mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
This reverts commit r25943. It may have broken a test that was missing a FileCheck. Swift SVN r25947
534 lines
19 KiB
C++
534 lines
19 KiB
C++
//===-- Devirtualizer.cpp ------ Devirtualize virtual calls ---------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Devirtualizes virtual function calls into direct function calls.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "sil-devirtualizer-pass"
|
|
#include "swift/Basic/DemangleWrappers.h"
|
|
#include "swift/Basic/Fallthrough.h"
|
|
#include "swift/SIL/SILArgument.h"
|
|
#include "swift/SIL/SILBuilder.h"
|
|
#include "swift/SIL/SILFunction.h"
|
|
#include "swift/SIL/SILInstruction.h"
|
|
#include "swift/SIL/SILModule.h"
|
|
#include "swift/SILAnalysis/ClassHierarchyAnalysis.h"
|
|
#include "swift/SILPasses/Utils/Generics.h"
|
|
#include "swift/SILPasses/Passes.h"
|
|
#include "swift/SILPasses/PassManager.h"
|
|
#include "swift/SILPasses/Transforms.h"
|
|
#include "swift/SILPasses/Utils/Devirtualize.h"
|
|
#include "swift/SILPasses/Utils/SILInliner.h"
|
|
#include "swift/AST/ASTContext.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/PointerIntPair.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringSet.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
using namespace swift;
|
|
|
|
// The number of subclasses to allow when placing polymorphic inline caches.
|
|
static const int MaxNumPolymorphicInlineCaches = 6;
|
|
|
|
STATISTIC(NumInlineCaches, "Number of monomorphic inline caches inserted");
|
|
|
|
namespace {
|
|
|
|
class SILDevirtualizationPass : public SILModuleTransform {
|
|
public:
|
|
virtual ~SILDevirtualizationPass() {}
|
|
|
|
/// The entry point to the transformation.
|
|
void run() override {
|
|
|
|
/// A list of devirtualized calls.
|
|
GenericSpecializer::AIList DevirtualizedCalls;
|
|
|
|
bool Changed = false;
|
|
|
|
// Perform devirtualization locally and compute potential polymorphic
|
|
// arguments for all existing functions.
|
|
for (auto &F : *getModule()) {
|
|
DEBUG(llvm::dbgs() << "*** Devirtualizing Function: "
|
|
<< demangle_wrappers::demangleSymbolAsString(F.getName())
|
|
<< "\n");
|
|
for (auto &BB : F) {
|
|
for (auto II = BB.begin(), IE = BB.end(); II != IE;) {
|
|
ApplyInst *AI = dyn_cast<ApplyInst>(&*II);
|
|
++II;
|
|
|
|
if (!AI)
|
|
continue;
|
|
|
|
if (ApplyInst *NewAI = devirtualizeApply(AI)) {
|
|
DevirtualizedCalls.push_back(NewAI);
|
|
Changed |= true;
|
|
}
|
|
}
|
|
}
|
|
DEBUG(llvm::dbgs() << "\n");
|
|
}
|
|
|
|
if (Changed) {
|
|
// Try to specialize the devirtualized calls.
|
|
auto GS = GenericSpecializer(getModule());
|
|
|
|
// Try to specialize the newly devirtualized calls.
|
|
if (GS.specialize(DevirtualizedCalls)) {
|
|
DEBUG(llvm::dbgs() << "Specialized some generic functions\n");
|
|
}
|
|
|
|
PM->scheduleAnotherIteration();
|
|
invalidateAnalysis(SILAnalysis::InvalidationKind::CallGraph);
|
|
}
|
|
}
|
|
|
|
StringRef getName() override { return "Devirtualization"; }
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
SILTransform *swift::createDevirtualizer() {
|
|
return new SILDevirtualizationPass();
|
|
}
|
|
|
|
// A utility function for cloning the apply instruction.
