Files
swift-mirror/lib/Sema/CodeSynthesisDistributedActor.cpp
Konrad `ktoso` Malawski e650dc00df [Distributed] Distributed thunks take parameters as 'sending'
This is in order to avoid errors in complete concurrency checking mnode
in distributed funcs, or rather their thunks, as there is isolation
boundary crossing happening when we pass a value to a distributed func.

This is because as we do this, we pass it to a nonisolated thunk:

```
nonisolated func THUNK(param: Thing) {
  if remote {
    ...
  } else {
    await self.realFunc(param)
  }
}
```

So what happens here is that the Thing would become isolated to the
task and we get a bad isolation crossing as we pass it along to the
"real func".

Sending values into the distributed thunk is the right thing to do to
resolve this problem: `nonisolated func THUNK(param: sending Thing) {}`

Resolves rdar://126577527
2024-06-06 12:32:47 +09:00

1096 lines
41 KiB
C++

//===--- CodeSynthesisDistributedActor.cpp --------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "TypeCheckDistributed.h"
#include "CodeSynthesis.h"
#include "DerivedConformances.h"
#include "TypeChecker.h"
#include "swift/AST/ASTMangler.h"
#include "swift/AST/ASTPrinter.h"
#include "swift/AST/Availability.h"
#include "swift/AST/DistributedDecl.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/Expr.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/Initializer.h"
#include "swift/AST/NameLookupRequests.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/Basic/Defer.h"
#include "swift/ClangImporter/ClangModule.h"
#include "swift/Sema/ConstraintSystem.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
using namespace swift;
/******************************************************************************/
/************************ PROPERTY SYNTHESIS **********************************/
/******************************************************************************/
static VarDecl*
lookupDistributedActorProperty(NominalTypeDecl *decl, DeclName name) {
assert(decl && "decl was null");
auto &C = decl->getASTContext();
auto clazz = dyn_cast<ClassDecl>(decl);
if (!clazz)
return nullptr;
auto refs = decl->lookupDirect(name);
if (refs.size() != 1)
return nullptr;
auto var = dyn_cast<VarDecl>(refs.front());
if (!var)
return nullptr;
Type expectedType = Type();
if (name == C.Id_id) {
expectedType = getDistributedActorIDType(decl);
} else if (name == C.Id_actorSystem) {
expectedType = getDistributedActorSystemType(decl);
} else {
llvm_unreachable("Unexpected distributed actor property lookup!");
}
if (!expectedType)
return nullptr;
if (!var->getInterfaceType()->isEqual(expectedType))
return nullptr;
return var;
}
// Note: This would be nice to implement in DerivedConformanceDistributedActor,
// but we can't since those are lazily triggered and an implementation exists
// for the 'id' property because 'Identifiable.id' has an extension that impls
// it for ObjectIdentifier, and we have to instead emit this stored property.
//
// The "derived" mechanisms are not really geared towards emitting for
// what already has a witness.
static VarDecl *addImplicitDistributedActorIDProperty(
ClassDecl *nominal) {
if (!nominal)
return nullptr;
if (!nominal->isDistributedActor())
return nullptr;
auto &C = nominal->getASTContext();
// ==== Synthesize and add 'id' property to the actor decl
Type propertyType = getDistributedActorIDType(nominal);
auto *propDecl = new (C)
VarDecl(/*IsStatic*/false, VarDecl::Introducer::Let,
SourceLoc(), C.Id_id, nominal);
propDecl->setImplicit();
propDecl->setSynthesized();
propDecl->copyFormalAccessFrom(nominal, /*sourceIsParentContext*/ true);
propDecl->setInterfaceType(propertyType);
Pattern *propPat = NamedPattern::createImplicit(C, propDecl, propertyType);
propPat = TypedPattern::createImplicit(C, propPat, propertyType);
propPat->setType(propertyType);
PatternBindingDecl *pbDecl = PatternBindingDecl::createImplicit(
C, StaticSpellingKind::None, propPat, /*InitExpr*/ nullptr,
nominal);
// mark as nonisolated, allowing access to it from everywhere
propDecl->getAttrs().add(
new (C) NonisolatedAttr(/*unsafe=*/false, /*implicit=*/true));
// mark as @_compilerInitialized, since we synthesize the initializing
// assignment during SILGen.
propDecl->getAttrs().add(
new (C) CompilerInitializedAttr(/*IsImplicit=*/true));
// IMPORTANT: The `id` MUST be the first field of any distributed actor,
// because when we allocate remote proxy instances, we don't allocate memory
// for anything except the first two fields: id and actorSystem, so they
// MUST be those fields.
