Files
swift-mirror/lib/AST/ASTPrinter.cpp
Chris Lattner e30cd939d9 Fix rdar://20395243 QoI: type variable reconstruction failing for tuple types
ASTPrinter of type variables was trying to dig an original type out of the
locator and archetype that opened the type variable in the first place.  This
was prone to failure and never helped, so just always print type vars as _.

The affected diagnostics always come out better and this saves a word of storage
for each type variable.
2016-01-11 22:20:19 -08:00

3366 lines
94 KiB
C++

//===--- ASTPrinter.cpp - Swift Language AST Printer ----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements printing for the Swift ASTs.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/ArchetypeBuilder.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTPrinter.h"
#include "swift/AST/ASTVisitor.h"
#include "swift/AST/Attr.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Expr.h"
#include "swift/AST/Module.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/PrintOptions.h"
#include "swift/AST/Stmt.h"
#include "swift/AST/TypeVisitor.h"
#include "swift/AST/TypeWalker.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Fallthrough.h"
#include "swift/Basic/PrimitiveParsing.h"
#include "swift/Basic/STLExtras.h"
#include "swift/Basic/StringExtras.h"
#include "swift/Parse/Lexer.h"
#include "swift/Config.h"
#include "swift/Sema/CodeCompletionTypeChecking.h"
#include "swift/Strings.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/Basic/Module.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/ConvertUTF.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/SaveAndRestore.h"
#include <algorithm>
using namespace swift;
namespace swift {
class PrinterArchetypeTransformer {
Type BaseTy;
DeclContext *DC;
llvm::DenseMap<TypeBase *, Type> Cache;
llvm::DenseMap<StringRef, Type> IdMap;
public:
PrinterArchetypeTransformer(Type Ty, DeclContext *DC) :
BaseTy(Ty->getRValueType()), DC(DC){
(void) this->DC;
auto D = BaseTy->getNominalOrBoundGenericNominal();
if (!D || !D->getGenericParams())
return;
SmallVector<Type, 3> Scrach;
auto Args = BaseTy->getAllGenericArgs(Scrach);
const auto ParamDecls = D->getGenericParams()->getParams();
assert(ParamDecls.size() == Args.size());
// Map type parameter names with their instantiating arguments.
for(unsigned I = 0, N = ParamDecls.size(); I < N; I ++) {
IdMap[ParamDecls[I]->getName().str()] = Args[I];
}
}
Type transformByName(Type Ty) {
if (Ty->getKind() != TypeKind::Archetype)
return Ty;
// First, we try to find the map from cache.
if (Cache.count(Ty.getPointer()) > 0) {
return Cache[Ty.getPointer()];
}
auto Id = cast<ArchetypeType>(Ty.getPointer())->getName().str();
auto Result = Ty;
// Iterate the IdMap to find the argument type of the given param name.
for (auto It = IdMap.begin(); It != IdMap.end(); ++ It) {
if (Id == It->getFirst()) {
Result = It->getSecond();
break;
}
}
// Put the result into cache.
Cache[Ty.getPointer()] = Result;
return Result;
}
};
}
PrintOptions PrintOptions::printTypeInterface(Type T, DeclContext *DC) {
PrintOptions result = printInterface();
result.pTransformer = std::make_shared<PrinterArchetypeTransformer>(T, DC);
result.TypeToPrint = T.getPointer();
return result;
}
std::string ASTPrinter::sanitizeUtf8(StringRef Text) {
llvm::SmallString<256> Builder;
Builder.reserve(Text.size());
const UTF8* Data = reinterpret_cast<const UTF8*>(Text.begin());
const UTF8* End = reinterpret_cast<const UTF8*>(Text.end());
StringRef Replacement = "\ufffd";
while (Data < End) {
auto Step = getNumBytesForUTF8(*Data);
if (Data + Step > End) {
Builder.append(Replacement);
break;
}
if (isLegalUTF8Sequence(Data, Data + Step)) {
Builder.append(Data, Data + Step);
} else {
// If malformed, add replacement characters.
Builder.append(Replacement);
}
Data += Step;
}
return Builder.str();
}
bool ASTPrinter::printTypeInterface(Type Ty, DeclContext *DC,
llvm::raw_ostream &OS) {
if (!Ty)
return false;
Ty = Ty->getRValueType();
PrintOptions Options = PrintOptions::printTypeInterface(Ty.getPointer(), DC);
if (auto ND = Ty->getNominalOrBoundGenericNominal()) {
llvm::SmallPtrSet<const ExtensionDecl*, 4> AllExts;
for (auto Ext : ND->getExtensions()) {
AllExts.insert(Ext);
}
Options.printExtensionContentAsMembers = [&](const ExtensionDecl *ED) {
return AllExts.count(ED) == 1 && isExtensionApplied(*ND->getDeclContext(), Ty, ED);
};
ND->print(OS, Options);
return true;
}
return false;
}
bool ASTPrinter::printTypeInterface(Type Ty, DeclContext *DC, std::string &Buffer) {
llvm::raw_string_ostream OS(Buffer);
auto Result = printTypeInterface(Ty, DC, OS);
OS.str();
return Result;
}
void ASTPrinter::anchor() {}
void ASTPrinter::printIndent() {
llvm::SmallString<16> Str;
for (unsigned i = 0; i != CurrentIndentation; ++i)
Str += ' ';
printText(Str);
}
void ASTPrinter::printTextImpl(StringRef Text) {
if (PendingNewlines != 0) {
llvm::SmallString<16> Str;
for (unsigned i = 0; i != PendingNewlines; ++i)
Str += '\n';
PendingNewlines = 0;
printText(Str);
printIndent();
}
const Decl *PreD = PendingDeclPreCallback;
const Decl *LocD = PendingDeclLocCallback;
PendingDeclPreCallback = nullptr;
PendingDeclLocCallback = nullptr;
if (PreD) {
printDeclPre(PreD);
}
if (LocD) {
printDeclLoc(LocD);
}
printText(Text);
}
void ASTPrinter::printTypeRef(const TypeDecl *TD, Identifier Name) {
PrintNameContext Context = PrintNameContext::Normal;
if (auto GP = dyn_cast<GenericTypeParamDecl>(TD)) {
if (GP->isProtocolSelf())
Context = PrintNameContext::GenericParameter;
}
printName(Name, Context);
}
void ASTPrinter::printModuleRef(ModuleEntity Mod, Identifier Name) {
printName(Name);
}
ASTPrinter &ASTPrinter::operator<<(unsigned long long N) {
llvm::SmallString<32> Str;
llvm::raw_svector_ostream OS(Str);
OS << N;
printTextImpl(OS.str());
return *this;
}
ASTPrinter &ASTPrinter::operator<<(UUID UU) {
llvm::SmallString<UUID::StringBufferSize> Str;
UU.toString(Str);
printTextImpl(Str);
return *this;
}
/// Determine whether to escape the given keyword in the given context.
static bool escapeKeywordInContext(StringRef keyword, PrintNameContext context){
switch (context) {
case PrintNameContext::Normal:
return true;
case PrintNameContext::GenericParameter:
return keyword != "Self";
case PrintNameContext::FunctionParameter:
return !canBeArgumentLabel(keyword);
}
}
void ASTPrinter::printName(Identifier Name, PrintNameContext Context) {
if (Name.empty()) {
*this << "_";
return;
}
bool IsKeyword = llvm::StringSwitch<bool>(Name.str())
#define KEYWORD(KW) \
.Case(#KW, true)
#include "swift/Parse/Tokens.def"
.Default(false);
if (IsKeyword)
IsKeyword = escapeKeywordInContext(Name.str(), Context);
if (IsKeyword)
*this << "`";
*this << Name.str();
if (IsKeyword)
*this << "`";
}
void StreamPrinter::printText(StringRef Text) {
OS << Text;
}
namespace {
/// \brief AST pretty-printer.
class PrintAST : public ASTVisitor<PrintAST> {
ASTPrinter &Printer;
PrintOptions Options;
unsigned IndentLevel = 0;
friend DeclVisitor<PrintAST>;
/// \brief RAII object that increases the indentation level.
class IndentRAII {
PrintAST &Self;
bool DoIndent;
public:
IndentRAII(PrintAST &self, bool DoIndent = true)
: Self(self), DoIndent(DoIndent) {
if (DoIndent)
Self.IndentLevel += Self.Options.Indent;
}
~IndentRAII() {
if (DoIndent)
Self.IndentLevel -= Self.Options.Indent;
}
};
/// \brief Indent the current number of indentation spaces.
void indent() {
Printer.setIndent(IndentLevel);
}
/// \brief Record the location of this declaration, which is about to
/// be printed.
template<typename FnTy>
void recordDeclLoc(Decl *decl, const FnTy &Fn) {
Printer.callPrintDeclLoc(decl);
Fn();
Printer.printDeclNameEndLoc(decl);
}
void printSourceRange(CharSourceRange Range, ASTContext &Ctx) {
Printer << Ctx.SourceMgr.extractText(Range);
}
void printClangDocumentationComment(const clang::Decl *D) {
const auto &ClangContext = D->getASTContext();
const clang::RawComment *RC = ClangContext.getRawCommentForAnyRedecl(D);
if (!RC)
return;
if (!Options.PrintRegularClangComments) {
Printer.printNewline();
indent();
}
bool Invalid;
unsigned StartLocCol =
ClangContext.getSourceManager().getSpellingColumnNumber(
RC->getLocStart(), &Invalid);
if (Invalid)
StartLocCol = 0;
unsigned WhitespaceToTrim = StartLocCol ? StartLocCol - 1 : 0;
SmallVector<StringRef, 8> Lines;
StringRef RawText =
RC->getRawText(ClangContext.getSourceManager()).rtrim("\n\r");
trimLeadingWhitespaceFromLines(RawText, WhitespaceToTrim, Lines);
for (auto Line : Lines) {
Printer << ASTPrinter::sanitizeUtf8(Line);
Printer.printNewline();
}
}
void printSwiftDocumentationComment(const Decl *D) {
auto RC = D->getRawComment();
if (RC.isEmpty())
return;
indent();
SmallVector<StringRef, 8> Lines;
for (const auto &SRC : RC.Comments) {
Lines.clear();
StringRef RawText = SRC.RawText.rtrim("\n\r");
unsigned WhitespaceToTrim = SRC.StartColumn - 1;
trimLeadingWhitespaceFromLines(RawText, WhitespaceToTrim, Lines);
for (auto Line : Lines) {
Printer << Line;
Printer.printNewline();
}
}
}
void printDocumentationComment(const Decl *D) {
if (!Options.PrintDocumentationComments)
return;
// Try to print a comment from Clang.
auto MaybeClangNode = D->getClangNode();
if (MaybeClangNode) {
if (auto *CD = MaybeClangNode.getAsDecl())
printClangDocumentationComment(CD);
return;
}
printSwiftDocumentationComment(D);
}
void printStaticKeyword(StaticSpellingKind StaticSpelling) {
switch (StaticSpelling) {
case StaticSpellingKind::None:
llvm_unreachable("should not be called for non-static decls");
case StaticSpellingKind::KeywordStatic:
Printer << "static ";
break;
case StaticSpellingKind::KeywordClass:
Printer<< "class ";
break;
}
}
void printAccessibility(Accessibility access, StringRef suffix = "") {
switch (access) {
case Accessibility::Private:
Printer << "private";
break;
case Accessibility::Internal:
if (!Options.PrintInternalAccessibilityKeyword)
return;
Printer << "internal";
break;
case Accessibility::Public:
Printer << "public";
break;
}
Printer << suffix << " ";
}
void printAccessibility(const ValueDecl *D) {
if (!Options.PrintAccessibility || !D->hasAccessibility() ||
D->getAttrs().hasAttribute<AccessibilityAttr>())
return;
printAccessibility(D->getFormalAccess());
if (auto storageDecl = dyn_cast<AbstractStorageDecl>(D)) {
if (auto setter = storageDecl->getSetter()) {
Accessibility setterAccess = setter->getFormalAccess();
if (setterAccess != D->getFormalAccess())
printAccessibility(setterAccess, "(set)");
}
}
}
void printTypeLoc(const TypeLoc &TL) {
if (Options.pTransformer && TL.getType()) {
if (auto RT = Options.pTransformer->transformByName(TL.getType())) {
PrintOptions FreshOptions;
RT.print(Printer, FreshOptions);
return;
}
}
// Print a TypeRepr if instructed to do so by options, or if the type
// is null.