|
|
static ApplyInst *CloneApply(ApplyInst *AI, SILBuilder &Builder) {
|
|
// Clone the Apply.
|
|
auto Args = AI->getArguments();
|
|
SmallVector<SILValue, 8> Ret(Args.size());
|
|
for (unsigned i = 0, e = Args.size(); i != e; ++i)
|
|
Ret[i] = Args[i];
|
|
|
|
auto NAI = Builder.createApply(AI->getLoc(), AI->getCallee(),
|
|
AI->getSubstCalleeSILType(),
|
|
AI->getType(),
|
|
AI->getSubstitutions(),
|
|
Ret, AI->isTransparent());
|
|
NAI->setDebugScope(AI->getDebugScope());
|
|
return NAI;
|
|
}
|
|
|
|
/// Insert monomorphic inline caches for a specific class type \p SubClassTy.
|
|
static ApplyInst* insertMonomorphicInlineCaches(ApplyInst *AI,
|
|
SILType SubClassTy) {
|
|
ClassMethodInst *CMI = cast<ClassMethodInst>(AI->getCallee());
|
|
SILValue ClassInstance = CMI->getOperand();
|
|
ClassDecl *CD = SubClassTy.getClassOrBoundGenericClass();
|
|
|
|
SILType RealSubClassTy = SubClassTy;
|
|
|
|
if (auto *VMTI = dyn_cast<ValueMetatypeInst>(ClassInstance.stripUpCasts())) {
|
|
if (isa<AnyMetatypeType>(SubClassTy.getSwiftRValueType())) {
|
|
CD = SubClassTy.getMetatypeInstanceType(AI->getModule())
|
|
.getClassOrBoundGenericClass();
|
|
} else {
|
|
auto InstTy = SubClassTy.getSwiftRValueType();
|
|
CD = InstTy.getClassOrBoundGenericClass();
|
|
// Convert instance type to its metatype type.
|
|
auto EMT = dyn_cast<AnyMetatypeType>(VMTI->getType().
|
|
getSwiftRValueType());
|
|
auto *MetaTy = MetatypeType::get(InstTy, EMT->getRepresentation());
|
|
auto CanMetaTy = CanMetatypeType::CanTypeWrapper(MetaTy);
|
|
RealSubClassTy = SILType::getPrimitiveObjectType(CanMetaTy);
|
|
}
|
|
} else {
|
|
assert(SubClassTy.getClassOrBoundGenericClass() &&
|
|
"Dest type must be a class type");
|
|
}
|
|
|
|
// Placeholder for keeping the results of analysis performed
|
|
// by canDevirtualizeClassMethod.
|
|
DevirtClassMethodInfo DCMI;
|
|
|
|
// Bail if this class_method cannot be devirtualized.
|
|
if (!canDevirtualizeClassMethod(AI, RealSubClassTy, CD, DCMI))
|
|
return nullptr;
|
|
|
|
|
|
// Create a diamond shaped control flow and a checked_cast_branch
|
|
// instruction that checks the exact type of the object.
|
|
// This cast selects between two paths: one that calls the slow dynamic
|
|
// dispatch and one that calls the specific method.
|
|
SILBasicBlock::iterator It = AI;
|
|
SILFunction *F = AI->getFunction();
|
|
SILBasicBlock *Entry = AI->getParent();
|
|
|
|
// Iden is the basic block containing the direct call.
|
|
SILBasicBlock *Iden = F->createBasicBlock();
|
|
// Virt is the block containing the slow virtual call.
|
|
SILBasicBlock *Virt = F->createBasicBlock();
|
|
Iden->createBBArg(RealSubClassTy);
|
|
|
|
SILBasicBlock *Continue = Entry->splitBasicBlock(It);
|
|
|
|
SILBuilderWithScope<> Builder(Entry, AI->getDebugScope());
|
|
// Create the checked_cast_branch instruction that checks at runtime if the
|
|
// class instance is identical to the SILType.
