Files
swift-mirror/lib/Sema/Constraint.cpp
John McCall e3f6be8631 Permit @unchecked T? to be coerced to T as a conversion.
Originally, I didn't want this because I felt it made
unchecked-optional too non-local --- it wasn't always
obvious that an assignment might crash because it was
implicitly dropping optionality.  And that's still a
concern!  But I think that overall, if we're prepared
to accept that that danger is inherent in @unchecked T?,
this is a more consistent model: @unchecked T? means
that we don't know enough about the value to say for
certain that nil is a real possibility, so we'll let
you coerce it to the underlying type, and that coercion
just might not be dynamically safe.  No more special
cases for calls and member access (to the user; of
course, to the implementation these are still special cases
because of lookup and overload resolution).

Swift SVN r14796
2014-03-07 21:57:36 +00:00

493 lines
17 KiB
C++

//===--- Constraint.cpp - Constraint in the Type Checker --------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the \c Constraint class and its related types,
// which is used by the constraint-based type checker to describe a
// constraint that must be solved.
//
//===----------------------------------------------------------------------===//
#include "Constraint.h"
#include "ConstraintSystem.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Fallthrough.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
using namespace swift;
using namespace constraints;
Constraint::Constraint(ConstraintKind kind, ArrayRef<Constraint *> constraints,
ConstraintLocator *locator,
ArrayRef<TypeVariableType *> typeVars)
: Kind(kind), HasRestriction(false), IsActive(false),
NumTypeVariables(typeVars.size()), Nested(constraints), Locator(locator)
{
assert(kind == ConstraintKind::Conjunction ||
kind == ConstraintKind::Disjunction);
std::copy(typeVars.begin(), typeVars.end(), getTypeVariablesBuffer().begin());
}
Constraint::Constraint(ConstraintKind Kind, Type First, Type Second,
DeclName Member, ConstraintLocator *locator,
ArrayRef<TypeVariableType *> typeVars)
: Kind(Kind), HasRestriction(false), IsActive(false),
NumTypeVariables(typeVars.size()), Types { First, Second, Member },
Locator(locator)
{
switch (Kind) {
case ConstraintKind::Bind:
case ConstraintKind::Equal:
case ConstraintKind::Subtype:
case ConstraintKind::Conversion:
case ConstraintKind::OperatorConversion:
case ConstraintKind::Construction:
case ConstraintKind::ConformsTo:
case ConstraintKind::CheckedCast:
case ConstraintKind::SelfObjectOfProtocol:
assert(!First.isNull());
assert(!Second.isNull());
assert(!Member && "Relational constraint cannot have a member");
break;
case ConstraintKind::ApplicableFunction:
assert(First->is<FunctionType>()
&& "The left-hand side type should be a function type");
assert(!Member && "Relational constraint cannot have a member");
break;
case ConstraintKind::TypeMember:
case ConstraintKind::ValueMember:
assert(Member && "Member constraint has no member");
break;
case ConstraintKind::Archetype:
case ConstraintKind::Class:
case ConstraintKind::DynamicLookupValue:
assert(!Member && "Type property cannot have a member");
assert(Second.isNull() && "Type property with second type");
break;
case ConstraintKind::BindOverload:
llvm_unreachable("Wrong constructor for overload binding constraint");
case ConstraintKind::Conjunction:
llvm_unreachable("Conjunction constraints should use create()");
case ConstraintKind::Disjunction:
llvm_unreachable("Disjunction constraints should use create()");
}
std::copy(typeVars.begin(), typeVars.end(), getTypeVariablesBuffer().begin());
}
Constraint::Constraint(Type type, OverloadChoice choice,
ConstraintLocator *locator,
ArrayRef<TypeVariableType *> typeVars)
: Kind(ConstraintKind::BindOverload), HasRestriction(false),
IsActive(false), NumTypeVariables(typeVars.size()),
Overload{type, choice}, Locator(locator)
{
std::copy(typeVars.begin(), typeVars.end(), getTypeVariablesBuffer().begin());
}
Constraint::Constraint(ConstraintKind kind,
ConversionRestrictionKind restriction,
Type first, Type second, ConstraintLocator *locator,
ArrayRef<TypeVariableType *> typeVars)
: Kind(kind), Restriction(restriction), HasRestriction(true),
IsActive(false), NumTypeVariables(typeVars.size()),