//
// Their specific order also matters, because it is enforced this way in IRGen
// and how we emit them in AST MUST match what IRGen expects or cross-module
// things could be using wrong offsets and manifest as reading trash memory on
// id or system accesses.
nominal->addMember(propDecl, /*hint=*/nullptr, /*insertAtHead=*/true);
nominal->addMember(pbDecl, /*hint=*/nullptr, /*insertAtHead=*/true);
return propDecl;
}
static VarDecl *addImplicitDistributedActorActorSystemProperty(
ClassDecl *nominal) {
if (!nominal)
return nullptr;
if (!nominal->isDistributedActor())
return nullptr;
auto &C = nominal->getASTContext();
// ==== Synthesize and add 'actorSystem' property to the actor decl
Type propertyType = getDistributedActorSystemType(nominal);
auto *propDecl = new (C)
VarDecl(/*IsStatic*/false, VarDecl::Introducer::Let,
SourceLoc(), C.Id_actorSystem, nominal);
propDecl->setImplicit();
propDecl->setSynthesized();
propDecl->copyFormalAccessFrom(nominal, /*sourceIsParentContext*/ true);
propDecl->setInterfaceType(propertyType);
Pattern *propPat = NamedPattern::createImplicit(C, propDecl, propertyType);
propPat = TypedPattern::createImplicit(C, propPat, propertyType);
propPat->setType(propertyType);
PatternBindingDecl *pbDecl = PatternBindingDecl::createImplicit(
C, StaticSpellingKind::None, propPat, /*InitExpr*/ nullptr,
nominal);
// mark as nonisolated, allowing access to it from everywhere
propDecl->getAttrs().add(
new (C) NonisolatedAttr(/*unsafe=*/false, /*implicit=*/true));
auto idProperty = nominal->getDistributedActorIDProperty();
// If the id was not yet synthesized, we need to ensure that eventually
// the order of fields will be: id, actorSystem (because IRGen needs the
// layouts to match with the AST we produce). We do this by inserting FIRST,
// and then as the ID gets synthesized, it'll also force FIRST and therefore
// the order will be okey -- ID and then system.
auto insertAtHead = idProperty == nullptr;
// IMPORTANT: The `id` MUST be the first field of any distributed actor.
// So we find the property and add the system AFTER it using the hint.
//
// If the `id` was not synthesized yet, we'll end up inserting at head,
// but the id synthesis will force itself to be FIRST anyway, so it works out.
nominal->addMember(propDecl, /*hint=*/idProperty, /*insertAtHead=*/insertAtHead);
nominal->addMember(pbDecl, /*hint=*/idProperty, /*insertAtHead=*/insertAtHead);
return propDecl;
}
/******************************************************************************/
/*********************** DISTRIBUTED THUNK SYNTHESIS **************************/
/******************************************************************************/
static void forwardParameters(AbstractFunctionDecl *afd,
SmallVectorImpl<Expr*> &forwardingParams) {
auto &C = afd->getASTContext();
for (auto param : *afd->getParameters()) {
forwardingParams.push_back(new (C) DeclRefExpr(
ConcreteDeclRef(param), DeclNameLoc(), /*implicit=*/true,
swift::AccessSemantics::Ordinary,
afd->mapTypeIntoContext(param->getInterfaceType())));
}
}
/// Mangle the target thunk in a way that we can look up the appropriate record.
static llvm::StringRef
mangleDistributedThunkForAccessorRecordName(
ASTContext &C, AbstractFunctionDecl *thunk) {
Mangle::ASTMangler mangler;
// default mangling
auto mangled =
C.AllocateCopy(mangler.mangleDistributedThunkRef(cast<FuncDecl>(thunk)));
return mangled;
}
static std::pair<BraceStmt *, bool>
deriveBodyDistributed_thunk(AbstractFunctionDecl *thunk, void *context) {
auto implicit = true;
ASTContext &C = thunk->getASTContext();
// mock locations, we're a thunk and don't really need detailed locations
const SourceLoc sloc = SourceLoc();
const DeclNameLoc dloc = DeclNameLoc();
auto func = static_cast<FuncDecl *>(context);
auto funcDC = func->getDeclContext();
assert(funcDC->getSelfNominalTypeDecl() &&
funcDC->getSelfNominalTypeDecl()->isDistributedActor() &&
"Distributed function must be part of distributed actor");
auto selfDecl = thunk->getImplicitSelfDecl();
selfDecl->getAttrs().add(new (C) KnownToBeLocalAttr(implicit));
// === return type
Type returnTy = func->getResultInterfaceType();
auto isVoidReturn = returnTy->isVoid();
// === Type:
StructDecl *RCT = C.getRemoteCallTargetDecl();
assert(RCT && "Missing RemoteCalLTarget declaration");
Type remoteCallTargetTy = RCT->getDeclaredInterfaceType();
// === __isRemoteActor(self)
ArgumentList *isRemoteArgs = ArgumentList::forImplicitSingle(
C, /*label=*/Identifier(), new (C) DeclRefExpr(selfDecl, dloc, implicit));