|
|
|
|
It = Builder.createCheckedCastBranch(AI->getLoc(), /*exact*/ true,
|
|
ClassInstance, RealSubClassTy, Iden,
|
|
Virt);
|
|
|
|
SILBuilder VirtBuilder(Virt);
|
|
SILBuilder IdenBuilder(Iden);
|
|
// This is the class reference downcasted into subclass SubClassTy.
|
|
SILValue DownCastedClassInstance = Iden->getBBArg(0);
|
|
|
|
// Try sinking the retain of the class instance into the diamond. This may
|
|
// allow additional ARC optimizations on the fast path.
|
|
if (It != Entry->begin()) {
|
|
StrongRetainInst *SRI = dyn_cast<StrongRetainInst>(--It);
|
|
// Try to skip another instruction, in case the class_method came first.
|
|
if (!SRI && It != Entry->begin())
|
|
SRI = dyn_cast<StrongRetainInst>(--It);
|
|
if (SRI && SRI->getOperand() == ClassInstance) {
|
|
VirtBuilder.createStrongRetain(SRI->getLoc(), ClassInstance)
|
|
->setDebugScope(SRI->getDebugScope());
|
|
IdenBuilder.createStrongRetain(SRI->getLoc(), DownCastedClassInstance)
|
|
->setDebugScope(SRI->getDebugScope());
|
|
SRI->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
// Copy the two apply instructions into the two blocks.
|
|
ApplyInst *IdenAI = CloneApply(AI, IdenBuilder);
|
|
ApplyInst *VirtAI = CloneApply(AI, VirtBuilder);
|
|
|
|
// Create a PHInode for returning the return value from both apply
|
|
// instructions.
|
|
SILArgument *Arg = Continue->createBBArg(AI->getType());
|
|
IdenBuilder.createBranch(AI->getLoc(), Continue, ArrayRef<SILValue>(IdenAI))
|
|
->setDebugScope(AI->getDebugScope());
|
|
VirtBuilder.createBranch(AI->getLoc(), Continue, ArrayRef<SILValue>(VirtAI))
|
|
->setDebugScope(AI->getDebugScope());
|
|
|
|
// Remove the old Apply instruction.
|
|
AI->replaceAllUsesWith(Arg);
|
|
AI->eraseFromParent();
|
|
|
|
// Update the stats.
|
|
NumInlineCaches++;
|
|
|
|
// Devirtualize the apply instruction on the identical path.
|
|
ApplyInst *NewAI = devirtualizeClassMethod(IdenAI, DownCastedClassInstance,
|
|
DCMI);
|
|
assert(NewAI && "Expected to be able to devirtualize apply!");
|
|
(void) NewAI;
|
|
|
|
// Sink class_method instructions down to their single user.
|
|
if (CMI->hasOneUse())
|
|
CMI->moveBefore(CMI->use_begin()->getUser());
|
|
|
|
return VirtAI;
|
|
}
|
|
|
|
/// \brief Returns true, if a method implementation to be called by the
|
|
/// default case handler of a speculative devirtualization is statically
|
|
/// known. This happens if it can be proven that generated
|
|
/// checked_cast_br instructions cover all other possible cases.
|
|
///
|
|
/// \p CHA class hierarchy analysis to be used
|
|
/// \p AI invocation instruction
|
|
/// \p CD static class of the instance whose method is being invoked
|
|
/// \p Subs set of direct subclasses of this class
|
|
static bool isDefaultCaseKnown(ClassHierarchyAnalysis *CHA,
|
|
ApplyInst *AI,
|
|
ClassDecl *CD,
|
|
ClassHierarchyAnalysis::ClassList &Subs) {
|
|
ClassMethodInst *CMI = cast<ClassMethodInst>(AI->getCallee());
|
|
auto *Method = CMI->getMember().getFuncDecl();
|
|
const DeclContext *DC = AI->getModule().getAssociatedContext();
|
|
|
|
if (CD->isFinal())
|
|
return true;
|
|
|
|
// Without an associated context we cannot perform any
|
|
// access-based optimizations.