if ((Options.PreferTypeRepr && TL.hasLocation()) ||
TL.getType().isNull()) {
if (auto repr = TL.getTypeRepr())
repr->print(Printer, Options);
return;
}
TL.getType().print(Printer, Options);
}
void printAttributes(const Decl *D);
void printTypedPattern(const TypedPattern *TP);
public:
void printPattern(const Pattern *pattern);
void printGenericParams(GenericParamList *params);
void printWhereClause(ArrayRef<RequirementRepr> requirements);
private:
bool shouldPrint(const Decl *D, bool Notify = false);
bool shouldPrintPattern(const Pattern *P);
void printPatternType(const Pattern *P);
void printAccessors(AbstractStorageDecl *ASD);
void printMembersOfDecl(Decl * NTD, bool needComma = false);
void printMembers(ArrayRef<Decl *> members, bool needComma = false);
void printNominalDeclName(NominalTypeDecl *decl);
void printInherited(const Decl *decl,
ArrayRef<TypeLoc> inherited,
ArrayRef<ProtocolDecl *> protos,
Type superclass = {},
bool explicitClass = false,
bool PrintAsProtocolComposition = false);
void printInherited(const NominalTypeDecl *decl,
bool explicitClass = false);
void printInherited(const EnumDecl *D);
void printInherited(const ExtensionDecl *decl);
void printInherited(const GenericTypeParamDecl *D);
void printEnumElement(EnumElementDecl *elt);
/// \returns true if anything was printed.
bool printASTNodes(const ArrayRef<ASTNode> &Elements, bool NeedIndent = true);
void printOneParameter(const ParamDecl *param, bool Curried,
bool ArgNameIsAPIByDefault);
void printParameterList(ParameterList *PL, bool isCurried,
std::function<bool(unsigned)> isAPINameByDefault);
/// \brief Print the function parameters in curried or selector style,
/// to match the original function declaration.
void printFunctionParameters(AbstractFunctionDecl *AFD);
#define DECL(Name,Parent) void visit##Name##Decl(Name##Decl *decl);
#define ABSTRACT_DECL(Name, Parent)
#define DECL_RANGE(Name,Start,End)
#include "swift/AST/DeclNodes.def"
#define STMT(Name, Parent) void visit##Name##Stmt(Name##Stmt *stmt);
#include "swift/AST/StmtNodes.def"
public:
PrintAST(ASTPrinter &Printer, const PrintOptions &Options)
: Printer(Printer), Options(Options) {}
using ASTVisitor::visit;
bool visit(Decl *D) {
if (!shouldPrint(D, true))
return false;
Printer.callPrintDeclPre(D);
ASTVisitor::visit(D);
Printer.printDeclPost(D);
return true;
}
};
} // unnamed namespace
void PrintAST::printAttributes(const Decl *D) {
if (Options.SkipAttributes)
return;
D->getAttrs().print(Printer, Options);
}
void PrintAST::printTypedPattern(const TypedPattern *TP) {
auto TheTypeLoc = TP->getTypeLoc();
if (TheTypeLoc.hasLocation()) {
// If the outer typeloc is an InOutTypeRepr, print the inout before the
// subpattern.
if (auto *IOT = dyn_cast<InOutTypeRepr>(TheTypeLoc.getTypeRepr())) {
TheTypeLoc = TypeLoc(IOT->getBase());
Type T = TheTypeLoc.getType();
if (T) {
if (auto *IOT = T->getAs<InOutType>()) {
T = IOT->getObjectType();
TheTypeLoc.setType(T);
}
}
Printer << "inout ";
}
printPattern(TP->getSubPattern());
Printer << ": ";
printTypeLoc(TheTypeLoc);
return;
}
Type T = TP->getType();
if (auto *IOT = T->getAs<InOutType>()) {
T = IOT->getObjectType();
Printer << "inout ";
}
printPattern(TP->getSubPattern());
Printer << ": ";
T.print(Printer, Options);
}
void PrintAST::printPattern(const Pattern *pattern) {
switch (pattern->getKind()) {
case PatternKind::Any:
Printer << "_";
break;
case PatternKind::Named: {
auto named = cast<NamedPattern>(pattern);
recordDeclLoc(named->getDecl(), [&]{
Printer.printName(named->getBoundName());
});
break;
}
case PatternKind::Paren:
Printer << "(";
printPattern(cast<ParenPattern>(pattern)->getSubPattern());
Printer << ")";
break;
case PatternKind::Tuple: {
Printer << "(";
auto TP = cast<TuplePattern>(pattern);
auto Fields = TP->getElements();
for (unsigned i = 0, e = Fields.size(); i != e; ++i) {
const auto &Elt = Fields[i];
if (i != 0)
Printer << ", ";
printPattern(Elt.getPattern());
}
Printer << ")";
break;
}
case PatternKind::Typed:
printTypedPattern(cast<TypedPattern>(pattern));
break;
case PatternKind::Is: {
auto isa = cast<IsPattern>(pattern);
Printer << "is ";
isa->getCastTypeLoc().getType().print(Printer, Options);
break;
}
case PatternKind::NominalType: {
auto type = cast<NominalTypePattern>(pattern);
type->getCastTypeLoc().getType().print(Printer, Options);
Printer << "(";
interleave(type->getElements().begin(), type->getElements().end(),
[&](const NominalTypePattern::Element &elt) {
Printer << elt.getPropertyName().str() << ":";
printPattern(elt.getSubPattern());
}, [&] {
Printer << ", ";
});
break;
}
case PatternKind::EnumElement: {
auto elt = cast<EnumElementPattern>(pattern);
// FIXME: Print element expr.
if (elt->hasSubPattern())
printPattern(elt->getSubPattern());
break;
}
case PatternKind::OptionalSome:
printPattern(cast<OptionalSomePattern>(pattern)->getSubPattern());
Printer << '?';
break;
case PatternKind::Bool:
Printer << (cast<BoolPattern>(pattern)->getValue() ? "true" : "false");
break;
case PatternKind::Expr:
// FIXME: Print expr.
break;
case PatternKind::Var:
if (!Options.SkipIntroducerKeywords)
Printer << (cast<VarPattern>(pattern)->isLet() ? "let " : "var ");
printPattern(cast<VarPattern>(pattern)->getSubPattern());
}
}
void PrintAST::printGenericParams(GenericParamList *Params) {
if (!Params)
return;
Printer << "<";
bool IsFirst = true;
SmallVector<Type, 4> Scrach;
if (Options.pTransformer) {
auto ArgArr = Options.TypeToPrint->getAllGenericArgs(Scrach);
for (auto Arg : ArgArr) {
if (IsFirst) {
IsFirst = false;
} else {
Printer << ", ";
}
auto NM = Arg->getAnyNominal();
assert(NM && "Cannot get nominal type.");
Printer << NM->getNameStr();
}
} else {
for (auto GP : Params->getParams()) {
if (IsFirst) {
IsFirst = false;
} else {
Printer << ", ";
}
Printer.printName(GP->getName());
printInherited(GP);
}
printWhereClause(Params->getRequirements());
}
Printer << ">";
}
void PrintAST::printWhereClause(ArrayRef<RequirementRepr> requirements) {
if (requirements.empty())
return;
bool isFirst = true;
for (auto &req : requirements) {
if (req.isInvalid())
continue;
if (isFirst) {
Printer << " where ";
isFirst = false;
} else {
Printer << ", ";
}
auto asWrittenStr = req.getAsWrittenString();
if (!asWrittenStr.empty()) {
Printer << asWrittenStr;
continue;
}
switch (req.getKind()) {
case RequirementReprKind::TypeConstraint:
printTypeLoc(req.getSubjectLoc());
Printer << " : ";
printTypeLoc(req.getConstraintLoc());
break;
case RequirementReprKind::SameType:
printTypeLoc(req.getFirstTypeLoc());
Printer << " == ";
printTypeLoc(req.getSecondTypeLoc());
break;
}
}
}
bool swift::shouldPrintPattern(const Pattern *P, PrintOptions &Options) {
bool ShouldPrint = false;
P->forEachVariable([&](VarDecl *VD) {
ShouldPrint |= shouldPrint(VD, Options);
});
return ShouldPrint;
}
bool PrintAST::shouldPrintPattern(const Pattern *P) {
return swift::shouldPrintPattern(P, Options);
}
void PrintAST::printPatternType(const Pattern *P) {
if (P->hasType()) {
Printer << ": ";
P->getType().print(Printer, Options);
}
}
bool swift::shouldPrint(const Decl *D, PrintOptions &Options) {
if (auto *ED= dyn_cast<ExtensionDecl>(D)) {
if (Options.printExtensionContentAsMembers(ED))
return false;
}
if (Options.SkipDeinit && isa<DestructorDecl>(D)) {
return false;
}
if (Options.SkipImports && isa<ImportDecl>(D)) {
return false;
}
if (Options.SkipImplicit && D->isImplicit())
return false;
if (Options.SkipUnavailable &&
D->getAttrs().isUnavailable(D->getASTContext()))
return false;
// Skip declarations that are not accessible.
if (auto *VD = dyn_cast<ValueDecl>(D)) {
if (Options.AccessibilityFilter > Accessibility::Private &&
VD->hasAccessibility() &&
VD->getFormalAccess() < Options.AccessibilityFilter)
return false;
}
if (Options.SkipPrivateStdlibDecls &&
D->isPrivateStdlibDecl(
/*whitelistProtocols=*/!Options.SkipUnderscoredStdlibProtocols))
return false;
if (Options.SkipEmptyExtensionDecls && isa<ExtensionDecl>(D)) {
auto Ext = cast<ExtensionDecl>(D);
// If the extension doesn't add protocols or has no members that we should
// print then skip printing it.
if (Ext->getLocalProtocols().empty()) {
bool HasMemberToPrint = false;
for (auto Member : Ext->getMembers()) {
if (shouldPrint(Member, Options)) {
HasMemberToPrint = true;
break;
}
}
if (!HasMemberToPrint)
return false;
}
}
// We need to handle PatternBindingDecl as a special case here because its
// attributes can only be retrieved from the inside VarDecls.
if (auto *PD = dyn_cast<PatternBindingDecl>(D)) {
auto ShouldPrint = false;
for (auto entry : PD->getPatternList()) {
ShouldPrint |= shouldPrintPattern(entry.getPattern(), Options);
if (ShouldPrint)
return true;
}
return false;
}
return true;
}
bool PrintAST::shouldPrint(const Decl *D, bool Notify) {
auto Result = swift::shouldPrint(D, Options);
if (!Result && Notify)
Printer.avoidPrintDeclPost(D);
return Result;
}
static bool isAccessorAssumedNonMutating(FuncDecl *accessor) {
switch (accessor->getAccessorKind()) {
case AccessorKind::IsGetter:
case AccessorKind::IsAddressor:
return true;
case AccessorKind::IsSetter:
case AccessorKind::IsWillSet:
case AccessorKind::IsDidSet:
case AccessorKind::IsMaterializeForSet:
case AccessorKind::IsMutableAddressor:
return false;
case AccessorKind::NotAccessor:
llvm_unreachable("not an addressor!");
}
llvm_unreachable("bad addressor kind");
}
static StringRef getAddressorLabel(FuncDecl *addressor) {
switch (addressor->getAddressorKind()) {
case AddressorKind::NotAddressor:
llvm_unreachable("addressor claims not to be an addressor");
case AddressorKind::Unsafe:
return "unsafeAddress";
case AddressorKind::Owning:
return "addressWithOwner";
case AddressorKind::NativeOwning:
return "addressWithNativeOwner";
case AddressorKind::NativePinning:
return "addressWithPinnedNativeOwner";
}
llvm_unreachable("bad addressor kind");
}
static StringRef getMutableAddressorLabel(FuncDecl *addressor) {
switch (addressor->getAddressorKind()) {
case AddressorKind::NotAddressor:
llvm_unreachable("addressor claims not to be an addressor");
case AddressorKind::Unsafe:
return "unsafeMutableAddress";
case AddressorKind::Owning:
return "mutableAddressWithOwner";
case AddressorKind::NativeOwning:
return "mutableAddressWithNativeOwner";
case AddressorKind::NativePinning:
return "mutableAddressWithPinnedNativeOwner";
}
llvm_unreachable("bad addressor kind");
}
void PrintAST::printAccessors(AbstractStorageDecl *ASD) {
if (isa<VarDecl>(ASD) && !Options.PrintPropertyAccessors)
return;
auto storageKind = ASD->getStorageKind();
// Never print anything for stored properties.