FuncDecl *isRemoteFn = C.getIsRemoteDistributedActor();
assert(isRemoteFn && "Could not find 'is remote' function, is the "
"'_Distributed' module available?");
auto isRemoteDeclRef =
UnresolvedDeclRefExpr::createImplicit(C, isRemoteFn->getName());
auto isRemote =
CallExpr::createImplicit(C, isRemoteDeclRef, isRemoteArgs);
// === local branch ----------------------------------------------------------
BraceStmt *localBranchStmt;
if (auto accessor = dyn_cast<AccessorDecl>(func)) {
auto selfRefExpr = new (C) DeclRefExpr(selfDecl, dloc, implicit);
auto var = accessor->getStorage();
Expr *localPropertyAccess = new (C) MemberRefExpr(
selfRefExpr, sloc, ConcreteDeclRef(var), dloc, implicit);
localPropertyAccess =
AwaitExpr::createImplicit(C, sloc, localPropertyAccess);
if (accessor->hasThrows()) {
localPropertyAccess =
TryExpr::createImplicit(C, sloc, localPropertyAccess);
}
auto returnLocalPropertyAccess =
ReturnStmt::createImplicit(C, sloc, localPropertyAccess);
localBranchStmt =
BraceStmt::create(C, sloc, {returnLocalPropertyAccess}, sloc, implicit);
} else {
// normal function
auto selfRefExpr = new (C) DeclRefExpr(selfDecl, dloc, implicit);
// -- forward arguments
SmallVector<Expr*, 4> forwardingParams;
forwardParameters(thunk, forwardingParams);
auto funcRef = UnresolvedDeclRefExpr::createImplicit(C, func->getName());
auto forwardingArgList = ArgumentList::forImplicitCallTo(funcRef->getName(), forwardingParams, C);
auto funcDeclRef =
UnresolvedDotExpr::createImplicit(C, selfRefExpr, func->getBaseName());
Expr *localFuncCall = CallExpr::createImplicit(C, funcDeclRef, forwardingArgList);
localFuncCall = AwaitExpr::createImplicit(C, sloc, localFuncCall);
if (func->hasThrows()) {
localFuncCall = TryExpr::createImplicit(C, sloc, localFuncCall);
}
auto returnLocalFuncCall =
ReturnStmt::createImplicit(C, sloc, localFuncCall);
localBranchStmt =
BraceStmt::create(C, sloc, {returnLocalFuncCall}, sloc, implicit);
}
// === remote branch --------------------------------------------------------
SmallVector<ASTNode, 8> remoteBranchStmts;
// --- self.actorSystem
auto systemRefExpr =
UnresolvedDotExpr::createImplicit(
C, new (C) DeclRefExpr(selfDecl, dloc, implicit), // TODO: make createImplicit
C.Id_actorSystem);
auto *systemVar = new (C) VarDecl(
/*isStatic=*/false, VarDecl::Introducer::Let, sloc, C.Id_system, thunk);
systemVar->setImplicit();
systemVar->setSynthesized();
Pattern *systemPattern = NamedPattern::createImplicit(C, systemVar);
auto systemPB = PatternBindingDecl::createImplicit(
C, StaticSpellingKind::None, systemPattern, systemRefExpr,
thunk);
remoteBranchStmts.push_back(systemPB);
remoteBranchStmts.push_back(systemVar);
// --- invocationEncoder = system.makeInvocationEncoder()
auto *invocationVar =
new (C) VarDecl(/*isStatic=*/false, VarDecl::Introducer::Var, sloc,
C.Id_invocation, thunk);
invocationVar->setImplicit();
invocationVar->setSynthesized();
{
Pattern *invocationPattern = NamedPattern::createImplicit(C, invocationVar);
auto makeInvocationExpr = UnresolvedDotExpr::createImplicit(
C, new (C) DeclRefExpr(ConcreteDeclRef(systemVar), dloc, implicit),
DeclName(C.Id_makeInvocationEncoder));
auto *makeInvocationArgs = ArgumentList::createImplicit(C, {});
auto makeInvocationCallExpr =
CallExpr::createImplicit(C, makeInvocationExpr, makeInvocationArgs);
makeInvocationCallExpr->setThrows(nullptr);
auto invocationEncoderPB = PatternBindingDecl::createImplicit(
C, StaticSpellingKind::None, invocationPattern, makeInvocationCallExpr,
thunk);
remoteBranchStmts.push_back(invocationEncoderPB);
remoteBranchStmts.push_back(invocationVar);
}
// --- Recording invocation details
// -- recordGenericSubstitution(s)
if (auto genEnv = thunk->getGenericEnvironment()) {
auto recordGenericSubstitutionName =
DeclName(C, C.Id_recordGenericSubstitution,
/*labels=*/{Identifier()});
auto recordGenericSubstitutionDeclRef =
UnresolvedDeclRefExpr::createImplicit(C, recordGenericSubstitutionName);
for (auto genParamType : genEnv->getGenericParams()) {
auto tyExpr = TypeExpr::createImplicit(genEnv->mapTypeIntoContext(genParamType), C);
auto subTypeExpr = new (C) DotSelfExpr(
tyExpr,
sloc, sloc, tyExpr->getType());
auto recordGenericSubArgsList =
ArgumentList::forImplicitCallTo(
recordGenericSubstitutionDeclRef->getName(),
{subTypeExpr},
C);
Expr *recordGenericSub = CallExpr::createImplicit(
C,
UnresolvedDotExpr::createImplicit(
C,
new (C) DeclRefExpr(ConcreteDeclRef(invocationVar), dloc,
implicit, AccessSemantics::Ordinary),
recordGenericSubstitutionName),
recordGenericSubArgsList);