|
|
if (!DC)
|
|
return false;
|
|
|
|
// Only handle classes defined within the SILModule's associated context.
|
|
if (!CD->isChildContextOf(DC))
|
|
return false;
|
|
|
|
if (!CD->hasAccessibility())
|
|
return false;
|
|
|
|
// Only consider 'private' members, unless we are in whole-module compilation.
|
|
switch (CD->getAccessibility()) {
|
|
case Accessibility::Public:
|
|
return false;
|
|
case Accessibility::Internal:
|
|
if (!AI->getModule().isWholeModule())
|
|
return false;
|
|
break;
|
|
case Accessibility::Private:
|
|
break;
|
|
}
|
|
|
|
// This is a private or a module internal class.
|
|
//
|
|
// We can analyze the class hierarchy rooted at it and
|
|
// eventually devirtualize a method call more efficiently.
|
|
|
|
// First, analyze all direct subclasses.
|
|
// We know that a dedicated checked_cast_br check is
|
|
// generated for each direct subclass by insertInlineCaches.
|
|
for (auto S : Subs) {
|
|
// Check if the subclass overrides a method
|
|
auto *FD = S->findOverridingDecl(Method);
|
|
if (!FD)
|
|
continue;
|
|
if (CHA->hasKnownDirectSubclasses(S)) {
|
|
// This subclass has its own subclasses and
|
|
// they will use this implementation or provide
|
|
// their own. In either case it is not covered by
|
|
// checked_cast_br instructions generated by
|
|
// insertInlineCaches. Therefore it increases
|
|
// the number of remaining cases to be handled
|
|
// by the default case handler.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Then, analyze indirect subclasses.
|
|
|
|
// Set of indirect subclasses for the class.
|
|
auto &IndirectSubs = CHA->getIndirectSubClasses(CD);
|
|
|
|
// Check if any indirect subclasses use an implementation
|
|
// of the method different from the implementation in
|
|
// the current class. If this is the case, then such
|
|
// an indirect subclass would need a dedicated
|
|
// checked_cast_br check to be devirtualized. But this is
|
|
// not done by insertInlineCaches yet and therefore
|
|
// such a subclass should be handled by the "default"
|
|
// case handler, which essentially means that "default"
|
|
// case cannot be devirtualized since it covers more
|
|
// then one alternative.
|
|
for (auto S : IndirectSubs) {
|
|
auto *ImplFD = S->findImplementingMethod(Method);
|
|
if (ImplFD != Method) {
|
|
// Different implementation is used by a subclass.
|
|
// Therefore, the default case is not known.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// \brief Try to insert inline cahces for the call \p AI. This function
|
|
/// returns true if a change was made.
|
|
static bool insertInlineCaches(ApplyInst *AI, ClassHierarchyAnalysis *CHA) {
|
|
ClassMethodInst *CMI = cast<ClassMethodInst>(AI->getCallee());
|
|
|
|
// We cannot devirtualize in cases where dynamic calls are
|
|
// semantically required.
|
|
if (CMI->isVolatile())
|
|
return false;
|
|
|
|
SILValue ClassInstance = CMI->getOperand();
|
|
|
|
// Strip any upcasts off of our 'self' value, potentially leaving us
|
|
// with a value whose type is closer (in the class hierarchy) to the
|
|
// actual dynamic type.
|
|
auto SubTypeValue = ClassInstance.stripUpCasts();
|
|
SILType SubType = SubTypeValue.getType();
|
|
ClassDecl *CD = SubType.getClassOrBoundGenericClass();
|
|
|
|
if (auto *VMTI = dyn_cast<ValueMetatypeInst>(SubTypeValue)) {
|
|
CanType InstTy = VMTI->getType().castTo<MetatypeType>().getInstanceType();
|
|
CD = InstTy.getClassOrBoundGenericClass();
|
|
}
|
|
|
|
// Check if it is legal to insert inline caches.