if (storageKind == AbstractStorageDecl::Stored)
return;
// Treat StoredWithTrivialAccessors the same as Stored unless
// we're printing for SIL, in which case we want to distinguish it
// from a pure stored property.
if (storageKind == AbstractStorageDecl::StoredWithTrivialAccessors) {
if (!Options.PrintForSIL) return;
// Don't print an accessor for a let; the parser can't handle it.
if (isa<VarDecl>(ASD) && cast<VarDecl>(ASD)->isLet())
return;
}
// We sometimes want to print the accessors abstractly
// instead of listing out how they're actually implemented.
bool inProtocol = isa<ProtocolDecl>(ASD->getDeclContext());
if (inProtocol ||
(Options.AbstractAccessors && !Options.FunctionDefinitions)) {
bool mutatingGetter = ASD->getGetter() && ASD->isGetterMutating();
bool settable = ASD->isSettable(nullptr);
bool nonmutatingSetter = false;
if (settable && ASD->isSetterNonMutating() && ASD->isInstanceMember() &&
!ASD->getDeclContext()->getDeclaredTypeInContext()
->hasReferenceSemantics())
nonmutatingSetter = true;
// We're about to print something like this:
// { mutating? get (nonmutating? set)? }
// But don't print "{ get set }" if we don't have to.
if (!inProtocol && !Options.PrintGetSetOnRWProperties &&
settable && !mutatingGetter && !nonmutatingSetter) {
return;
}
Printer << " {";
if (mutatingGetter) Printer << " mutating";
Printer << " get";
if (settable) {
if (nonmutatingSetter) Printer << " nonmutating";
Printer << " set";
}
Printer << " }";
return;
}
// Honor !Options.PrintGetSetOnRWProperties in the only remaining
// case where we could end up printing { get set }.
if (storageKind == AbstractStorageDecl::StoredWithTrivialAccessors ||
storageKind == AbstractStorageDecl::Computed) {
if (!Options.PrintGetSetOnRWProperties &&
!Options.FunctionDefinitions &&
ASD->getSetter() &&
!ASD->getGetter()->isMutating() &&
!ASD->getSetter()->isExplicitNonMutating()) {
return;
}
}
// Otherwise, print all the concrete defining accessors.
bool PrintAccessorBody = Options.FunctionDefinitions;
auto PrintAccessor = [&](FuncDecl *Accessor, StringRef Label) {
if (!Accessor)
return;
if (!PrintAccessorBody) {
if (isAccessorAssumedNonMutating(Accessor)) {
if (Accessor->isMutating())
Printer << " mutating";
} else {
if (Accessor->isExplicitNonMutating()) {
Printer << " nonmutating";
}
}
Printer << " " << Label;
} else {
Printer.printNewline();
IndentRAII IndentMore(*this);
indent();
visit(Accessor);
}
};
auto PrintAddressor = [&](FuncDecl *accessor) {
if (!accessor) return;
PrintAccessor(accessor, getAddressorLabel(accessor));
};
auto PrintMutableAddressor = [&](FuncDecl *accessor) {
if (!accessor) return;
PrintAccessor(accessor, getMutableAddressorLabel(accessor));
};
Printer << " {";
switch (storageKind) {
case AbstractStorageDecl::Stored:
llvm_unreachable("filtered out above!");
case AbstractStorageDecl::StoredWithTrivialAccessors:
case AbstractStorageDecl::Computed:
PrintAccessor(ASD->getGetter(), "get");
PrintAccessor(ASD->getSetter(), "set");
break;
case AbstractStorageDecl::StoredWithObservers:
case AbstractStorageDecl::InheritedWithObservers:
PrintAccessor(ASD->getWillSetFunc(), "willSet");
PrintAccessor(ASD->getDidSetFunc(), "didSet");
break;
case AbstractStorageDecl::Addressed:
case AbstractStorageDecl::AddressedWithTrivialAccessors:
case AbstractStorageDecl::AddressedWithObservers:
PrintAddressor(ASD->getAddressor());
PrintMutableAddressor(ASD->getMutableAddressor());
if (ASD->hasObservers()) {
PrintAccessor(ASD->getWillSetFunc(), "willSet");
PrintAccessor(ASD->getDidSetFunc(), "didSet");
}
break;
case AbstractStorageDecl::ComputedWithMutableAddress:
PrintAccessor(ASD->getGetter(), "get");
PrintMutableAddressor(ASD->getMutableAddressor());
break;
}
if (PrintAccessorBody) {
Printer.printNewline();
indent();
} else
Printer << " ";
Printer << "}";
}
void PrintAST::printMembersOfDecl(Decl *D, bool needComma) {
llvm::SmallVector<Decl *, 3> Members;
auto AddDeclFunc = [&](DeclRange Range) {
for (auto RD : Range)
Members.push_back(RD);
};
if (auto Ext = dyn_cast<ExtensionDecl>(D)) {
AddDeclFunc(Ext->getMembers());
} else if (auto NTD = dyn_cast<NominalTypeDecl>(D)) {
AddDeclFunc(NTD->getMembers());
for (auto Ext : NTD->getExtensions()) {
if (Options.printExtensionContentAsMembers(Ext))
AddDeclFunc(Ext->getMembers());
}
}
printMembers(Members, needComma);
}
void PrintAST::printMembers(ArrayRef<Decl *> members, bool needComma) {
Printer << " {";
Printer.printNewline();
{
IndentRAII indentMore(*this);
for (auto i = members.begin(), iEnd = members.end(); i != iEnd; ++i) {
auto member = *i;
if (!shouldPrint(member, true))
continue;
if (!member->shouldPrintInContext(Options))
continue;
if (Options.EmptyLineBetweenMembers)
Printer.printNewline();
indent();
visit(member);
if (needComma && std::next(i) != iEnd)
Printer << ",";
Printer.printNewline();
}
}
indent();
Printer << "}";
}
void PrintAST::printNominalDeclName(NominalTypeDecl *decl) {
Printer.printName(decl->getName());
if (auto gp = decl->getGenericParams()) {
if (!isa<ProtocolDecl>(decl)) {
// For a protocol extension, print only the where clause; the
// generic parameter list is implicit. For other nominal types,
// print the generic parameters.
if (decl->isProtocolOrProtocolExtensionContext())
printWhereClause(gp->getRequirements());
else
printGenericParams(gp);
}
}
}
void PrintAST::printInherited(const Decl *decl,
ArrayRef<TypeLoc> inherited,
ArrayRef<ProtocolDecl *> protos,
Type superclass,
bool explicitClass,
bool PrintAsProtocolComposition) {
if (inherited.empty() && superclass.isNull() && !explicitClass) {
if (protos.empty())
return;
// If only conforms to AnyObject protocol, nothing to print.
if (protos.size() == 1) {
if (protos.front()->isSpecificProtocol(KnownProtocolKind::AnyObject))
return;
}
}
if (inherited.empty()) {
bool PrintedColon = false;
bool PrintedInherited = false;
if (explicitClass) {
Printer << " : class";
PrintedInherited = true;
} else if (superclass) {
bool ShouldPrintSuper = true;
if (auto NTD = superclass->getAnyNominal()) {
ShouldPrintSuper = shouldPrint(NTD);
}
if (ShouldPrintSuper) {
Printer << " : ";
superclass.print(Printer, Options);
PrintedInherited = true;
}
}
bool UseProtocolCompositionSyntax =
PrintAsProtocolComposition && protos.size() > 1;
if (UseProtocolCompositionSyntax) {
Printer << " : protocol<";
PrintedColon = true;
}
for (auto Proto : protos) {
if (!shouldPrint(Proto))
continue;
if (Proto->isSpecificProtocol(KnownProtocolKind::AnyObject))
continue;
if (auto Enum = dyn_cast<EnumDecl>(decl)) {
// Conformance to RawRepresentable is implied by having a raw type.
if (Enum->hasRawType()
&& Proto->isSpecificProtocol(KnownProtocolKind::RawRepresentable))
continue;
// Conformance to Equatable and Hashable is implied by being a "simple"
// no-payload enum.
if (Enum->hasOnlyCasesWithoutAssociatedValues()
&& (Proto->isSpecificProtocol(KnownProtocolKind::Equatable)
|| Proto->isSpecificProtocol(KnownProtocolKind::Hashable)))
continue;
}
if (PrintedInherited)
Printer << ", ";
else if (!PrintedColon)
Printer << " : ";
Proto->getDeclaredType()->print(Printer, Options);
PrintedInherited = true;
PrintedColon = true;
}
if (UseProtocolCompositionSyntax)
Printer << ">";
} else {
SmallVector<TypeLoc, 6> TypesToPrint;
for (auto TL : inherited) {
if (auto Ty = TL.getType()) {
if (auto NTD = Ty->getAnyNominal())
if (!shouldPrint(NTD))
continue;
}
TypesToPrint.push_back(TL);
}
if (TypesToPrint.empty())
return;
Printer << " : ";
if (explicitClass)
Printer << " class, ";
interleave(TypesToPrint, [&](TypeLoc TL) {
printTypeLoc(TL);
}, [&]() {
Printer << ", ";
});
}
}
void PrintAST::printInherited(const NominalTypeDecl *decl,
bool explicitClass) {
printInherited(decl, decl->getInherited(), { }, nullptr, explicitClass);
}
void PrintAST::printInherited(const EnumDecl *decl) {
printInherited(decl, decl->getInherited(), { });
}
void PrintAST::printInherited(const ExtensionDecl *decl) {
printInherited(decl, decl->getInherited(), { });
}
void PrintAST::printInherited(const GenericTypeParamDecl *D) {
printInherited(D, D->getInherited(), { });
}
static void getModuleEntities(const clang::Module *ClangMod,
SmallVectorImpl<ModuleEntity> &ModuleEnts) {
if (!ClangMod)
return;
getModuleEntities(ClangMod->Parent, ModuleEnts);
ModuleEnts.push_back(ClangMod);
}
static void getModuleEntities(ImportDecl *Import,
SmallVectorImpl<ModuleEntity> &ModuleEnts) {
if (auto *ClangMod = Import->getClangModule()) {
getModuleEntities(ClangMod, ModuleEnts);
return;
}
auto Mod = Import->getModule();
if (!Mod)
return;
if (auto *ClangMod = Mod->findUnderlyingClangModule()) {
getModuleEntities(ClangMod, ModuleEnts);
} else {
ModuleEnts.push_back(Mod);
}
}
void PrintAST::visitImportDecl(ImportDecl *decl) {
printAttributes(decl);
Printer << "import ";
switch (decl->getImportKind()) {
case ImportKind::Module:
break;
case ImportKind::Type:
Printer << "typealias ";
break;
case ImportKind::Struct:
Printer << "struct ";
break;
case ImportKind::Class:
Printer << "class ";
break;
case ImportKind::Enum:
Printer << "enum ";
break;
case ImportKind::Protocol:
Printer << "protocol ";
break;
case ImportKind::Var:
Printer << "var ";
break;
case ImportKind::Func:
Printer << "func ";
break;
}
SmallVector<ModuleEntity, 4> ModuleEnts;
getModuleEntities(decl, ModuleEnts);
ArrayRef<ModuleEntity> Mods = ModuleEnts;
interleave(decl->getFullAccessPath(),
[&](const ImportDecl::AccessPathElement &Elem) {
if (!Mods.empty()) {
Printer.printModuleRef(Mods.front(), Elem.first);
Mods = Mods.slice(1);
} else {
Printer << Elem.first.str();
}
},
[&] { Printer << "."; });
}
void PrintAST::visitExtensionDecl(ExtensionDecl *decl) {
printDocumentationComment(decl);
printAttributes(decl);
Printer << "extension ";
recordDeclLoc(decl,
[&]{
// We cannot extend sugared types.