recordGenericSub = TryExpr::createImplicit(C, sloc, recordGenericSub);
remoteBranchStmts.push_back(recordGenericSub);
}
}
// -- recordArgument(s)
{
auto recordArgumentName = DeclName(C, C.Id_recordArgument,
/*labels=*/{Identifier()});
if (auto params = thunk->getParameters()) {
if (params->begin())
for (auto param : *params) {
auto argumentName = param->getArgumentName().str();
LiteralExpr *argumentLabelArg;
if (argumentName.empty()) {
argumentLabelArg = new (C) NilLiteralExpr(sloc, implicit);
} else {
argumentLabelArg =
new (C) StringLiteralExpr(argumentName, SourceRange(), implicit);
}
auto parameterName = param->getParameterName().str();
// --- Prepare the RemoteCallArgument<Value> for the argument
auto argumentVarName = C.getIdentifier("_" + parameterName.str());
StructDecl *RCA = C.getRemoteCallArgumentDecl();
VarDecl *callArgVar =
new (C) VarDecl(/*isStatic=*/false, VarDecl::Introducer::Let, sloc,
argumentVarName, thunk);
callArgVar->setImplicit();
callArgVar->setSynthesized();
Pattern *callArgPattern = NamedPattern::createImplicit(C, callArgVar);
auto remoteCallArgumentInitDecl =
RCA->getDistributedRemoteCallArgumentInitFunction();
auto boundRCAType = BoundGenericType::get(
RCA, Type(), {thunk->mapTypeIntoContext(param->getInterfaceType())});
auto remoteCallArgumentInitDeclRef =
TypeExpr::createImplicit(boundRCAType, C);
auto initCallArgArgs = ArgumentList::forImplicitCallTo(
DeclNameRef(remoteCallArgumentInitDecl->getEffectiveFullName()),
{
// label:
argumentLabelArg,
// name:
new (C) StringLiteralExpr(parameterName, SourceRange(), implicit),
// _ argument:
new (C) DeclRefExpr(
ConcreteDeclRef(param), dloc, implicit,
AccessSemantics::Ordinary,
thunk->mapTypeIntoContext(param->getInterfaceType()))
},
C);
auto initCallArgCallExpr =
CallExpr::createImplicit(C, remoteCallArgumentInitDeclRef, initCallArgArgs);
auto callArgPB = PatternBindingDecl::createImplicit(
C, StaticSpellingKind::None, callArgPattern, initCallArgCallExpr, thunk);
remoteBranchStmts.push_back(callArgPB);
remoteBranchStmts.push_back(callArgVar);
/// --- Pass the argumentRepr to the recordArgument function
auto recordArgArgsList = ArgumentList::forImplicitCallTo(
DeclNameRef(recordArgumentName),
{new (C) DeclRefExpr(ConcreteDeclRef(callArgVar), dloc, implicit,
AccessSemantics::Ordinary)},
C);
auto tryRecordArgExpr = TryExpr::createImplicit(
C, sloc,
CallExpr::createImplicit(
C,
UnresolvedDotExpr::createImplicit(
C,
new (C) DeclRefExpr(ConcreteDeclRef(invocationVar), dloc,
implicit, AccessSemantics::Ordinary),
recordArgumentName),
recordArgArgsList));
remoteBranchStmts.push_back(tryRecordArgExpr);
}
}
}
// -- recordErrorType
if (func->hasThrows()) {
auto recordErrorTypeName = DeclName(C, C.Id_recordErrorType,
/*labels=*/{Identifier()});
// Error.self
auto errorDecl = C.getErrorDecl();
auto *errorTypeExpr = new (C) DotSelfExpr(
UnresolvedDeclRefExpr::createImplicit(C, errorDecl->getName()), sloc,
sloc, errorDecl->getDeclaredInterfaceType());
auto recordArgsList = ArgumentList::forImplicitCallTo(
DeclNameRef(recordErrorTypeName), {errorTypeExpr}, C);
auto tryRecordErrorTyExpr = TryExpr::createImplicit(
C, sloc,
CallExpr::createImplicit(
C,
UnresolvedDotExpr::createImplicit(
C,
new (C) DeclRefExpr(ConcreteDeclRef(invocationVar), dloc,
implicit, AccessSemantics::Ordinary),
recordErrorTypeName),
recordArgsList));
remoteBranchStmts.push_back(tryRecordErrorTyExpr);
}
// -- recordReturnType
if (!isVoidReturn) {
auto recordReturnTypeName = DeclName(C, C.Id_recordReturnType,
/*labels=*/{Identifier()});
// Result.self
// Watch out and always map into thunk context
auto resultType = thunk->mapTypeIntoContext(func->getResultInterfaceType());
auto *metaTypeRef = TypeExpr::createImplicit(resultType, C);
auto *resultTypeExpr =
new (C) DotSelfExpr(metaTypeRef, sloc, sloc, resultType);
auto recordArgsList = ArgumentList::forImplicitCallTo(
DeclNameRef(recordReturnTypeName), {resultTypeExpr}, C);
auto tryRecordReturnTyExpr = TryExpr::createImplicit(
C, sloc,
CallExpr::createImplicit(
C,
UnresolvedDotExpr::createImplicit(
C,
new (C) DeclRefExpr(ConcreteDeclRef(invocationVar), dloc,
implicit, AccessSemantics::Ordinary),
recordReturnTypeName),
recordArgsList));
remoteBranchStmts.push_back(tryRecordReturnTyExpr);
}
// -- doneRecording
{
DeclName doneRecordingName(C.Id_doneRecording);
auto argsList =
ArgumentList::forImplicitCallTo(DeclNameRef(doneRecordingName), {}, C);
auto tryDoneRecordingExpr = TryExpr::createImplicit(
C, sloc,
CallExpr::createImplicit(
C,
UnresolvedDotExpr::createImplicit(
C,