Types{ first, second, Identifier() }, Locator(locator)
{
assert(!first.isNull());
assert(!second.isNull());
std::copy(typeVars.begin(), typeVars.end(), getTypeVariablesBuffer().begin());
}
ProtocolDecl *Constraint::getProtocol() const {
assert((Kind == ConstraintKind::ConformsTo ||
Kind == ConstraintKind::SelfObjectOfProtocol)
&& "Not a conformance constraint");
return Types.Second->castTo<ProtocolType>()->getDecl();
}
void Constraint::print(llvm::raw_ostream &Out, SourceManager *sm) const {
if (Kind == ConstraintKind::Conjunction ||
Kind == ConstraintKind::Disjunction) {
bool isConjunction = (Kind == ConstraintKind::Conjunction);
if (isConjunction)
Out << "conjunction";
else
Out << "disjunction";
if (Locator) {
Out << " [[";
Locator->dump(sm, Out);
Out << "]]";
}
Out << ":";
bool first = true;
for (auto constraint : getNestedConstraints()) {
if (first)
first = false;
else if (isConjunction)
Out << " and ";
else
Out << " or ";
constraint->print(Out, sm);
}
return;
}
Types.First->print(Out);
bool skipSecond = false;
switch (Kind) {
case ConstraintKind::Bind: Out << " := "; break;
case ConstraintKind::Equal: Out << " == "; break;
case ConstraintKind::Subtype: Out << " < "; break;
case ConstraintKind::Conversion: Out << " <c "; break;
case ConstraintKind::OperatorConversion: Out << " <oc "; break;
case ConstraintKind::Construction: Out << " <C "; break;
case ConstraintKind::ConformsTo: Out << " conforms to "; break;
case ConstraintKind::CheckedCast: Out << " checked cast to "; break;
case ConstraintKind::SelfObjectOfProtocol: Out << " Self type of "; break;
case ConstraintKind::ApplicableFunction: Out << " ==Fn "; break;
case ConstraintKind::BindOverload: {
Out << " bound to ";
auto overload = getOverloadChoice();
auto printDecl = [&] {
auto decl = overload.getDecl();
decl->print(Out);
if (!sm || !decl->getLoc().isValid()) return;
Out << " at ";
decl->getLoc().print(Out, *sm);
};
switch (overload.getKind()) {
case OverloadChoiceKind::Decl:
Out << "decl ";
printDecl();
break;
case OverloadChoiceKind::TypeDecl:
Out << "type decl ";
printDecl();
break;
case OverloadChoiceKind::DeclViaDynamic:
Out << "decl-via-dynamic ";
printDecl();
break;
case OverloadChoiceKind::BaseType:
Out << "base type";
break;
case OverloadChoiceKind::TupleIndex:
Out << "tuple index " << overload.getTupleIndex();
break;
}
skipSecond = true;
break;
}
case ConstraintKind::ValueMember:
Out << "[." << Types.Member << ": value] == ";
break;
case ConstraintKind::TypeMember:
Out << "[." << Types.Member << ": type] == ";
break;
case ConstraintKind::Archetype:
Out << " is an archetype";
skipSecond = true;
break;
case ConstraintKind::Class:
Out << " is a class";
skipSecond = true;
break;
case ConstraintKind::DynamicLookupValue:
Out << " is an AnyObject value";
skipSecond = true;
break;
case ConstraintKind::Conjunction:
case ConstraintKind::Disjunction:
llvm_unreachable("Conjunction/disjunction handled above");
}
if (!skipSecond)
Types.Second->print(Out);
if (auto restriction = getRestriction()) {
Out << ' ' << getName(*restriction);
}
if (Locator) {
Out << " [[";
Locator->dump(sm, Out);
Out << "]];";
}
}
void Constraint::dump(SourceManager *sm) const {
print(llvm::errs(), sm);
}
StringRef swift::constraints::getName(ConversionRestrictionKind kind) {
switch (kind) {
case ConversionRestrictionKind::TupleToTuple:
return "[tuple-to-tuple]";
case ConversionRestrictionKind::ScalarToTuple:
return "[scalar-to-tuple]";
case ConversionRestrictionKind::TupleToScalar:
return "[tuple-to-scalar]";
case ConversionRestrictionKind::DeepEquality:
return "[deep equality]";
case ConversionRestrictionKind::Superclass:
return "[superclass]";
case ConversionRestrictionKind::LValueToRValue:
return "[lvalue-to-rvalue]";
case ConversionRestrictionKind::Existential:
return "[existential]";
case ConversionRestrictionKind::ValueToOptional:
return "[value-to-optional]";
case ConversionRestrictionKind::OptionalToOptional:
return "[optional-to-optional]";
case ConversionRestrictionKind::UncheckedOptionalToOptional:
return "[unchecked-optional-to-optional]";
case ConversionRestrictionKind::ForceUnchecked:
return "[force-unchecked]";
case ConversionRestrictionKind::User:
return "[user]";
}
llvm_unreachable("bad conversion restriction kind");
}
/// Recursively gather the set of type variables referenced by this constraint.