Type extendedType = decl->getExtendedType();
NominalTypeDecl *nominal = extendedType ? extendedType->getAnyNominal() : nullptr;
if (!nominal) {
// Fallback to TypeRepr.
printTypeLoc(decl->getExtendedTypeLoc());
return;
}
assert(nominal && "extension of non-nominal type");
if (auto ct = decl->getExtendedType()->getAs<ClassType>()) {
if (auto ParentType = ct->getParent()) {
ParentType.print(Printer, Options);
Printer << ".";
}
}
if (auto st = decl->getExtendedType()->getAs<StructType>()) {
if (auto ParentType = st->getParent()) {
ParentType.print(Printer, Options);
Printer << ".";
}
}
// Respect alias type.
if (extendedType->getKind() == TypeKind::NameAlias) {
extendedType.print(Printer, Options);
return;
}
Printer.printTypeRef(nominal, nominal->getName());
});
printInherited(decl);
if (auto *GPs = decl->getGenericParams()) {
printWhereClause(GPs->getRequirements());
}
if (Options.TypeDefinitions) {
printMembersOfDecl(decl);
}
}
void PrintAST::visitPatternBindingDecl(PatternBindingDecl *decl) {
// FIXME: We're not printing proper "{ get set }" annotations in pattern
// binding decls. As a hack, scan the decl to find out if any of the
// variables are immutable, and if so, we print as 'let'. This allows us to
// handle the 'let x = 4' case properly at least.
const VarDecl *anyVar = nullptr;
for (auto entry : decl->getPatternList()) {
entry.getPattern()->forEachVariable([&](VarDecl *V) {
anyVar = V;
});
if (anyVar) break;
}
if (anyVar)
printDocumentationComment(anyVar);
if (decl->isStatic())
printStaticKeyword(decl->getCorrectStaticSpelling());
// FIXME: PatternBindingDecls don't have attributes themselves, so just assume
// the variables all have the same attributes. This isn't exactly true
// after type-checking, but it's close enough for now.
if (anyVar) {
printAttributes(anyVar);
printAccessibility(anyVar);
Printer << (anyVar->isSettable(anyVar->getDeclContext()) ? "var " : "let ");
} else {
Printer << "let ";
}
bool isFirst = true;
for (auto entry : decl->getPatternList()) {
if (!shouldPrintPattern(entry.getPattern()))
continue;
if (isFirst)
isFirst = false;
else
Printer << ", ";
printPattern(entry.getPattern());
// We also try to print type for named patterns, e.g. var Field = 10;
// and tuple patterns, e.g. var (T1, T2) = (10, 10)
if (isa<NamedPattern>(entry.getPattern()) ||
isa<TuplePattern>(entry.getPattern())) {
printPatternType(entry.getPattern());
}
if (Options.VarInitializers) {
// FIXME: Implement once we can pretty-print expressions.
}
}
}
void PrintAST::visitTopLevelCodeDecl(TopLevelCodeDecl *decl) {
printASTNodes(decl->getBody()->getElements(), /*NeedIndent=*/false);
}
void PrintAST::visitIfConfigDecl(IfConfigDecl *ICD) {
// FIXME: Pretty print #if decls
}
void PrintAST::visitTypeAliasDecl(TypeAliasDecl *decl) {
printDocumentationComment(decl);
printAttributes(decl);
printAccessibility(decl);
if (!Options.SkipIntroducerKeywords)
Printer << "typealias ";
recordDeclLoc(decl,
[&]{
Printer.printName(decl->getName());
});
bool ShouldPrint = true;
Type Ty;
if (decl->hasUnderlyingType())
Ty = decl->getUnderlyingType();
// If the underlying type is private, don't print it.
if (Options.SkipPrivateStdlibDecls && Ty && Ty.isPrivateStdlibType())
ShouldPrint = false;
if (ShouldPrint) {
Printer << " = ";
printTypeLoc(decl->getUnderlyingTypeLoc());
}
}
void PrintAST::visitGenericTypeParamDecl(GenericTypeParamDecl *decl) {
recordDeclLoc(decl,
[&]{
Printer.printName(decl->getName());
});
printInherited(decl, decl->getInherited(), { });
}
void PrintAST::visitAssociatedTypeDecl(AssociatedTypeDecl *decl) {
printDocumentationComment(decl);
printAttributes(decl);
if (!Options.SkipIntroducerKeywords)
Printer << "typealias ";
recordDeclLoc(decl,
[&]{
Printer.printName(decl->getName());
});
printInherited(decl, decl->getInherited(), { });
if (!decl->getDefaultDefinitionLoc().isNull()) {
Printer << " = ";
decl->getDefaultDefinitionLoc().getType().print(Printer, Options);
}
}
void PrintAST::visitEnumDecl(EnumDecl *decl) {
printDocumentationComment(decl);
printAttributes(decl);
printAccessibility(decl);
if (Options.PrintOriginalSourceText && decl->getStartLoc().isValid()) {
ASTContext &Ctx = decl->getASTContext();
printSourceRange(CharSourceRange(Ctx.SourceMgr, decl->getStartLoc(),
decl->getBraces().Start.getAdvancedLoc(-1)), Ctx);
} else {
if (!Options.SkipIntroducerKeywords)
Printer << "enum ";
recordDeclLoc(decl,
[&]{
printNominalDeclName(decl);
});
printInherited(decl);
}
if (Options.TypeDefinitions) {
printMembersOfDecl(decl);
}
}
void PrintAST::visitStructDecl(StructDecl *decl) {
printDocumentationComment(decl);
printAttributes(decl);
printAccessibility(decl);
if (Options.PrintOriginalSourceText && decl->getStartLoc().isValid()) {
ASTContext &Ctx = decl->getASTContext();
printSourceRange(CharSourceRange(Ctx.SourceMgr, decl->getStartLoc(),
decl->getBraces().Start.getAdvancedLoc(-1)), Ctx);
} else {
if (!Options.SkipIntroducerKeywords)
Printer << "struct ";
recordDeclLoc(decl,
[&]{
printNominalDeclName(decl);
});
printInherited(decl);
}
if (Options.TypeDefinitions) {
printMembersOfDecl(decl);
}
}
void PrintAST::visitClassDecl(ClassDecl *decl) {
printDocumentationComment(decl);
printAttributes(decl);
printAccessibility(decl);
if (Options.PrintOriginalSourceText && decl->getStartLoc().isValid()) {
ASTContext &Ctx = decl->getASTContext();
printSourceRange(CharSourceRange(Ctx.SourceMgr, decl->getStartLoc(),
decl->getBraces().Start.getAdvancedLoc(-1)), Ctx);
} else {
if (!Options.SkipIntroducerKeywords)
Printer << "class ";
recordDeclLoc(decl,
[&]{
printNominalDeclName(decl);
});
printInherited(decl);
}
if (Options.TypeDefinitions) {
printMembersOfDecl(decl);
}
}
void PrintAST::visitProtocolDecl(ProtocolDecl *decl) {
printDocumentationComment(decl);
printAttributes(decl);
printAccessibility(decl);
if (Options.PrintOriginalSourceText && decl->getStartLoc().isValid()) {
ASTContext &Ctx = decl->getASTContext();
printSourceRange(CharSourceRange(Ctx.SourceMgr, decl->getStartLoc(),
decl->getBraces().Start.getAdvancedLoc(-1)), Ctx);
} else {
if (!Options.SkipIntroducerKeywords)
Printer << "protocol ";
recordDeclLoc(decl,
[&]{
printNominalDeclName(decl);
});
// Figure out whether we need an explicit 'class' in the inheritance.
bool explicitClass = false;
if (decl->requiresClass() && !decl->isObjC()) {
bool inheritsRequiresClass = false;
for (auto proto : decl->getLocalProtocols(
ConformanceLookupKind::OnlyExplicit)) {
if (proto->requiresClass()) {
inheritsRequiresClass = true;
break;
}
}
if (!inheritsRequiresClass)
explicitClass = true;
}
printInherited(decl, explicitClass);
}
if (Options.TypeDefinitions) {
printMembersOfDecl(decl);
}
}
static bool isStructOrClassContext(DeclContext *dc) {
if (auto ctx = dc->getDeclaredTypeInContext())
return ctx->getClassOrBoundGenericClass() ||
ctx->getStructOrBoundGenericStruct();
return false;
}
void PrintAST::visitVarDecl(VarDecl *decl) {
printDocumentationComment(decl);
// Print @sil_stored when the attribute is not already
// on, decl has storage and it is on a class.
if (Options.PrintForSIL && decl->hasStorage() &&
isStructOrClassContext(decl->getDeclContext()) &&
!decl->getAttrs().hasAttribute<SILStoredAttr>())
Printer << "@sil_stored ";
printAttributes(decl);
printAccessibility(decl);
if (!Options.SkipIntroducerKeywords) {
if (decl->isStatic())
printStaticKeyword(decl->getCorrectStaticSpelling());
Printer << (decl->isLet() ? "let " : "var ");
}
recordDeclLoc(decl,
[&]{
Printer.printName(decl->getName());
});
if (decl->hasType()) {
Printer << ": ";
decl->getType().print(Printer, Options);
}
printAccessors(decl);
}
void PrintAST::visitParamDecl(ParamDecl *decl) {
return visitVarDecl(decl);
}
void PrintAST::printOneParameter(const ParamDecl *param, bool Curried,
bool ArgNameIsAPIByDefault) {
auto printArgName = [&]() {
// Print argument name.
auto ArgName = param->getArgumentName();
auto BodyName = param->getName();
switch (Options.ArgAndParamPrinting) {
case PrintOptions::ArgAndParamPrintingMode::ArgumentOnly:
Printer.printName(ArgName, PrintNameContext::FunctionParameter);
if (!ArgNameIsAPIByDefault && !ArgName.empty())
Printer << " _";
break;
case PrintOptions::ArgAndParamPrintingMode::MatchSource:
if (ArgName == BodyName && ArgNameIsAPIByDefault) {
Printer.printName(ArgName, PrintNameContext::FunctionParameter);
break;
}
if (ArgName.empty() && !ArgNameIsAPIByDefault) {
Printer.printName(BodyName, PrintNameContext::FunctionParameter);
break;
}
SWIFT_FALLTHROUGH;
case PrintOptions::ArgAndParamPrintingMode::BothAlways:
Printer.printName(ArgName, PrintNameContext::FunctionParameter);
Printer << " ";
Printer.printName(BodyName, PrintNameContext::FunctionParameter);
break;
}
Printer << ": ";
};
auto TheTypeLoc = param->getTypeLoc();
if (TheTypeLoc.getTypeRepr()) {
// If the outer typeloc is an InOutTypeRepr, print the 'inout' before the
// subpattern.
if (auto *IOTR = dyn_cast<InOutTypeRepr>(TheTypeLoc.getTypeRepr())) {
TheTypeLoc = TypeLoc(IOTR->getBase());
if (Type T = TheTypeLoc.getType()) {
if (auto *IOT = T->getAs<InOutType>()) {
TheTypeLoc.setType(IOT->getObjectType());
}
}
Printer << "inout ";
}
} else {
if (param->hasType())
TheTypeLoc = TypeLoc::withoutLoc(param->getType());
if (Type T = TheTypeLoc.getType()) {
if (auto *IOT = T->getAs<InOutType>()) {
Printer << "inout ";
TheTypeLoc.setType(IOT->getObjectType());
}
}
}
// If the parameter is autoclosure, or noescape, print it. This is stored
// on the type of the decl, not on the typerepr.
if (param->hasType()) {
auto bodyCanType = param->getType()->getCanonicalType();
if (auto patternType = dyn_cast<AnyFunctionType>(bodyCanType)) {
switch (patternType->isAutoClosure()*2 + patternType->isNoEscape()) {
case 0: break; // neither.
case 1: Printer << "@noescape "; break;
case 2: Printer << "@autoclosure(escaping) "; break;
case 3: Printer << "@autoclosure "; break;
}
}
}
printArgName();
auto ContainsFunc = [&] (DeclAttrKind Kind) {
return Options.ExcludeAttrList.end() != std::find(Options.ExcludeAttrList.
begin(), Options.ExcludeAttrList.end(), Kind);
};
auto RemoveFunc = [&] (DeclAttrKind Kind) {
Options.ExcludeAttrList.erase(std::find(Options.ExcludeAttrList.begin(),
Options.ExcludeAttrList.end(), Kind));
};
// Since we have already printed @noescape and @autoclosure, we exclude them
// when printing the type.
auto hasNoEscape = ContainsFunc(DAK_NoEscape);
auto hasAutoClosure = ContainsFunc(DAK_AutoClosure);
if (!hasNoEscape)
Options.ExcludeAttrList.push_back(DAK_NoEscape);
if (!hasAutoClosure)
Options.ExcludeAttrList.push_back(DAK_AutoClosure);
// If the parameter is variadic, we will print the "..." after it, but we have
// to strip off the added array type.