|
|
if (!CD)
|
|
return false;
|
|
|
|
if (ClassInstance != SubTypeValue) {
|
|
// The implementation of a method to be invoked may actually
|
|
// be defined by one of the superclasses.
|
|
if (ClassInstance.getType().getAs<MetatypeType>()) {
|
|
auto &Module = AI->getModule();
|
|
if (!ClassInstance.getType().getMetatypeInstanceType(Module).
|
|
isSuperclassOf(SubType.getMetatypeInstanceType(Module)))
|
|
return false;
|
|
} else {
|
|
if (!ClassInstance.getType().isSuperclassOf(SubType))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Bail if any generic types parameters of the class instance type are
|
|
// unbound.
|
|
// We cannot devirtualize unbound generic calls yet.
|
|
if (isClassWithUnboundGenericParameters(SubType, AI->getModule()))
|
|
return false;
|
|
|
|
if (!CHA->hasKnownDirectSubclasses(CD)) {
|
|
// If there is only one possible alternative for this method,
|
|
// try to devirtualize it completely.
|
|
ClassHierarchyAnalysis::ClassList Subs;
|
|
if (isDefaultCaseKnown(CHA, AI, CD, Subs)) {
|
|
ApplyInst *NewAI = devirtualizeClassMethod(AI, SubTypeValue, CD);
|
|
return NewAI != nullptr;
|
|
}
|
|
|
|
DEBUG(llvm::dbgs() << "Inserting monomorphic inline caches for class " <<
|
|
CD->getName() << "\n");
|
|
return insertMonomorphicInlineCaches(AI, SubType);
|
|
}
|
|
|
|
// Collect the direct subclasses for the class.
|
|
auto &Subs = CHA->getDirectSubClasses(CD);
|
|
|
|
if (Subs.size() > MaxNumPolymorphicInlineCaches) {
|
|
DEBUG(llvm::dbgs() << "Class " << CD->getName() << " has too many (" <<
|
|
Subs.size() << ") subclasses. Not inserting inline caches.\n");
|
|
return false;
|
|
}
|
|
|
|
DEBUG(llvm::dbgs() << "Class " << CD->getName() << " is a superclass. "
|
|
"Inserting polymorphic inline caches.\n");
|
|
|
|
// Perform a speculative devirtualization of a method invocation.
|
|
// It replaces an indirect class_method-based call by a code to perform
|
|
// a direct call of the method implementation based on the dynamic class
|
|
// of the instance.
|
|
//
|
|
// The code is generated according to the following principles:
|
|
//
|
|
// - For each direct subclass, a dedicated checked_cast_br instruction
|
|
// is generated to check if a dynamic class of the instance is exactly
|
|
// this subclass.
|
|
//
|
|
// - If this check succeeds, then it jumps to the code which performs a
|
|
// direct call of a method implementation specific to this subclass.
|
|
//
|
|
// - If this check fails, then a different subclass is checked by means of
|
|
// checked_cast_br in a similar way.
|
|
//
|
|
// - Finally, if the instance does not exactly match any of the direct
|
|
// subclasses, the "default" case code is generated, which should handle
|
|
// all remaining alternatives, i.e. it should be able to dispatch to any
|
|
// possible remaining method implementations. Typically this is achieved by
|
|
// using a class_method instruction, which performs an indirect invocation.
|
|
// But if it can be proven that only one specific implementation of
|
|
// a method will be always invoked by this code, then a class_method-based
|
|
// call can be devirtualized and replaced by a more efficient direct
|
|
// invocation of this specific method implementation.
|
|
//
|
|
// Remark: With the current implementation of a speculative devirtualization,
|
|
// if devirtualization of the "default" case is possible, then it would
|
|
// by construction directly invoke the implementation of the method
|
|
// corresponding to the static type of the instance. This may change
|
|
// in the future, if we start using PGO for ordering of checked_cast_br
|
|
// checks.