static void
gatherReferencedTypeVars(Constraint *constraint,
SmallVectorImpl<TypeVariableType *> &typeVars) {
switch (constraint->getKind()) {
case ConstraintKind::Conjunction:
case ConstraintKind::Disjunction:
for (auto nested : constraint->getNestedConstraints())
gatherReferencedTypeVars(nested, typeVars);
return;
case ConstraintKind::ApplicableFunction:
case ConstraintKind::Bind:
case ConstraintKind::Construction:
case ConstraintKind::Conversion:
case ConstraintKind::OperatorConversion:
case ConstraintKind::CheckedCast:
case ConstraintKind::Equal:
case ConstraintKind::Subtype:
case ConstraintKind::TypeMember:
case ConstraintKind::ValueMember:
constraint->getSecondType()->getTypeVariables(typeVars);
SWIFT_FALLTHROUGH;
case ConstraintKind::Archetype:
case ConstraintKind::BindOverload:
case ConstraintKind::Class:
case ConstraintKind::ConformsTo:
case ConstraintKind::DynamicLookupValue:
case ConstraintKind::SelfObjectOfProtocol:
constraint->getFirstType()->getTypeVariables(typeVars);
// Special case: the base type of an overloading binding.
if (constraint->getKind() == ConstraintKind::BindOverload) {
if (auto baseType = constraint->getOverloadChoice().getBaseType()) {
baseType->getTypeVariables(typeVars);
}
}
break;
}
}
/// Unique the given set of type variables.
static void uniqueTypeVariables(SmallVectorImpl<TypeVariableType *> &typeVars) {
// Remove any duplicate type variables.
llvm::SmallPtrSet<TypeVariableType *, 4> knownTypeVars;
typeVars.erase(std::remove_if(typeVars.begin(), typeVars.end(),
[&](TypeVariableType *typeVar) {
return !knownTypeVars.insert(typeVar);
}),
typeVars.end());
}
Constraint *Constraint::create(ConstraintSystem &cs, ConstraintKind kind,
Type first, Type second, DeclName member,
ConstraintLocator *locator) {
// Collect type variables.
SmallVector<TypeVariableType *, 4> typeVars;
if (first->hasTypeVariable())
first->getTypeVariables(typeVars);
if (second && second->hasTypeVariable())
second->getTypeVariables(typeVars);
uniqueTypeVariables(typeVars);
// Create the constraint.
unsigned size = sizeof(Constraint)
+ typeVars.size() * sizeof(TypeVariableType*);
void *mem = cs.getAllocator().Allocate(size, alignof(Constraint));
return new (mem) Constraint(kind, first, second, member, locator, typeVars);
}
Constraint *Constraint::createBindOverload(ConstraintSystem &cs, Type type,
OverloadChoice choice,
ConstraintLocator *locator) {
// Collect type variables.
SmallVector<TypeVariableType *, 4> typeVars;
if (type->hasTypeVariable())
type->getTypeVariables(typeVars);
if (auto baseType = choice.getBaseType()) {
baseType->getTypeVariables(typeVars);
}
// Create the constraint.
unsigned size = sizeof(Constraint)
+ typeVars.size() * sizeof(TypeVariableType*);
void *mem = cs.getAllocator().Allocate(size, alignof(Constraint));
return new (mem) Constraint(type, choice, locator, typeVars);
}
Constraint *Constraint::createRestricted(ConstraintSystem &cs,
ConstraintKind kind,
ConversionRestrictionKind restriction,
Type first, Type second,
ConstraintLocator *locator) {
// Collect type variables.