if (param->isVariadic() && TheTypeLoc.getType()) {
if (auto *BGT = TheTypeLoc.getType()->getAs<BoundGenericType>())
TheTypeLoc.setType(BGT->getGenericArgs()[0]);
}
printTypeLoc(TheTypeLoc);
if (param->isVariadic())
Printer << "...";
// After printing the type, we need to restore what the option used to be.
if (!hasNoEscape)
RemoveFunc(DAK_NoEscape);
if (!hasAutoClosure)
RemoveFunc(DAK_AutoClosure);
if (Options.PrintDefaultParameterPlaceholder &&
param->isDefaultArgument()) {
Printer << " = ";
auto defaultArgStr
= getDefaultArgumentSpelling(param->getDefaultArgumentKind());
if (defaultArgStr.empty())
Printer << "default";
else
Printer << defaultArgStr;
}
}
void PrintAST::printParameterList(ParameterList *PL, bool isCurried,
std::function<bool(unsigned)> isAPINameByDefault) {
Printer << "(";
for (unsigned i = 0, e = PL->size(); i != e; ++i) {
if (i > 0)
Printer << ", ";
printOneParameter(PL->get(i), isCurried, isAPINameByDefault(i));
}
Printer << ")";
}
void PrintAST::printFunctionParameters(AbstractFunctionDecl *AFD) {
auto BodyParams = AFD->getParameterLists();
// Skip over the implicit 'self'.
if (AFD->getImplicitSelfDecl())
BodyParams = BodyParams.slice(1);
for (unsigned CurrPattern = 0, NumPatterns = BodyParams.size();
CurrPattern != NumPatterns; ++CurrPattern) {
printParameterList(BodyParams[CurrPattern], /*Curried=*/CurrPattern > 0,
[&](unsigned argNo)->bool {
return CurrPattern > 0 || AFD->argumentNameIsAPIByDefault(argNo);
});
}
if (AFD->isBodyThrowing()) {
if (AFD->getAttrs().hasAttribute<RethrowsAttr>())
Printer << " rethrows";
else
Printer << " throws";
}
}
bool PrintAST::printASTNodes(const ArrayRef<ASTNode> &Elements,
bool NeedIndent) {
IndentRAII IndentMore(*this, NeedIndent);
bool PrintedSomething = false;
for (auto element : Elements) {
PrintedSomething = true;
Printer.printNewline();
indent();
if (auto decl = element.dyn_cast<Decl*>()) {
if (decl->shouldPrintInContext(Options))
visit(decl);
} else if (auto stmt = element.dyn_cast<Stmt*>()) {
visit(stmt);
} else {
// FIXME: print expression
// visit(element.get<Expr*>());
}
}
return PrintedSomething;
}
void PrintAST::visitFuncDecl(FuncDecl *decl) {
if (decl->isAccessor()) {
printDocumentationComment(decl);
printAttributes(decl);
switch (auto kind = decl->getAccessorKind()) {
case AccessorKind::NotAccessor: break;
case AccessorKind::IsGetter:
case AccessorKind::IsAddressor:
recordDeclLoc(decl,
[&]{
if (decl->isMutating())
Printer << "mutating ";
Printer << (kind == AccessorKind::IsGetter
? "get" : getAddressorLabel(decl));
});
Printer << " {";
break;
case AccessorKind::IsDidSet:
case AccessorKind::IsMaterializeForSet:
case AccessorKind::IsMutableAddressor:
recordDeclLoc(decl,
[&]{
if (decl->isExplicitNonMutating())
Printer << "nonmutating ";
Printer << (kind == AccessorKind::IsDidSet ? "didSet" :
kind == AccessorKind::IsMaterializeForSet
? "materializeForSet"
: getMutableAddressorLabel(decl));
});
Printer << " {";
break;
case AccessorKind::IsSetter:
case AccessorKind::IsWillSet:
recordDeclLoc(decl,
[&]{
if (decl->isExplicitNonMutating())
Printer << "nonmutating ";
Printer << (decl->isSetter() ? "set" : "willSet");
auto params = decl->getParameterLists().back();
if (params->size() != 0 && !params->get(0)->isImplicit()) {
auto Name = params->get(0)->getName();
if (!Name.empty()) {
Printer << "(";
Printer.printName(Name);
Printer << ")";
}
}
});
Printer << " {";
}
if (Options.FunctionDefinitions && decl->getBody()) {
if (printASTNodes(decl->getBody()->getElements())) {
Printer.printNewline();
indent();
}
}
Printer << "}";
} else {
printDocumentationComment(decl);
printAttributes(decl);
printAccessibility(decl);
if (Options.PrintOriginalSourceText && decl->getStartLoc().isValid()) {
ASTContext &Ctx = decl->getASTContext();
SourceLoc StartLoc = decl->getStartLoc();
SourceLoc EndLoc;
if (!decl->getBodyResultTypeLoc().isNull()) {
EndLoc = decl->getBodyResultTypeLoc().getSourceRange().End;
} else {
EndLoc = decl->getSignatureSourceRange().End;
}
CharSourceRange Range =
Lexer::getCharSourceRangeFromSourceRange(Ctx.SourceMgr,
SourceRange(StartLoc, EndLoc));
printSourceRange(Range, Ctx);
} else {
if (!Options.SkipIntroducerKeywords) {
if (decl->isStatic() && !decl->isOperator())
printStaticKeyword(decl->getCorrectStaticSpelling());
if (decl->isMutating() && !decl->getAttrs().hasAttribute<MutatingAttr>())
Printer << "mutating ";
Printer << "func ";
}
recordDeclLoc(decl,
[&]{
if (!decl->hasName())
Printer << "<anonymous>";
else
Printer.printName(decl->getName());
if (decl->isGeneric()) {
printGenericParams(decl->getGenericParams());
}
printFunctionParameters(decl);
});
auto &Context = decl->getASTContext();
Type ResultTy = decl->getResultType();
if (ResultTy && !ResultTy->isEqual(TupleType::getEmpty(Context))) {
Printer << " -> ";
if (Options.pTransformer) {
ResultTy = Options.pTransformer->transformByName(ResultTy);
PrintOptions FreshOptions;
ResultTy->print(Printer, FreshOptions);
} else
ResultTy->print(Printer, Options);
}
}
if (!Options.FunctionDefinitions || !decl->getBody()) {
return;
}
Printer << " ";
visit(decl->getBody());
}
}
void PrintAST::printEnumElement(EnumElementDecl *elt) {
recordDeclLoc(elt,
[&]{
Printer.printName(elt->getName());
});
if (elt->hasArgumentType()) {
Type Ty = elt->getArgumentType();
if (!Options.SkipPrivateStdlibDecls || !Ty.isPrivateStdlibType())
Ty.print(Printer, Options);
}
}
void PrintAST::visitEnumCaseDecl(EnumCaseDecl *decl) {
auto elems = decl->getElements();
if (!elems.empty()) {
// Documentation comments over the case are attached to the enum elements.
printDocumentationComment(elems[0]);
}
printAttributes(decl);
Printer << "case ";
interleave(elems.begin(), elems.end(),
[&](EnumElementDecl *elt) {
printEnumElement(elt);
},
[&] { Printer << ", "; });
}
void PrintAST::visitEnumElementDecl(EnumElementDecl *decl) {
if (!decl->shouldPrintInContext(Options))
return;
printDocumentationComment(decl);
// In cases where there is no parent EnumCaseDecl (such as imported or
// deserialized elements), print the element independently.
printAttributes(decl);
Printer << "case ";
printEnumElement(decl);
}
void PrintAST::visitSubscriptDecl(SubscriptDecl *decl) {
printDocumentationComment(decl);
printAttributes(decl);
printAccessibility(decl);
recordDeclLoc(decl, [&]{
Printer << "subscript ";
printParameterList(decl->getIndices(), /*Curried=*/false,
/*isAPINameByDefault*/[](unsigned)->bool{return false;});
});
Printer << " -> ";
decl->getElementType().print(Printer, Options);
printAccessors(decl);
}
void PrintAST::visitConstructorDecl(ConstructorDecl *decl) {
printDocumentationComment(decl);
printAttributes(decl);
printAccessibility(decl);
if ((decl->getInitKind() == CtorInitializerKind::Convenience ||
decl->getInitKind() == CtorInitializerKind::ConvenienceFactory) &&
!decl->getAttrs().hasAttribute<ConvenienceAttr>())
Printer << "convenience ";
else
if (decl->getInitKind() == CtorInitializerKind::Factory)
Printer << "/*not inherited*/ ";
recordDeclLoc(decl,
[&]{
Printer << "init";
switch (decl->getFailability()) {
case OTK_None:
break;
case OTK_Optional:
Printer << "?";
break;
case OTK_ImplicitlyUnwrappedOptional:
Printer << "!";
break;
}
if (decl->isGeneric())
printGenericParams(decl->getGenericParams());
printFunctionParameters(decl);
});
if (!Options.FunctionDefinitions || !decl->getBody()) {
return;
}
Printer << " ";
visit(decl->getBody());
}
void PrintAST::visitDestructorDecl(DestructorDecl *decl) {
printDocumentationComment(decl);
printAttributes(decl);
recordDeclLoc(decl,
[&]{
Printer << "deinit ";
});
if (!Options.FunctionDefinitions || !decl->getBody()) {
return;
}
Printer << " ";
visit(decl->getBody());
}
void PrintAST::visitInfixOperatorDecl(InfixOperatorDecl *decl) {
Printer << "infix operator ";
recordDeclLoc(decl,
[&]{
Printer.printName(decl->getName());
});
Printer << " {";
Printer.printNewline();
{
IndentRAII indentMore(*this);
if (!decl->isAssociativityImplicit()) {
indent();
Printer << "associativity ";
switch (decl->getAssociativity()) {
case Associativity::None:
Printer << "none";
break;
case Associativity::Left:
Printer << "left";
break;
case Associativity::Right:
Printer << "right";
break;
}
Printer.printNewline();
}
if (!decl->isPrecedenceImplicit()) {
indent();
Printer << "precedence " << decl->getPrecedence();
Printer.printNewline();
}
if (!decl->isAssignmentImplicit()) {
indent();
if (decl->isAssignment())
Printer << "assignment";
else
Printer << "/* not assignment */";
Printer.printNewline();
}
}
indent();
Printer << "}";
}
void PrintAST::visitPrefixOperatorDecl(PrefixOperatorDecl *decl) {
Printer << "prefix operator ";
recordDeclLoc(decl,
[&]{
Printer.printName(decl->getName());
});
Printer << " {";
Printer.printNewline();
Printer << "}";
}
void PrintAST::visitPostfixOperatorDecl(PostfixOperatorDecl *decl) {
Printer << "postfix operator ";
recordDeclLoc(decl,
[&]{
Printer.printName(decl->getName());
});
Printer << " {";
Printer.printNewline();
Printer << "}";
}
void PrintAST::visitModuleDecl(ModuleDecl *decl) { }
void PrintAST::visitBraceStmt(BraceStmt *stmt) {
Printer << "{";
printASTNodes(stmt->getElements());
Printer.printNewline();
indent();
Printer << "}";
}
void PrintAST::visitReturnStmt(ReturnStmt *stmt) {
Printer << "return";
if (stmt->hasResult()) {
Printer << " ";
// FIXME: print expression.
}
}
void PrintAST::visitThrowStmt(ThrowStmt *stmt) {
Printer << "throw ";
// FIXME: print expression.