new (C) DeclRefExpr(ConcreteDeclRef(invocationVar), dloc,
implicit, AccessSemantics::Ordinary,
invocationVar->getInterfaceType()),
doneRecordingName),
argsList));
remoteBranchStmts.push_back(tryDoneRecordingExpr);
}
// === Prepare the 'RemoteCallTarget'
auto *targetVar = new (C) VarDecl(
/*isStatic=*/false, VarDecl::Introducer::Let, sloc, C.Id_target, thunk);
{
// --- Mangle the thunk name
auto mangledAccessorRecordName =
mangleDistributedThunkForAccessorRecordName(C, thunk);
StringLiteralExpr *mangledTargetStringLiteral =
new (C) StringLiteralExpr(mangledAccessorRecordName,
SourceRange(), implicit);
// --- let target = RemoteCallTarget(<mangled name>)
targetVar->setInterfaceType(remoteCallTargetTy);
targetVar->setImplicit();
targetVar->setSynthesized();
Pattern *targetPattern = NamedPattern::createImplicit(C, targetVar);
auto remoteCallTargetInitDecl =
RCT->getDistributedRemoteCallTargetInitFunction();
auto remoteCallTargetInitDeclRef = UnresolvedDeclRefExpr::createImplicit(
C, remoteCallTargetInitDecl->getEffectiveFullName());
auto initTargetExpr = UnresolvedDeclRefExpr::createImplicit(
C, RCT->getName());
auto initTargetArgs = ArgumentList::forImplicitCallTo(
remoteCallTargetInitDeclRef->getName(),
{mangledTargetStringLiteral}, C);
auto initTargetCallExpr =
CallExpr::createImplicit(C, initTargetExpr, initTargetArgs);
auto targetPB = PatternBindingDecl::createImplicit(
C, StaticSpellingKind::None, targetPattern, initTargetCallExpr, thunk);
remoteBranchStmts.push_back(targetPB);
remoteBranchStmts.push_back(targetVar);
}
// === Make the 'remoteCall(Void)(...)'
{
DeclName remoteCallName;
if (isVoidReturn) {
remoteCallName =
DeclName(C, C.Id_remoteCallVoid,
{C.Id_on, C.Id_target, C.Id_invocation, C.Id_throwing});
} else {
remoteCallName = DeclName(C, C.Id_remoteCall,
{C.Id_on, C.Id_target, C.Id_invocation,
C.Id_throwing, C.Id_returning});
}
auto systemRemoteCallRef = UnresolvedDotExpr::createImplicit(
C, new (C) DeclRefExpr(ConcreteDeclRef(systemVar), dloc, implicit),
remoteCallName);
SmallVector<Expr *, 5> args;
// -- on actor: Act
args.push_back(new (C) DeclRefExpr(selfDecl, dloc, implicit,
swift::AccessSemantics::Ordinary,
selfDecl->getInterfaceType()));
// -- target: RemoteCallTarget
args.push_back(new (C) DeclRefExpr(ConcreteDeclRef(targetVar), dloc, implicit,
AccessSemantics::Ordinary,
RCT->getDeclaredInterfaceType()));
// -- invocation: inout InvocationEncoder
args.push_back(new (C) InOutExpr(
sloc,
new (C) DeclRefExpr(ConcreteDeclRef(invocationVar), dloc, implicit,
AccessSemantics::Ordinary),
Type(), implicit));
// -- throwing: Err.Type
if (func->hasThrows()) {
// Error.self
auto errorDecl = C.getErrorDecl();
auto *errorTypeExpr = new (C) DotSelfExpr(
UnresolvedDeclRefExpr::createImplicit(C, errorDecl->getName()), sloc,
sloc, errorDecl->getDeclaredInterfaceType());
args.push_back(errorTypeExpr);
} else {
// Never.self
auto neverDecl = C.getNeverDecl();
auto *neverTypeExpr = new (C) DotSelfExpr(
UnresolvedDeclRefExpr::createImplicit(C, neverDecl->getName()), sloc,
sloc, neverDecl->getDeclaredInterfaceType());
args.push_back(neverTypeExpr);
}
// -- returning: Res.Type
if (!isVoidReturn) {
// Result.self
auto resultType =
func->mapTypeIntoContext(func->getResultInterfaceType());
auto *metaTypeRef = TypeExpr::createImplicit(resultType, C);
auto *resultTypeExpr =
new (C) DotSelfExpr(metaTypeRef, sloc, sloc, resultType);
args.push_back(resultTypeExpr);
}
assert(args.size() == (isVoidReturn ? 4 : 5));
auto remoteCallArgs = ArgumentList::forImplicitCallTo(
systemRemoteCallRef->getName(), args, C);
Expr *remoteCallExpr =
CallExpr::createImplicit(C, systemRemoteCallRef, remoteCallArgs);
remoteCallExpr = AwaitExpr::createImplicit(C, sloc, remoteCallExpr);
remoteCallExpr = TryExpr::createImplicit(C, sloc, remoteCallExpr);
auto returnRemoteCall = ReturnStmt::createImplicit(C, sloc, remoteCallExpr);
remoteBranchStmts.push_back(returnRemoteCall);
}
// ---------------------------------------------------------------------------
auto remoteBranchStmt =
BraceStmt::create(C, sloc, remoteBranchStmts, sloc, implicit);
// ---------------------------------------------------------------------------
// === if (isRemote(...) <remote branch> else <local branch>
auto ifStmt = new (C) IfStmt(sloc, /*condition=*/isRemote,
/*then=*/remoteBranchStmt, sloc,
/*else=*/localBranchStmt, implicit, C);
auto body = BraceStmt::create(C, sloc, {ifStmt}, sloc, implicit);
return {body, /*isTypeChecked=*/false};
}
/// Create a new FuncDecl that has the same signature as the passed in func.