SmallVector<TypeVariableType *, 4> typeVars;
if (first->hasTypeVariable())
first->getTypeVariables(typeVars);
if (second->hasTypeVariable())
second->getTypeVariables(typeVars);
uniqueTypeVariables(typeVars);
// Create the constraint.
unsigned size = sizeof(Constraint)
+ typeVars.size() * sizeof(TypeVariableType*);
void *mem = cs.getAllocator().Allocate(size, alignof(Constraint));
return new (mem) Constraint(kind, restriction, first, second, locator,
typeVars);
}
Constraint *Constraint::createConjunction(ConstraintSystem &cs,
ArrayRef<Constraint *> constraints,
ConstraintLocator *locator) {
// Unwrap any conjunctions inside the conjunction constraint.
SmallVector<TypeVariableType *, 4> typeVars;
bool unwrappedAny = false;
SmallVector<Constraint *, 1> unwrapped;
unsigned index = 0;
for (auto constraint : constraints) {
// Gather type variables from this constraint.
gatherReferencedTypeVars(constraint, typeVars);
// If we have a nested conjunction, unwrap it.
if (constraint->getKind() == ConstraintKind::Conjunction) {
// If we haven't unwrapped anything before, copy all of the constraints
// we skipped.
if (!unwrappedAny) {
unwrapped.append(constraints.begin(), constraints.begin() + index);
unwrappedAny = true;
}
// Add all of the constraints in the conjunction.
unwrapped.append(constraint->getNestedConstraints().begin(),
constraint->getNestedConstraints().end());
} else if (unwrappedAny) {
// Since we unwrapped constraints before, add this constraint.
unwrapped.push_back(constraint);
}
// FIXME: If we find any disjunctions in here, should we distribute them?
++index;
}
// If we unwrapped anything, our list of constraints is the unwrapped list.
if (unwrappedAny)
constraints = unwrapped;
assert(!constraints.empty() && "Empty conjunction constraint");
// If there is a single constraint, this isn't a disjunction at all.
if (constraints.size() == 1)
return constraints.front();
// Create the conjunction constraint.
uniqueTypeVariables(typeVars);
unsigned size = sizeof(Constraint)
+ typeVars.size() * sizeof(TypeVariableType*);
void *mem = cs.getAllocator().Allocate(size, alignof(Constraint));
return new (mem) Constraint(ConstraintKind::Conjunction,
cs.allocateCopy(constraints), locator, typeVars);
}
Constraint *Constraint::createDisjunction(ConstraintSystem &cs,
ArrayRef<Constraint *> constraints,
ConstraintLocator *locator) {
// Unwrap any disjunctions inside the disjunction constraint; we only allow
// disjunctions at the top level.
SmallVector<TypeVariableType *, 4> typeVars;
bool unwrappedAny = false;
SmallVector<Constraint *, 1> unwrapped;
unsigned index = 0;
for (auto constraint : constraints) {
// Gather type variables from this constraint.
gatherReferencedTypeVars(constraint, typeVars);
// If we have a nested disjunction, unwrap it.
if (constraint->getKind() == ConstraintKind::Disjunction) {
// If we haven't unwrapped anything before, copy all of the constraints
// we skipped.
if (!unwrappedAny) {
unwrapped.append(constraints.begin(), constraints.begin() + index);
unwrappedAny = true;
}
// Add all of the constraints in the disjunction.
unwrapped.append(constraint->getNestedConstraints().begin(),
constraint->getNestedConstraints().end());
} else if (unwrappedAny) {
// Since we unwrapped constraints before, add this constraint.
unwrapped.push_back(constraint);
}
++index;
}
// If we unwrapped anything, our list of constraints is the unwrapped list.
if (unwrappedAny)
constraints = unwrapped;
assert(!constraints.empty() && "Empty disjunction constraint");
// If there is a single constraint, this isn't a disjunction at all.
if (constraints.size() == 1)
return constraints.front();
// Create the disjunction constraint.
uniqueTypeVariables(typeVars);
unsigned size = sizeof(Constraint)
+ typeVars.size() * sizeof(TypeVariableType*);
void *mem = cs.getAllocator().Allocate(size, alignof(Constraint));
return new (mem) Constraint(ConstraintKind::Disjunction,
cs.allocateCopy(constraints), locator, typeVars);
}
void *Constraint::operator new(size_t bytes, ConstraintSystem& cs,
size_t alignment) {
return ::operator new (bytes, cs, alignment);
}