}
void PrintAST::visitDeferStmt(DeferStmt *stmt) {
Printer << "defer ";
visit(stmt->getBodyAsWritten());
}
void PrintAST::visitIfStmt(IfStmt *stmt) {
Printer << "if ";
// FIXME: print condition
Printer << " ";
visit(stmt->getThenStmt());
if (auto elseStmt = stmt->getElseStmt()) {
Printer << " else ";
visit(elseStmt);
}
}
void PrintAST::visitGuardStmt(GuardStmt *stmt) {
Printer << "guard ";
// FIXME: print condition
Printer << " ";
visit(stmt->getBody());
}
void PrintAST::visitIfConfigStmt(IfConfigStmt *stmt) {
if (!Options.PrintIfConfig)
return;
for (auto &Clause : stmt->getClauses()) {
if (&Clause == &*stmt->getClauses().begin())
Printer << "#if "; // FIXME: print condition
else if (Clause.Cond)
Printer << "#elseif"; // FIXME: print condition
else
Printer << "#else";
Printer.printNewline();
if (printASTNodes(Clause.Elements)) {
Printer.printNewline();
indent();
}
}
Printer.printNewline();
Printer << "#endif";
}
void PrintAST::visitWhileStmt(WhileStmt *stmt) {
Printer << "while ";
// FIXME: print condition
Printer << " ";
visit(stmt->getBody());
}
void PrintAST::visitRepeatWhileStmt(RepeatWhileStmt *stmt) {
Printer << "do ";
visit(stmt->getBody());
Printer << " while ";
// FIXME: print condition
}
void PrintAST::visitDoStmt(DoStmt *stmt) {
Printer << "do ";
visit(stmt->getBody());
}
void PrintAST::visitDoCatchStmt(DoCatchStmt *stmt) {
Printer << "do ";
visit(stmt->getBody());
for (auto clause : stmt->getCatches()) {
visitCatchStmt(clause);
}
}
void PrintAST::visitCatchStmt(CatchStmt *stmt) {
Printer << "catch ";
printPattern(stmt->getErrorPattern());
if (auto guard = stmt->getGuardExpr()) {
Printer << " where ";
// FIXME: print guard expression
(void) guard;
}
Printer << ' ';
visit(stmt->getBody());
}
void PrintAST::visitForStmt(ForStmt *stmt) {
Printer << "for (";
// FIXME: print initializer
Printer << "; ";
if (stmt->getCond().isNonNull()) {
// FIXME: print cond
}
Printer << "; ";
// FIXME: print increment
Printer << ") ";
visit(stmt->getBody());
}
void PrintAST::visitForEachStmt(ForEachStmt *stmt) {
Printer << "for ";
printPattern(stmt->getPattern());
Printer << " in ";
// FIXME: print container
Printer << " ";
visit(stmt->getBody());
}
void PrintAST::visitBreakStmt(BreakStmt *stmt) {
Printer << "break";
}
void PrintAST::visitContinueStmt(ContinueStmt *stmt) {
Printer << "continue";
}
void PrintAST::visitFallthroughStmt(FallthroughStmt *stmt) {
Printer << "fallthrough";
}
void PrintAST::visitSwitchStmt(SwitchStmt *stmt) {
Printer << "switch ";
// FIXME: print subject
Printer << "{";
Printer.printNewline();
for (CaseStmt *C : stmt->getCases()) {
visit(C);
}
Printer.printNewline();
indent();
Printer << "}";
}
void PrintAST::visitCaseStmt(CaseStmt *CS) {
if (CS->isDefault()) {
Printer << "default";
} else {
auto PrintCaseLabelItem = [&](const CaseLabelItem &CLI) {
if (auto *P = CLI.getPattern())
printPattern(P);
if (CLI.getGuardExpr()) {
Printer << " where ";
// FIXME: print guard expr
}
};
Printer << "case ";
interleave(CS->getCaseLabelItems(), PrintCaseLabelItem,
[&] { Printer << ", "; });
}
Printer << ":";
Printer.printNewline();
printASTNodes((cast<BraceStmt>(CS->getBody())->getElements()));
}
void PrintAST::visitFailStmt(FailStmt *stmt) {
Printer << "return nil";
}
void Decl::print(raw_ostream &os) const {
PrintOptions options;
options.FunctionDefinitions = true;
options.TypeDefinitions = true;
options.VarInitializers = true;
print(os, options);
}
void Decl::print(raw_ostream &OS, const PrintOptions &Opts) const {
StreamPrinter Printer(OS);
print(Printer, Opts);
}
bool Decl::print(ASTPrinter &Printer, const PrintOptions &Opts) const {
PrintAST printer(Printer, Opts);
return printer.visit(const_cast<Decl *>(this));
}
bool Decl::shouldPrintInContext(const PrintOptions &PO) const {
// Skip getters/setters. They are part of the variable or subscript.
if (isa<FuncDecl>(this) && cast<FuncDecl>(this)->isAccessor())
return false;
if (PO.ExplodePatternBindingDecls) {
if (isa<VarDecl>(this))
return true;
if (isa<PatternBindingDecl>(this))
return false;
} else {
// Try to preserve the PatternBindingDecl structure.
// Skip stored variables, unless they came from a Clang module.
// Stored variables in Swift source will be picked up by the
// PatternBindingDecl.
if (auto *VD = dyn_cast<VarDecl>(this)) {
if (!VD->hasClangNode() && VD->hasStorage() &&
VD->getStorageKind() != VarDecl::StoredWithObservers)
return false;
}
// Skip pattern bindings that consist of just one computed variable.
if (auto pbd = dyn_cast<PatternBindingDecl>(this)) {
if (pbd->getPatternList().size() == 1) {
auto pattern =
pbd->getPatternList()[0].getPattern()->getSemanticsProvidingPattern();
if (auto named = dyn_cast<NamedPattern>(pattern)) {
auto StorageKind = named->getDecl()->getStorageKind();
if (StorageKind == VarDecl::Computed ||
StorageKind == VarDecl::StoredWithObservers)
return false;
}
}
}
}
if (auto EED = dyn_cast<EnumElementDecl>(this)) {
// Enum elements are printed as part of the EnumCaseDecl, unless they were
// imported without source info.
return !EED->getSourceRange().isValid();
} else if (isa<IfConfigDecl>(this)) {
return PO.PrintIfConfig;
}
// Print everything else.
return true;
}
void Pattern::print(llvm::raw_ostream &OS, const PrintOptions &Options) const {
StreamPrinter StreamPrinter(OS);
PrintAST Printer(StreamPrinter, Options);
Printer.printPattern(this);
}
//===----------------------------------------------------------------------===//
// Type Printing
//===----------------------------------------------------------------------===//
namespace {
class TypePrinter : public TypeVisitor<TypePrinter> {
using super = TypeVisitor;
ASTPrinter &Printer;
const PrintOptions &Options;
Optional<std::vector<GenericParamList *>> UnwrappedGenericParams;
void printDeclContext(DeclContext *DC) {
switch (DC->getContextKind()) {
case DeclContextKind::Module: {
Module *M = cast<Module>(DC);
if (auto Parent = M->getParent())
printDeclContext(Parent);
Printer.printModuleRef(M, M->getName());
return;
}
case DeclContextKind::FileUnit:
printDeclContext(DC->getParent());
return;
case DeclContextKind::AbstractClosureExpr:
// FIXME: print closures somehow.
return;
case DeclContextKind::NominalTypeDecl:
visit(cast<NominalTypeDecl>(DC)->getType());
return;
case DeclContextKind::ExtensionDecl:
visit(cast<ExtensionDecl>(DC)->getExtendedType());
return;
case DeclContextKind::Initializer:
case DeclContextKind::TopLevelCodeDecl:
case DeclContextKind::SerializedLocal:
llvm_unreachable("bad decl context");
case DeclContextKind::AbstractFunctionDecl:
visit(cast<AbstractFunctionDecl>(DC)->getType());
return;
case DeclContextKind::SubscriptDecl:
visit(cast<SubscriptDecl>(DC)->getType());
return;
}
}
void printGenericArgs(ArrayRef<Type> Args) {
if (Args.empty())
return;
Printer << "<";
bool First = true;
for (Type Arg : Args) {
if (First)
First = false;
else
Printer << ", ";
visit(Arg);
}
Printer << ">";
}
static bool isSimple(Type type) {
switch (type->getKind()) {
case TypeKind::Function:
case TypeKind::PolymorphicFunction:
case TypeKind::GenericFunction:
return false;
case TypeKind::Metatype:
case TypeKind::ExistentialMetatype:
return !cast<AnyMetatypeType>(type.getPointer())->hasRepresentation();
case TypeKind::Archetype: {
auto arch = type->getAs<ArchetypeType>();
return !arch->isOpenedExistential();
}
default:
return true;
}
}
/// Helper function for printing a type that is embedded within a larger type.
///
/// This is necessary whenever the inner type may not normally be represented
/// as a 'type-simple' production in the type grammar.
void printWithParensIfNotSimple(Type T) {
if (T.isNull()) {
visit(T);
return;
}
if (!isSimple(T)) {
Printer << "(";
visit(T);
Printer << ")";
} else {
visit(T);
}
}
void printGenericParams(GenericParamList *Params) {
PrintAST(Printer, Options).printGenericParams(Params);
}
template <typename T>
void printModuleContext(T *Ty) {
Module *Mod = Ty->getDecl()->getModuleContext();
Printer.printModuleRef(Mod, Mod->getName());
Printer << ".";
}
template <typename T>
void printTypeDeclName(T *Ty) {
TypeDecl *TD = Ty->getDecl();
Printer.printTypeRef(TD, TD->getName());
}
// FIXME: we should have a callback that would tell us
// whether it's kosher to print a module name or not
bool isLLDBExpressionModule(Module *M) {
if (!M)
return false;
return M->getName().str().startswith(LLDB_EXPRESSIONS_MODULE_NAME_PREFIX);
}
bool shouldPrintFullyQualified(TypeBase *T) {
if (Options.FullyQualifiedTypes)
return true;
if (!Options.FullyQualifiedTypesIfAmbiguous)
return false;
Decl *D = nullptr;
if (auto *NAT = dyn_cast<NameAliasType>(T))
D = NAT->getDecl();
else
D = T->getAnyNominal();
// If we cannot find the declaration, be extra careful and print
// the type qualified.
if (!D)
return true;
Module *M = D->getDeclContext()->getParentModule();
// Don't print qualifiers for types from the standard library.
if (M->isStdlibModule() ||
M->getName() == M->getASTContext().Id_ObjectiveC ||
M->isSystemModule() ||
isLLDBExpressionModule(M))
return false;
// Don't print qualifiers for imported types.
for (auto File : M->getFiles()) {
if (File->getKind() == FileUnitKind::ClangModule)
return false;
}
return true;
}
public:
TypePrinter(ASTPrinter &Printer, const PrintOptions &PO)
: Printer(Printer), Options(PO) {}
void visit(Type T) {
// If we have an alternate name for this type, use it.
if (Options.AlternativeTypeNames) {
auto found = Options.AlternativeTypeNames->find(T.getCanonicalTypeOrNull());
if (found != Options.AlternativeTypeNames->end()) {
Printer << found->second.str();
return;
}
}
super::visit(T);
}
void visitErrorType(ErrorType *T) {
Printer << "<<error type>>";
}
void visitUnresolvedType(UnresolvedType *T) {
if (T->getASTContext().LangOpts.DebugConstraintSolver)
Printer << "<<unresolvedtype>>";
else
Printer << "_";
}
void visitBuiltinRawPointerType(BuiltinRawPointerType *T) {
Printer << "Builtin.RawPointer";
}
void visitBuiltinNativeObjectType(BuiltinNativeObjectType *T) {
Printer << "Builtin.NativeObject";
}
void visitBuiltinUnknownObjectType(BuiltinUnknownObjectType *T) {
Printer << "Builtin.UnknownObject";
}
void visitBuiltinBridgeObjectType(BuiltinBridgeObjectType *T) {
Printer << "Builtin.BridgeObject";
}
void visitBuiltinUnsafeValueBufferType(BuiltinUnsafeValueBufferType *T) {
Printer << "Builtin.UnsafeValueBuffer";
}
void visitBuiltinVectorType(BuiltinVectorType *T) {
llvm::SmallString<32> UnderlyingStrVec;
StringRef UnderlyingStr;
{
// FIXME: Ugly hack: remove the .Builtin from the element type.
{
llvm::raw_svector_ostream UnderlyingOS(UnderlyingStrVec);
T->getElementType().print(UnderlyingOS);
}
if (UnderlyingStrVec.startswith("Builtin."))
