swift_stable_abi_bit_ptr : 1;
}
#else
static unsigned long long computeClassIsSwiftMask(void) {
return 1;
}
#endif
extern "C" unsigned long long _swift_classIsSwiftMask =
computeClassIsSwiftMask();
/// The context for the code we're running. Set by the observer.
static ASTContext *context = nullptr;
/// The RemoteAST for the code we're running.
std::unique_ptr<RemoteASTContext> remoteContext;
static RemoteASTContext &getRemoteASTContext() {
if (remoteContext)
return *remoteContext;
std::shared_ptr<MemoryReader> reader(new InProcessMemoryReader());
remoteContext.reset(new RemoteASTContext(*context, std::move(reader)));
return *remoteContext;
}
// FIXME: swiftcall
/// func printType(forMetadata: Any.Type)
extern "C" void SWIFT_REMOTEAST_TEST_ABI LLVM_ATTRIBUTE_USED
printMetadataType(const Metadata *typeMetadata) {
auto &remoteAST = getRemoteASTContext();
auto &out = llvm::outs();
auto result = remoteAST.getTypeForRemoteTypeMetadata(RemoteAddress(
(uint64_t)typeMetadata, RemoteAddress::DefaultAddressSpace));
if (result) {
out << "found type: ";
result.getValue().print(out);
out << '\n';
} else {
out << result.getFailure().render() << '\n';
}
}
// FIXME: swiftcall
/// func printDynamicType(_: AnyObject)
extern "C" void SWIFT_REMOTEAST_TEST_ABI LLVM_ATTRIBUTE_USED
printHeapMetadataType(void *object) {
auto &remoteAST = getRemoteASTContext();
auto &out = llvm::outs();
auto metadataResult = remoteAST.getHeapMetadataForObject(
RemoteAddress((uint64_t)object, RemoteAddress::DefaultAddressSpace));
if (!metadataResult) {
out << metadataResult.getFailure().render() << '\n';
return;
}
auto metadata = metadataResult.getValue();
auto result =
remoteAST.getTypeForRemoteTypeMetadata(metadata, /*skipArtificial*/ true);
if (result) {
out << "found type: ";
result.getValue().print(out);
out << '\n';
} else {
out << result.getFailure().render() << '\n';
}
}
static void printMemberOffset(const Metadata *typeMetadata,
StringRef memberName, bool passMetadata) {
auto &remoteAST = getRemoteASTContext();
auto &out = llvm::outs();
// The first thing we have to do is get the type.
auto typeResult = remoteAST.getTypeForRemoteTypeMetadata(RemoteAddress(
(uint64_t)typeMetadata, RemoteAddress::DefaultAddressSpace));
if (!typeResult) {
out << "failed to find type: " << typeResult.getFailure().render() << '\n';
return;
}
Type type = typeResult.getValue();
RemoteAddress address =
(passMetadata ? RemoteAddress((uint64_t)typeMetadata,
RemoteAddress::DefaultAddressSpace)
: RemoteAddress());
auto offsetResult =
remoteAST.getOffsetOfMember(type, address, memberName);
if (!offsetResult) {
out << "failed to find offset: "
<< offsetResult.getFailure().render() << '\n';
return;
}
out << "found offset: " << offsetResult.getValue() << '\n';
}
// FIXME: swiftcall
/// func printTypeMemberOffset(forType: Any.Type, memberName: StaticString)
extern "C" void SWIFT_REMOTEAST_TEST_ABI LLVM_ATTRIBUTE_USED
printTypeMemberOffset(const Metadata *typeMetadata,
const char *memberName) {
printMemberOffset(typeMetadata, memberName, /*pass metadata*/ false);
}
// FIXME: swiftcall
/// func printTypeMetadataMemberOffset(forType: Any.Type,
/// memberName: StaticString)
extern "C" void SWIFT_REMOTEAST_TEST_ABI LLVM_ATTRIBUTE_USED
printTypeMetadataMemberOffset(const Metadata *typeMetadata,
const char *memberName) {
printMemberOffset(typeMetadata, memberName, /*pass metadata*/ true);
}
// FIXME: swiftcall
/// func printDynamicTypeAndAddressForExistential<T>(_: T)
extern "C" void SWIFT_REMOTEAST_TEST_ABI LLVM_ATTRIBUTE_USED
printDynamicTypeAndAddressForExistential(void *object,
const Metadata *typeMetadata) {
auto &remoteAST = getRemoteASTContext();
auto &out = llvm::outs();
// First, retrieve the static type of the existential, so we can understand
// which kind of existential this is.
auto staticTypeResult = remoteAST.getTypeForRemoteTypeMetadata(RemoteAddress(
(uint64_t)typeMetadata, RemoteAddress::DefaultAddressSpace));
if (!staticTypeResult) {
out << "failed to resolve static type: "
<< staticTypeResult.getFailure().render() << '\n';
return;
}
// OK, we can reconstruct the dynamic type and the address now.
auto result = remoteAST.getDynamicTypeAndAddressForExistential(
RemoteAddress((uint64_t)object, RemoteAddress::DefaultAddressSpace),
staticTypeResult.getValue());
if (result) {
out << "found type: ";
result.getValue().InstanceType.print(out);
out << "\n";
} else {
out << result.getFailure().render() << '\n';
}
}
// FIXME: swiftcall
/// func stopRemoteAST(_: AnyObject)
extern "C" void SWIFT_REMOTEAST_TEST_ABI LLVM_ATTRIBUTE_USED
stopRemoteAST() {
if (remoteContext)
remoteContext.reset();
}
namespace {
struct Observer : public FrontendObserver {
void configuredCompiler(CompilerInstance &instance) override {
context = &instance.getASTContext();
}
};
} // end anonymous namespace
int main(int argc, const char *argv[]) {
PROGRAM_START(argc, argv);
unsigned numForwardedArgs = argc
- 1 // we drop argv[0]
+ 1; // -interpret
SmallVector<const char *, 8> forwardedArgs;
forwardedArgs.reserve(numForwardedArgs);
forwardedArgs.append(&argv[1], &argv[argc]);
forwardedArgs.push_back("-interpret");
assert(forwardedArgs.size() == numForwardedArgs);
Observer observer;
return performFrontend(forwardedArgs, argv[0], (void*) &printMetadataType,
&observer);
}