/// This is used both to create stub witnesses as well as distributed thunks.
///
/// \param DC The declaration context of the newly created function
static FuncDecl *createSameSignatureDistributedThunkDecl(DeclContext *DC,
FuncDecl *func) {
auto &C = func->getASTContext();
// --- Prepare generic parameters
GenericParamList *genericParamList = nullptr;
if (auto genericParams = func->getGenericParams()) {
genericParamList = genericParams->clone(DC);
}
GenericSignature baseSignature = func->getGenericSignature();
// --- Prepare parameters
auto funcParams = func->getParameters();
SmallVector<ParamDecl*, 2> paramDecls;
for (unsigned i : indices(*func->getParameters())) {
auto funcParam = funcParams->get(i);
auto paramName = funcParam->getParameterName();
// If internal name is empty it could only mean either
// `_:` or `x _: ...`, so let's auto-generate a name
// to be used in the body of a thunk.
if (paramName.empty()) {
paramName = C.getIdentifier("p" + llvm::utostr(i));
}
auto paramDecl = new (C)
ParamDecl(SourceLoc(),
/*argumentNameLoc=*/SourceLoc(), funcParam->getArgumentName(),
/*parameterNameLoc=*/SourceLoc(), paramName, DC);
paramDecl->setImplicit();
paramDecl->setSending();
paramDecl->setSpecifier(funcParam->getSpecifier());
paramDecl->setInterfaceType(funcParam->getInterfaceType());
paramDecls.push_back(paramDecl);
}
ParameterList *params = ParameterList::create(C, paramDecls);
FuncDecl *thunk;
if (auto accessor = dyn_cast<AccessorDecl>(func)) {
auto accessorThunk = AccessorDecl::createImplicit(
C, AccessorKind::DistributedGet,
/*storage=*/accessor->getStorage(),
/*async=*/true, /*throws=*/true, // since it's a distributed thunk
/*thrownType=*/TypeLoc::withoutLoc(Type()),
func->getResultInterfaceType(),
DC);
accessorThunk->setParameters(params);
// An accessor does not have a name; the `var` does though,
// and we'll be mangling the accessor based on the Storage name (the var)
thunk = accessorThunk;
} else {
// Let's use the name of a 'distributed func'
DeclName thunkName = func->getName();
thunk = FuncDecl::createImplicit(
C, swift::StaticSpellingKind::None,
thunkName, SourceLoc(),
/*async=*/true, /*throws=*/true, // since it's a distributed thunk
/*thrownType=*/Type(),
genericParamList,
params, func->getResultInterfaceType(), DC);
}
thunk->setSynthesized(true);
if (isa<ClassDecl>(DC))
thunk->getAttrs().add(new (C) FinalAttr(/*isImplicit=*/true));
thunk->setGenericSignature(baseSignature);
thunk->copyFormalAccessFrom(func, /*sourceIsParentContext=*/false);
thunk->setSynthesized(true);
thunk->setDistributedThunk(true);
thunk->getAttrs().add(
new (C) NonisolatedAttr(/*unsafe=*/false, /*implicit=*/true));
return thunk;
}
static FuncDecl *createDistributedThunkFunction(FuncDecl *func) {
auto DC = func->getDeclContext();
FuncDecl *thunk =
createSameSignatureDistributedThunkDecl(DC, func);
assert(thunk && "couldn't create a distributed thunk");
// Protocol requirements don't have bodies.
if (func->hasBody())
thunk->setBodySynthesizer(deriveBodyDistributed_thunk, func);
return thunk;
}
/******************************************************************************/
/*********************** CODABLE CONFORMANCE **********************************/
/******************************************************************************/
static NormalProtocolConformance*
addDistributedActorCodableConformance(
ClassDecl *actor, ProtocolDecl *proto) {
assert(proto->isSpecificProtocol(swift::KnownProtocolKind::Decodable) ||
proto->isSpecificProtocol(swift::KnownProtocolKind::Encodable));
auto &C = actor->getASTContext();
auto module = actor->getParentModule();
// === Only Distributed actors can gain this implicit conformance
if (!actor->isDistributedActor()) {
return nullptr;
}
// === Does the actor explicitly conform to the protocol already?
auto explicitConformance =
module->lookupConformance(actor->getInterfaceType(), proto);
if (!explicitConformance.isInvalid()) {
// ok, it was conformed explicitly -- let's not synthesize;
return nullptr;
}
// Check whether we can infer conformance at all.
if (auto *file = dyn_cast<FileUnit>(actor->getModuleScopeContext())) {
switch (file->getKind()) {
case FileUnitKind::Source:
// Check what kind of source file we have.