UnderlyingStr = UnderlyingStrVec.substr(8);
else
UnderlyingStr = UnderlyingStrVec;
}
Printer << "Builtin.Vec" << T->getNumElements() << "x" << UnderlyingStr;
}
void visitBuiltinIntegerType(BuiltinIntegerType *T) {
auto width = T->getWidth();
if (width.isFixedWidth()) {
Printer << "Builtin.Int" << width.getFixedWidth();
} else if (width.isPointerWidth()) {
Printer << "Builtin.Word";
} else {
llvm_unreachable("impossible bit width");
}
}
void visitBuiltinFloatType(BuiltinFloatType *T) {
switch (T->getFPKind()) {
case BuiltinFloatType::IEEE16: Printer << "Builtin.FPIEEE16"; return;
case BuiltinFloatType::IEEE32: Printer << "Builtin.FPIEEE32"; return;
case BuiltinFloatType::IEEE64: Printer << "Builtin.FPIEEE64"; return;
case BuiltinFloatType::IEEE80: Printer << "Builtin.FPIEEE80"; return;
case BuiltinFloatType::IEEE128: Printer << "Builtin.FPIEEE128"; return;
case BuiltinFloatType::PPC128: Printer << "Builtin.FPPPC128"; return;
}
}
void visitNameAliasType(NameAliasType *T) {
if (Options.PrintForSIL) {
visit(T->getSinglyDesugaredType());
return;
}
if (shouldPrintFullyQualified(T)) {
if (auto ParentDC = T->getDecl()->getDeclContext()) {
printDeclContext(ParentDC);
Printer << ".";
}
}
printTypeDeclName(T);
}
void visitParenType(ParenType *T) {
Printer << "(";
visit(T->getUnderlyingType());
Printer << ")";
}
void visitTupleType(TupleType *T) {
Printer << "(";
auto Fields = T->getElements();
for (unsigned i = 0, e = Fields.size(); i != e; ++i) {
if (i)
Printer << ", ";
const TupleTypeElt &TD = Fields[i];
Type EltType = TD.getType();
if (auto *IOT = EltType->getAs<InOutType>()) {
Printer << "inout ";
EltType = IOT->getObjectType();
}
if (TD.hasName()) {
Printer.printName(TD.getName(), PrintNameContext::FunctionParameter);
Printer << ": ";
}
if (TD.isVararg()) {
visit(TD.getVarargBaseTy());
Printer << "...";
} else
visit(EltType);
}
Printer << ")";
}
void visitUnboundGenericType(UnboundGenericType *T) {
if (auto ParentType = T->getParent()) {
visit(ParentType);
Printer << ".";
} else if (shouldPrintFullyQualified(T)) {
printModuleContext(T);
}
printTypeDeclName(T);
}
void visitBoundGenericType(BoundGenericType *T) {
if (Options.SynthesizeSugarOnTypes) {
auto *NT = T->getDecl();
auto &Ctx = T->getASTContext();
if (NT == Ctx.getArrayDecl()) {
Printer << "[";
visit(T->getGenericArgs()[0]);
Printer << "]";
return;
}
if (NT == Ctx.getDictionaryDecl()) {
Printer << "[";
visit(T->getGenericArgs()[0]);
Printer << " : ";
visit(T->getGenericArgs()[1]);
Printer << "]";
return;
}
if (NT == Ctx.getOptionalDecl()) {
printWithParensIfNotSimple(T->getGenericArgs()[0]);
Printer << "?";
return;
}
if (NT == Ctx.getImplicitlyUnwrappedOptionalDecl()) {
printWithParensIfNotSimple(T->getGenericArgs()[0]);
Printer << "!";
return;
}
}
if (auto ParentType = T->getParent()) {
visit(ParentType);
Printer << ".";
} else if (shouldPrintFullyQualified(T)) {
printModuleContext(T);
}
printTypeDeclName(T);
printGenericArgs(T->getGenericArgs());
}
void visitEnumType(EnumType *T) {
if (auto ParentType = T->getParent()) {
visit(ParentType);
Printer << ".";
} else if (shouldPrintFullyQualified(T)) {
printModuleContext(T);
}
printTypeDeclName(T);
}
void visitStructType(StructType *T) {
if (auto ParentType = T->getParent()) {
visit(ParentType);
Printer << ".";
} else if (shouldPrintFullyQualified(T)) {
printModuleContext(T);
}
printTypeDeclName(T);
}
void visitClassType(ClassType *T) {
if (auto ParentType = T->getParent()) {
visit(ParentType);
Printer << ".";
} else if (shouldPrintFullyQualified(T)) {
printModuleContext(T);
}
printTypeDeclName(T);
}
void visitAnyMetatypeType(AnyMetatypeType *T) {
if (T->hasRepresentation()) {
switch (T->getRepresentation()) {
case MetatypeRepresentation::Thin: Printer << "@thin "; break;
case MetatypeRepresentation::Thick: Printer << "@thick "; break;
case MetatypeRepresentation::ObjC: Printer << "@objc_metatype "; break;
}
}
printWithParensIfNotSimple(T->getInstanceType());
// We spell normal metatypes of existential types as .Protocol.
if (isa<MetatypeType>(T) &&
// Special case AssociatedTypeType's here, since they may not be fully
// set up within the type checker (preventing getCanonicalType from
// working), and we want type printing to always work even in malformed
// programs half way through the type checker.
!isa<AssociatedTypeType>(T->getInstanceType().getPointer()) &&
T->getInstanceType()->isAnyExistentialType()) {
Printer << ".Protocol";
} else {
Printer << ".Type";
}
}
void visitModuleType(ModuleType *T) {
Printer << "module<";
Printer.printModuleRef(T->getModule(), T->getModule()->getName());
Printer << ">";
}
void visitDynamicSelfType(DynamicSelfType *T) {
Printer << "Self";
}
void printFunctionExtInfo(AnyFunctionType::ExtInfo info) {
if(Options.SkipAttributes)
return;
auto IsAttrExcluded = [&](DeclAttrKind Kind) {
return Options.ExcludeAttrList.end() != std::find(Options.ExcludeAttrList.
begin(), Options.ExcludeAttrList.end(), Kind);
};
if (info.isAutoClosure() && !IsAttrExcluded(DAK_AutoClosure))
Printer << "@autoclosure ";
else if (info.isNoEscape() && !IsAttrExcluded(DAK_NoEscape))
// autoclosure implies noescape.
Printer << "@noescape ";
if (Options.PrintFunctionRepresentationAttrs) {
// TODO: coalesce into a single convention attribute.
switch (info.getSILRepresentation()) {
case SILFunctionType::Representation::Thick:
break;
case SILFunctionType::Representation::Thin:
Printer << "@convention(thin) ";
break;
case SILFunctionType::Representation::Block:
Printer << "@convention(block) ";
break;
case SILFunctionType::Representation::CFunctionPointer:
Printer << "@convention(c) ";
break;
case SILFunctionType::Representation::Method:
Printer << "@convention(method) ";
break;
case SILFunctionType::Representation::ObjCMethod:
Printer << "@convention(objc_method) ";
break;
case SILFunctionType::Representation::WitnessMethod:
Printer << "@convention(witness_method) ";
break;
}
}
if (info.isNoReturn())
Printer << "@noreturn ";
}
void printFunctionExtInfo(SILFunctionType::ExtInfo info) {
if(Options.SkipAttributes)
return;
if (Options.PrintFunctionRepresentationAttrs) {
// TODO: coalesce into a single convention attribute.
switch (info.getRepresentation()) {
case SILFunctionType::Representation::Thick:
break;
case SILFunctionType::Representation::Thin:
Printer << "@convention(thin) ";
break;
case SILFunctionType::Representation::Block:
Printer << "@convention(block) ";
break;
case SILFunctionType::Representation::CFunctionPointer:
Printer << "@convention(c) ";
break;
case SILFunctionType::Representation::Method:
Printer << "@convention(method) ";
break;
case SILFunctionType::Representation::ObjCMethod:
Printer << "@convention(objc_method) ";
break;
case SILFunctionType::Representation::WitnessMethod:
Printer << "@convention(witness_method) ";
break;
}
}
if (info.isNoReturn())
Printer << "@noreturn ";
}
void visitFunctionType(FunctionType *T) {
printFunctionExtInfo(T->getExtInfo());
printWithParensIfNotSimple(T->getInput());
if (T->throws())
Printer << " throws";
Printer << " -> ";
T->getResult().print(Printer, Options);
}
void visitPolymorphicFunctionType(PolymorphicFunctionType *T) {
printFunctionExtInfo(T->getExtInfo());
printGenericParams(&T->getGenericParams());
Printer << " ";
printWithParensIfNotSimple(T->getInput());
if (T->throws())
Printer << " throws";
Printer << " -> ";
T->getResult().print(Printer, Options);
}
/// If we can't find the depth of a type, return ErrorDepth.
const unsigned ErrorDepth = ~0U;
/// A helper function to return the depth of a type.
unsigned getDepthOfType(Type ty) {
if (auto paramTy = ty->getAs<GenericTypeParamType>())
return paramTy->getDepth();
if (auto depMemTy = dyn_cast<DependentMemberType>(ty->getCanonicalType())) {
CanType rootTy;
do {
rootTy = depMemTy.getBase();
} while ((depMemTy = dyn_cast<DependentMemberType>(rootTy)));
if (auto rootParamTy = dyn_cast<GenericTypeParamType>(rootTy))
return rootParamTy->getDepth();
return ErrorDepth;
}
return ErrorDepth;
}
/// A helper function to return the depth of a requirement.
unsigned getDepthOfRequirement(const Requirement &req) {
switch (req.getKind()) {
case RequirementKind::Conformance:
case RequirementKind::Superclass:
case RequirementKind::WitnessMarker:
return getDepthOfType(req.getFirstType());
case RequirementKind::SameType: {
// Return the max valid depth of firstType and secondType.
unsigned firstDepth = getDepthOfType(req.getFirstType());
unsigned secondDepth = getDepthOfType(req.getSecondType());
unsigned maxDepth;
if (firstDepth == ErrorDepth && secondDepth != ErrorDepth)
maxDepth = secondDepth;
else if (firstDepth != ErrorDepth && secondDepth == ErrorDepth)
maxDepth = firstDepth;
else
maxDepth = std::max(firstDepth, secondDepth);
return maxDepth;
}
}
llvm_unreachable("bad RequirementKind");
}
void printGenericSignature(ArrayRef<GenericTypeParamType *> genericParams,
ArrayRef<Requirement> requirements) {
if (!Options.PrintInSILBody) {
printSingleDepthOfGenericSignature(genericParams, requirements);
return;
}
// In order to recover the nested GenericParamLists, we divide genericParams
// and requirements according to depth.
unsigned paramIdx = 0, numParam = genericParams.size();
while (paramIdx < numParam) {
unsigned depth = genericParams[paramIdx]->getDepth();
// Move index to genericParams.
unsigned lastParamIdx = paramIdx;
do {
lastParamIdx++;
} while (lastParamIdx < numParam &&
genericParams[lastParamIdx]->getDepth() == depth);
// Collect requirements for this level.
// Because of same-type requirements, these aren't well-ordered.
SmallVector<Requirement, 2> requirementsAtDepth;
for (auto reqt : requirements) {
unsigned currentDepth = getDepthOfRequirement(reqt);
// Collect requirements at the current depth.
if (currentDepth == depth)
requirementsAtDepth.push_back(reqt);
// If we're at the bottom-most level, collect depthless requirements.
if (currentDepth == ErrorDepth && lastParamIdx == numParam)
requirementsAtDepth.push_back(reqt);
}
printSingleDepthOfGenericSignature(
genericParams.slice(paramIdx, lastParamIdx - paramIdx),
requirementsAtDepth);
paramIdx = lastParamIdx;
}
}
void printSingleDepthOfGenericSignature(
ArrayRef<GenericTypeParamType *> genericParams,
ArrayRef<Requirement> requirements) {
// Print the generic parameters.