|
|
|
|
// TODO: The ordering of checks may benefit from using a PGO, because
|
|
// the most probable alternatives could be checked first.
|
|
|
|
// Number of subclasses which cannot be handled by checked_cast_br checks.
|
|
int NotHandledSubsNum = 0;
|
|
// True if any instructions were changed or generated.
|
|
bool Changed = false;
|
|
|
|
for (auto S : Subs) {
|
|
DEBUG(llvm::dbgs() << "Inserting a cache for class " << CD->getName() <<
|
|
" and subclass " << S->getName() << "\n");
|
|
|
|
CanType CanClassType = S->getDeclaredType()->getCanonicalType();
|
|
SILType InstanceType = SILType::getPrimitiveObjectType(CanClassType);
|
|
if (!InstanceType.getClassOrBoundGenericClass()) {
|
|
// This subclass cannot be handled. This happens e.g. if it is
|
|
// a generic class.
|
|
NotHandledSubsNum++;
|
|
continue;
|
|
}
|
|
|
|
AI = insertMonomorphicInlineCaches(AI, InstanceType);
|
|
if (!AI) {
|
|
NotHandledSubsNum++;
|
|
continue;
|
|
}
|
|
Changed = true;
|
|
}
|
|
|
|
// Check if there is only a single statically known implementation
|
|
// of the method which can be called by the default case handler.
|
|
if (NotHandledSubsNum || !isDefaultCaseKnown(CHA, AI, CD, Subs)) {
|
|
// Devirtualization of remaining cases is not possible,
|
|
// because more than one implementation of the method
|
|
// needs to be handled here. Thus, an indirect call through
|
|
// the class_method cannot be eliminated completely.
|
|
//
|
|
// But we can still try to devirtualize the static class of instance
|
|
// if it is possible.
|
|
return insertMonomorphicInlineCaches(AI, SubType);
|
|
}
|
|
|
|
// At this point it is known that there is only one remaining method
|
|
// implementation which is not covered by checked_cast_br checks yet.
|
|
// So, it is safe to replace a class_method invocation by
|
|
// a direct call of this remaining implementation.
|
|
ApplyInst *NewAI = devirtualizeClassMethod(AI, SubTypeValue, CD);
|
|
assert(NewAI && "Expected to be able to devirtualize apply!");
|
|
(void) NewAI;
|
|
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
/// Generate inline caches of virtual calls by speculating that the requested
|
|
/// class is at the bottom of the class hierarchy.
|
|
class SILInlineCaches : public SILFunctionTransform {
|
|
public:
|
|
virtual ~SILInlineCaches() {}
|
|
|
|
void run() override {
|
|
ClassHierarchyAnalysis *CHA = PM->getAnalysis<ClassHierarchyAnalysis>();
|
|
|
|
bool Changed = false;
|
|
|
|
// Collect virtual calls that may be specialized.
|
|
SmallVector<ApplyInst *, 16> ToSpecialize;
|
|
for (auto &BB : *getFunction()) {
|
|
for (auto II = BB.begin(), IE = BB.end(); II != IE; ++II) {
|
|
ApplyInst *AI = dyn_cast<ApplyInst>(&*II);
|
|
if (AI && isa<ClassMethodInst>(AI->getCallee()))
|
|
ToSpecialize.push_back(AI);
|
|
}
|
|
}
|
|
|
|
// Create the inline caches.
|
|
for (auto AI : ToSpecialize)
|
|
Changed |= insertInlineCaches(AI, CHA);
|
|
|
|
if (Changed) {
|
|
invalidateAnalysis(SILAnalysis::InvalidationKind::CallGraph);
|
|
}
|
|
}
|
|
|
|
StringRef getName() override { return "Inline Caches"; }
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
SILTransform *swift::createInlineCaches() {
|
|
return new SILInlineCaches();
|
|
}
|
|
|