if (auto sourceFile = actor->getParentSourceFile()) {
switch (sourceFile->Kind) {
case SourceFileKind::Interface:
return nullptr;
case SourceFileKind::Library:
case SourceFileKind::Main:
case SourceFileKind::MacroExpansion:
case SourceFileKind::SIL:
case SourceFileKind::DefaultArgument:
break;
}
}
break;
case FileUnitKind::Builtin:
case FileUnitKind::SerializedAST:
case FileUnitKind::Synthesized:
// Explicitly-handled modules don't infer Sendable conformances.
return nullptr;
case FileUnitKind::ClangModule:
case FileUnitKind::DWARFModule:
// Infer conformances for imported modules.
break;
}
} else {
return nullptr;
}
auto conformance = C.getNormalConformance(
actor->getDeclaredInterfaceType(), proto,
actor->getLoc(), /*dc=*/actor,
ProtocolConformanceState::Incomplete,
/*isUnchecked=*/false,
/*isPreconcurrency=*/false);
conformance->setSourceKindAndImplyingConformance(
ConformanceEntryKind::Synthesized, nullptr);
actor->registerProtocolConformance(conformance, /*synthesized=*/true);
return conformance;
}
/******************************************************************************/
/******************************************************************************/
void swift::assertRequiredSynthesizedPropertyOrder(ASTContext &Context,
NominalTypeDecl *nominal) {
#ifndef NDEBUG
if (auto id = nominal->getDistributedActorIDProperty()) {
if (auto system = nominal->getDistributedActorSystemProperty()) {
if (auto classDecl = dyn_cast<ClassDecl>(nominal)) {
if (auto unownedExecutor = classDecl->getUnownedExecutorProperty()) {
int idIdx, actorSystemIdx, unownedExecutorIdx = 0;
int idx = 0;
for (auto member : nominal->getMembers()) {
if (auto binding = dyn_cast<PatternBindingDecl>(member)) {
if (binding->getSingleVar()->getName() == Context.Id_id) {
idIdx = idx;
} else if (binding->getSingleVar()->getName() ==
Context.Id_actorSystem) {
actorSystemIdx = idx;
} else if (binding->getSingleVar()->getName() ==
Context.Id_unownedExecutor) {
unownedExecutorIdx = idx;
}
idx += 1;
}
}
if (idIdx + actorSystemIdx + unownedExecutorIdx >= 0 + 1 + 2) {
// we have found all the necessary fields, let's assert their order
assert(idIdx < actorSystemIdx < unownedExecutorIdx &&
"order of fields MUST be exact.");
}
}
}
}
}
#endif
}
static bool canSynthesizeDistributedThunk(AbstractFunctionDecl *distributedTarget) {
// `distributed` protocol requirements are allowed without additional checks.
if (isa<ProtocolDecl>(distributedTarget->getDeclContext()))
return true;
if (getConcreteReplacementForProtocolActorSystemType(distributedTarget)) {
return true;
}
auto serializationTy =
getDistributedActorSerializationType(distributedTarget->getDeclContext());
return serializationTy && !serializationTy->hasDependentMember();
}
/******************************************************************************/
/*********************** SYNTHESIS ENTRY POINTS *******************************/
/******************************************************************************/
FuncDecl *GetDistributedThunkRequest::evaluate(Evaluator &evaluator,
Originator originator) const {
AbstractFunctionDecl *distributedTarget = nullptr;
if (auto *storage = originator.dyn_cast<AbstractStorageDecl *>()) {
if (!storage->isDistributed())
return nullptr;
if (auto *var = dyn_cast<VarDecl>(storage)) {
if (checkDistributedActorProperty(var, /*diagnose=*/false))
return nullptr;
distributedTarget = var->getAccessor(AccessorKind::Get);
} else {
llvm_unreachable("unsupported storage kind");
}
} else {
distributedTarget = originator.get<AbstractFunctionDecl *>();
if (!distributedTarget->isDistributed())
return nullptr;
}
assert(distributedTarget);
// This evaluation type-check by now was already computed and cached;
// We need to check in order to avoid emitting a THUNK for a distributed func
// which had errors; as the thunk then may also cause un-addressable issues and confusion.
if (swift::checkDistributedFunction(distributedTarget)) {
return nullptr;
}
auto &C = distributedTarget->getASTContext();
if (!canSynthesizeDistributedThunk(distributedTarget)) {
return nullptr;
}
// If the target function signature has errors, or if it is illegal in other
// ways, such as e.g. parameters not conforming to SerializationRequirement,
// we must avoid synthesis of the thunk because it'd also have errors,
// giving an ugly user experience (errors in implicit code).
if (distributedTarget->getInterfaceType()->hasError() ||
(!isa<AccessorDecl>(distributedTarget) &&
checkDistributedFunction(distributedTarget))) {
return nullptr;
}
if (auto func = dyn_cast<FuncDecl>(distributedTarget)) {
// not via `ensureDistributedModuleLoaded` to avoid generating a warning,
// we won't be emitting the offending decl after all.