Printer << "<";
bool isFirstParam = true;
for (auto param : genericParams) {
if (isFirstParam)
isFirstParam = false;
else
Printer << ", ";
visit(param);
}
// Print the requirements.
bool isFirstReq = true;
for (const auto &req : requirements) {
if (req.getKind() == RequirementKind::WitnessMarker)
continue;
if (isFirstReq) {
Printer << " where ";
isFirstReq = false;
} else {
Printer << ", ";
}
visit(req.getFirstType());
switch (req.getKind()) {
case RequirementKind::Conformance:
case RequirementKind::Superclass:
Printer << " : ";
break;
case RequirementKind::SameType:
Printer << " == ";
break;
case RequirementKind::WitnessMarker:
llvm_unreachable("Handled above");
}
visit(req.getSecondType());
}
Printer << ">";
}
void visitGenericFunctionType(GenericFunctionType *T) {
printFunctionExtInfo(T->getExtInfo());
printGenericSignature(T->getGenericParams(), T->getRequirements());
Printer << " ";
printWithParensIfNotSimple(T->getInput());
if (T->throws())
Printer << " throws";
Printer << " -> ";
T->getResult().print(Printer, Options);
}
void printCalleeConvention(ParameterConvention conv) {
switch (conv) {
case ParameterConvention::Direct_Unowned:
return;
case ParameterConvention::Direct_Owned:
Printer << "@callee_owned ";
return;
case ParameterConvention::Direct_Guaranteed:
Printer << "@callee_guaranteed ";
return;
case ParameterConvention::Direct_Deallocating:
// Closures do not have destructors.
llvm_unreachable("callee convention cannot be deallocating");
case ParameterConvention::Indirect_In:
case ParameterConvention::Indirect_Out:
case ParameterConvention::Indirect_Inout:
case ParameterConvention::Indirect_InoutAliasable:
case ParameterConvention::Indirect_In_Guaranteed:
llvm_unreachable("callee convention cannot be indirect");
}
llvm_unreachable("bad convention");
}
void visitSILFunctionType(SILFunctionType *T) {
printFunctionExtInfo(T->getExtInfo());
printCalleeConvention(T->getCalleeConvention());
if (auto sig = T->getGenericSignature()) {
printGenericSignature(sig->getGenericParams(), sig->getRequirements());
Printer << " ";
}
Printer << "(";
bool first = true;
for (auto param : T->getParameters()) {
if (first) {
first = false;
} else {
Printer << ", ";
}
param.print(Printer, Options);
}
Printer << ") -> ";
if (T->hasErrorResult()) {
// The error result is implicitly @owned; don't print that.
assert(T->getErrorResult().getConvention() == ResultConvention::Owned);
if (T->getResult().getType()->isVoid()) {
Printer << "@error ";
T->getErrorResult().getType().print(Printer, Options);
} else {
Printer << "(";
T->getResult().print(Printer, Options);
Printer << ", @error ";
T->getErrorResult().getType().print(Printer, Options);
Printer << ")";
}
} else {
T->getResult().print(Printer, Options);
}
}
void visitSILBlockStorageType(SILBlockStorageType *T) {
Printer << "@block_storage ";
printWithParensIfNotSimple(T->getCaptureType());
}
void visitSILBoxType(SILBoxType *T) {
Printer << "@box ";
printWithParensIfNotSimple(T->getBoxedType());
}
void visitArraySliceType(ArraySliceType *T) {
Printer << "[";
visit(T->getBaseType());
Printer << "]";
}
void visitDictionaryType(DictionaryType *T) {
Printer << "[";
visit(T->getKeyType());
Printer << " : ";
visit(T->getValueType());
Printer << "]";
}
void visitOptionalType(OptionalType *T) {
printWithParensIfNotSimple(T->getBaseType());
Printer << "?";
}
void visitImplicitlyUnwrappedOptionalType(ImplicitlyUnwrappedOptionalType *T) {
printWithParensIfNotSimple(T->getBaseType());
Printer << "!";
}
void visitProtocolType(ProtocolType *T) {
printTypeDeclName(T);
}
void visitProtocolCompositionType(ProtocolCompositionType *T) {
Printer << "protocol<";
bool First = true;
for (auto Proto : T->getProtocols()) {
if (First)
First = false;
else
Printer << ", ";
visit(Proto);
}
Printer << ">";
}
void visitLValueType(LValueType *T) {
Printer << "@lvalue ";
visit(T->getObjectType());
}
void visitInOutType(InOutType *T) {
Printer << "inout ";
visit(T->getObjectType());
}
void visitArchetypeType(ArchetypeType *T) {
if (auto existentialTy = T->getOpenedExistentialType()) {
if (Options.PrintForSIL)
Printer << "@opened(\"" << T->getOpenedExistentialID() << "\") ";
visit(existentialTy);
} else {
if (auto parent = T->getParent()) {
visit(parent);
Printer << ".";
}
if (T->getName().empty())
Printer << "<anonymous>";
else {
PrintNameContext context = PrintNameContext::Normal;
if (T->getSelfProtocol())
context = PrintNameContext::GenericParameter;
Printer.printName(T->getName(), context);
}
}
}
GenericParamList *getGenericParamListAtDepth(unsigned depth) {
assert(Options.ContextGenericParams);
if (!UnwrappedGenericParams) {
std::vector<GenericParamList *> paramLists;
for (auto *params = Options.ContextGenericParams;
params;
params = params->getOuterParameters()) {
paramLists.push_back(params);
}
UnwrappedGenericParams = std::move(paramLists);
}
return UnwrappedGenericParams->rbegin()[depth];
}
void visitGenericTypeParamType(GenericTypeParamType *T) {
// Substitute a context archetype if we have context generic params.
if (Options.ContextGenericParams) {
return visit(getGenericParamListAtDepth(T->getDepth())
->getPrimaryArchetypes()[T->getIndex()]);
}
auto Name = T->getName();
if (Name.empty())
Printer << "<anonymous>";
else {
PrintNameContext context = PrintNameContext::Normal;
if (T->getDecl() && T->getDecl()->isProtocolSelf())
context = PrintNameContext::GenericParameter;
Printer.printName(Name, context);
}
}
void visitAssociatedTypeType(AssociatedTypeType *T) {
auto Name = T->getDecl()->getName();
if (Name.empty())
Printer << "<anonymous>";
else
Printer.printName(Name);
}
void visitSubstitutedType(SubstitutedType *T) {
visit(T->getReplacementType());
}
void visitDependentMemberType(DependentMemberType *T) {
visit(T->getBase());
Printer << ".";
Printer.printName(T->getName());
}
void visitUnownedStorageType(UnownedStorageType *T) {
if (Options.PrintStorageRepresentationAttrs)
Printer << "@sil_unowned ";
visit(T->getReferentType());
}
void visitUnmanagedStorageType(UnmanagedStorageType *T) {
if (Options.PrintStorageRepresentationAttrs)
Printer << "@sil_unmanaged ";
visit(T->getReferentType());
}
void visitWeakStorageType(WeakStorageType *T) {
if (Options.PrintStorageRepresentationAttrs)
Printer << "@sil_weak ";
visit(T->getReferentType());
}
void visitTypeVariableType(TypeVariableType *T) {
if (T->getASTContext().LangOpts.DebugConstraintSolver) {
Printer << "$T" << T->getID();
return;
}
Printer << "_";
}
};
} // unnamed namespace
void Type::print(raw_ostream &OS, const PrintOptions &PO) const {
StreamPrinter Printer(OS);
print(Printer, PO);
}
void Type::print(ASTPrinter &Printer, const PrintOptions &PO) const {
if (isNull())
Printer << "<null>";
else
TypePrinter(Printer, PO).visit(*this);
}
void GenericSignature::print(raw_ostream &OS) const {
StreamPrinter Printer(OS);
TypePrinter(Printer, PrintOptions())
.printGenericSignature(getGenericParams(), getRequirements());
}
void GenericSignature::dump() const {
print(llvm::errs());
llvm::errs() << '\n';
}
std::string GenericSignature::getAsString() const {
std::string result;
llvm::raw_string_ostream out(result);
print(out);
return out.str();
}
static StringRef getStringForParameterConvention(ParameterConvention conv) {
switch (conv) {
case ParameterConvention::Indirect_In: return "@in ";
case ParameterConvention::Indirect_Out: return "@out ";
case ParameterConvention::Indirect_In_Guaranteed: return "@in_guaranteed ";
case ParameterConvention::Indirect_Inout: return "@inout ";
case ParameterConvention::Indirect_InoutAliasable: return "@inout_aliasable ";
case ParameterConvention::Direct_Owned: return "@owned ";
case ParameterConvention::Direct_Unowned: return "";
case ParameterConvention::Direct_Guaranteed: return "@guaranteed ";
case ParameterConvention::Direct_Deallocating: return "@deallocating ";
}
llvm_unreachable("bad parameter convention");
}
StringRef swift::getCheckedCastKindName(CheckedCastKind kind) {
switch (kind) {
case CheckedCastKind::Unresolved:
return "unresolved";
case CheckedCastKind::Coercion:
return "coercion";
case CheckedCastKind::ValueCast:
return "value_cast";
case CheckedCastKind::ArrayDowncast:
return "array_downcast";
case CheckedCastKind::DictionaryDowncast:
return "dictionary_downcast";
case CheckedCastKind::DictionaryDowncastBridged:
return "dictionary_downcast_bridged";
case CheckedCastKind::SetDowncast:
return "set_downcast";
case CheckedCastKind::SetDowncastBridged:
return "set_downcast_bridged";
case CheckedCastKind::BridgeFromObjectiveC:
return "bridge_from_objc";
}
llvm_unreachable("bad checked cast name");
}
void SILParameterInfo::dump() const {
print(llvm::errs());
llvm::errs() << '\n';
}
void SILParameterInfo::print(raw_ostream &OS, const PrintOptions &Opts) const {
StreamPrinter Printer(OS);
print(Printer, Opts);
}
void SILParameterInfo::print(ASTPrinter &Printer,
const PrintOptions &Opts) const {
Printer << getStringForParameterConvention(getConvention());
getType().print(Printer, Opts);
}
static StringRef getStringForResultConvention(ResultConvention conv) {
switch (conv) {
case ResultConvention::Owned: return "@owned ";
case ResultConvention::Unowned: return "";
case ResultConvention::UnownedInnerPointer: return "@unowned_inner_pointer ";
case ResultConvention::Autoreleased: return "@autoreleased ";
}
llvm_unreachable("bad result convention");
}
void SILResultInfo::dump() const {
print(llvm::errs());
llvm::errs() << '\n';
}
void SILResultInfo::print(raw_ostream &OS, const PrintOptions &Opts) const {
StreamPrinter Printer(OS);
print(Printer, Opts);
}
void SILResultInfo::print(ASTPrinter &Printer, const PrintOptions &Opts) const {
Printer << getStringForResultConvention(getConvention());
getType().print(Printer, Opts);
}
std::string Type::getString(const PrintOptions &PO) const {
std::string Result;
llvm::raw_string_ostream OS(Result);
print(OS, PO);
return OS.str();
}
std::string TypeBase::getString(const PrintOptions &PO) const {
std::string Result;
llvm::raw_string_ostream OS(Result);
print(OS, PO);
return OS.str();
}
void TypeBase::dumpPrint() const {
print(llvm::errs());
llvm::errs() << '\n';
}
void TypeBase::print(raw_ostream &OS, const PrintOptions &PO) const {
Type(const_cast<TypeBase *>(this)).print(OS, PO);
}
void TypeBase::print(ASTPrinter &Printer, const PrintOptions &PO) const {
Type(const_cast<TypeBase *>(this)).print(Printer, PO);
}
void ProtocolConformance::printName(llvm::raw_ostream &os,
const PrintOptions &PO) const {
if (getKind() == ProtocolConformanceKind::Normal) {
if (PO.PrintForSIL) {
if (auto genericSig = getGenericSignature()) {
StreamPrinter sPrinter(os);
TypePrinter typePrinter(sPrinter, PO);
typePrinter.printGenericSignature(genericSig->getGenericParams(),
genericSig->getRequirements());
os << ' ';
}
} else if (auto gp = getGenericParams()) {
StreamPrinter SPrinter(os);
PrintAST Printer(SPrinter, PO);
Printer.printGenericParams(gp);
os << ' ';
}
}
getType()->print(os, PO);
os << ": ";
switch (getKind()) {
case ProtocolConformanceKind::Normal: {
auto normal = cast<NormalProtocolConformance>(this);
os << normal->getProtocol()->getName()
<< " module " << normal->getDeclContext()->getParentModule()->getName();
break;
}
case ProtocolConformanceKind::Specialized: {
auto spec = cast<SpecializedProtocolConformance>(this);
os << "specialize <";
interleave(spec->getGenericSubstitutions(),
[&](const Substitution &s) { s.print(os, PO); },
[&] { os << ", "; });
os << "> (";
spec->getGenericConformance()->printName(os, PO);
os << ")";
break;
}
case ProtocolConformanceKind::Inherited: {
auto inherited = cast<InheritedProtocolConformance>(this);
os << "inherit (";
inherited->getInheritedConformance()->printName(os, PO);
os << ")";
break;
}
}
}
void Substitution::print(llvm::raw_ostream &os,
const PrintOptions &PO) const {
Replacement->print(os, PO);
}