if (!C.getLoadedModule(C.Id_Distributed))
return nullptr;
// --- Prepare the "distributed thunk" which does the "maybe remote" dance:
return createDistributedThunkFunction(func);
}
llvm_unreachable("Unable to synthesize distributed thunk");
}
VarDecl *GetDistributedActorIDPropertyRequest::evaluate(
Evaluator &evaluator, NominalTypeDecl *actor) const {
if (!actor->isDistributedActor())
return nullptr;
auto &C = actor->getASTContext();
// not via `ensureDistributedModuleLoaded` to avoid generating a warning,
// we won't be emitting the offending decl after all.
if (!C.getLoadedModule(C.Id_Distributed))
return nullptr;
auto classDecl = dyn_cast<ClassDecl>(actor);
if (!classDecl)
return nullptr;
// We may enter this request multiple times, e.g. in multi-file projects,
// so in order to avoid synthesizing a property many times, first perform
// a lookup and return if it already exists.
if (auto existingProp = lookupDistributedActorProperty(classDecl, C.Id_id)) {
return existingProp;
}
return addImplicitDistributedActorIDProperty(classDecl);
}
VarDecl *GetDistributedActorSystemPropertyRequest::evaluate(
Evaluator &evaluator, NominalTypeDecl *nominal) const {
auto &C = nominal->getASTContext();
auto module = nominal->getParentModule();
auto DAS = C.getDistributedActorSystemDecl();
// not via `ensureDistributedModuleLoaded` to avoid generating a warning,
// we won't be emitting the offending decl after all.
if (!C.getLoadedModule(C.Id_Distributed))
return nullptr;
if (!nominal->isDistributedActor())
return nullptr;
if (auto proto = dyn_cast<ProtocolDecl>(nominal)) {
auto DistributedActorProto = C.getDistributedActorDecl();
for (auto system : DistributedActorProto->lookupDirect(C.Id_actorSystem)) {
if (auto var = dyn_cast<VarDecl>(system)) {
auto conformance = module->checkConformance(
proto->mapTypeIntoContext(var->getInterfaceType()),
DAS);
if (conformance.isInvalid())
continue;
return var;
}
}
return nullptr;
}
auto classDecl = dyn_cast<ClassDecl>(nominal);
if (!classDecl)
return nullptr;
// We may be triggered after synthesis was handled via `DerivedConformances`,
// in which case we should locate the existing property, rather than add
// another one. Generally derived conformances are triggered early and are right
// but for some reason sometimes we get a request before synthesis was triggered
// there... so this is to workaround that issue, and ensure we're always
// synthesising correctly, regardless of entry-point.
if (auto existingProp = lookupDistributedActorProperty(classDecl, C.Id_actorSystem)) {
return existingProp;
}
return addImplicitDistributedActorActorSystemProperty(classDecl);
}
NormalProtocolConformance *GetDistributedActorImplicitCodableRequest::evaluate(
Evaluator &evaluator, NominalTypeDecl *nominal,
KnownProtocolKind protoKind) const {
assert(nominal->isDistributedActor());
assert(protoKind == KnownProtocolKind::Encodable ||
protoKind == KnownProtocolKind::Decodable);
auto &C = nominal->getASTContext();
// not via `ensureDistributedModuleLoaded` to avoid generating a warning,
// we won't be emitting the offending decl after all.
if (!C.getLoadedModule(C.Id_Distributed))
return nullptr;
auto classDecl = dyn_cast<ClassDecl>(nominal);
if (!classDecl) {
// we only synthesize the conformance for concrete actors
return nullptr;
}
return addDistributedActorCodableConformance(classDecl,
C.getProtocol(protoKind));
}
bool CanSynthesizeDistributedActorCodableConformanceRequest::evaluate(
Evaluator &evaluator, NominalTypeDecl *actor) const {
if (actor && !isa<ClassDecl>(actor))
return false;
if (!actor->isDistributedActor())
return false;
auto systemTy = getConcreteReplacementForProtocolActorSystemType(actor);
if (!systemTy)
return false;
if (!systemTy->getAnyNominal())
return false;
auto idTy = getDistributedActorSystemActorIDType(systemTy->getAnyNominal());
if (!idTy)
return false;
return TypeChecker::conformsToKnownProtocol(
idTy, KnownProtocolKind::Decodable, actor->getParentModule()) &&
TypeChecker::conformsToKnownProtocol(
idTy, KnownProtocolKind::Encodable, actor->getParentModule());
}
NormalProtocolConformance *
GetDistributedActorAsActorConformanceRequest::evaluate(
Evaluator &evaluator, ProtocolDecl *distributedActorProto) const {
auto &ctx = distributedActorProto->getASTContext();
auto swiftModule = ctx.getStdlibModule();
auto actorProto = ctx.getProtocol(KnownProtocolKind::Actor);
auto ext = findDistributedActorAsActorExtension(
distributedActorProto, swiftModule);
if (!ext)
return nullptr;
auto genericParam = GenericTypeParamType::get(/*isParameterPack=*/false,
/*depth=*/0, /*index=*/0, ctx);
auto distributedActorAsActorConformance = ctx.getNormalConformance(
Type(genericParam), actorProto, SourceLoc(), ext,
ProtocolConformanceState::Incomplete, /*isUnchecked=*/false,
/*isPreconcurrency=*/false);
// NOTE: Normally we "register" a conformance, but here we don't
// because we cannot (currently) register them in a protocol,
// since they do not have conformance tables.
return distributedActorAsActorConformance;
}