mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
Also remove some unnecessary #includes from DependencyCollector.h, which necessitated adding #includes in various other files.
494 lines
17 KiB
C++
494 lines
17 KiB
C++
//===--- BasicBlockUtils.cpp - Utilities for SILBasicBlock ----------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/SIL/BasicBlockUtils.h"
|
|
#include "swift/Basic/Defer.h"
|
|
#include "swift/Basic/STLExtras.h"
|
|
#include "swift/SIL/Dominance.h"
|
|
#include "swift/SIL/LoopInfo.h"
|
|
#include "swift/SIL/SILArgument.h"
|
|
#include "swift/SIL/SILBasicBlock.h"
|
|
#include "swift/SIL/SILBuilder.h"
|
|
#include "swift/SIL/SILFunction.h"
|
|
#include "swift/SIL/TerminatorUtils.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
|
|
using namespace swift;
|
|
|
|
static bool hasBranchArguments(TermInst *T, unsigned edgeIdx) {
|
|
if (auto *BI = dyn_cast<BranchInst>(T)) {
|
|
assert(edgeIdx == 0);
|
|
return BI->getNumArgs() != 0;
|
|
}
|
|
if (auto CBI = dyn_cast<CondBranchInst>(T)) {
|
|
assert(edgeIdx <= 1);
|
|
return edgeIdx == CondBranchInst::TrueIdx ? !CBI->getTrueArgs().empty()
|
|
: !CBI->getFalseArgs().empty();
|
|
}
|
|
// No other terminator have branch arguments.
|
|
return false;
|
|
}
|
|
|
|
void swift::changeBranchTarget(TermInst *T, unsigned edgeIdx,
|
|
SILBasicBlock *newDest, bool preserveArgs) {
|
|
// In many cases, we can just rewrite the successor in place.
|
|
if (preserveArgs || !hasBranchArguments(T, edgeIdx)) {
|
|
T->getSuccessors()[edgeIdx] = newDest;
|
|
return;
|
|
}
|
|
|
|
// Otherwise, we have to build a new branch instruction.
|
|
SILBuilderWithScope B(T);
|
|
|
|
switch (T->getTermKind()) {
|
|
// Only Branch and CondBranch may have arguments.
|
|
case TermKind::BranchInst: {
|
|
auto *BI = cast<BranchInst>(T);
|
|
SmallVector<SILValue, 8> args;
|
|
if (preserveArgs) {
|
|
for (auto arg : BI->getArgs())
|
|
args.push_back(arg);
|
|
}
|
|
B.createBranch(T->getLoc(), newDest, args);
|
|
BI->dropAllReferences();
|
|
BI->eraseFromParent();
|
|
return;
|
|
}
|
|
|
|
case TermKind::CondBranchInst: {
|
|
auto CBI = cast<CondBranchInst>(T);
|
|
SILBasicBlock *trueDest = CBI->getTrueBB();
|
|
SILBasicBlock *falseDest = CBI->getFalseBB();
|
|
|
|
SmallVector<SILValue, 8> trueArgs;
|
|
SmallVector<SILValue, 8> falseArgs;
|
|
if (edgeIdx == CondBranchInst::FalseIdx) {
|
|
falseDest = newDest;
|
|
for (auto arg : CBI->getTrueArgs())
|
|
trueArgs.push_back(arg);
|
|
} else {
|
|
trueDest = newDest;
|
|
for (auto arg : CBI->getFalseArgs())
|
|
falseArgs.push_back(arg);
|
|
}
|
|
|
|
B.createCondBranch(CBI->getLoc(), CBI->getCondition(), trueDest, trueArgs,
|
|
falseDest, falseArgs, CBI->getTrueBBCount(),
|
|
CBI->getFalseBBCount());
|
|
CBI->dropAllReferences();
|
|
CBI->eraseFromParent();
|
|
return;
|
|
}
|
|
|
|
default:
|
|
llvm_unreachable("only branch and cond_branch have branch arguments");
|
|
}
|
|
}
|
|
|
|
template <class SwitchInstTy>
|
|
static SILBasicBlock *getNthEdgeBlock(SwitchInstTy *S, unsigned edgeIdx) {
|
|
if (S->getNumCases() == edgeIdx)
|
|
return S->getDefaultBB();
|
|
return S->getCase(edgeIdx).second;
|
|
}
|
|
|
|
static SILBasicBlock *getNthEdgeBlock(SwitchEnumTermInst S, unsigned edgeIdx) {
|
|
if (S.getNumCases() == edgeIdx)
|
|
return S.getDefaultBB();
|
|
return S.getCase(edgeIdx).second;
|
|
}
|
|
|
|
void swift::getEdgeArgs(TermInst *T, unsigned edgeIdx, SILBasicBlock *newEdgeBB,
|
|
llvm::SmallVectorImpl<SILValue> &args) {
|
|
switch (T->getKind()) {
|
|
case SILInstructionKind::BranchInst: {
|
|
auto *B = cast<BranchInst>(T);
|
|
for (auto V : B->getArgs())
|
|
args.push_back(V);
|
|
return;
|
|
}
|
|
|
|
case SILInstructionKind::CondBranchInst: {
|
|
auto CBI = cast<CondBranchInst>(T);
|
|
assert(edgeIdx < 2);
|
|
auto OpdArgs = edgeIdx ? CBI->getFalseArgs() : CBI->getTrueArgs();
|
|
for (auto V : OpdArgs)
|
|
args.push_back(V);
|
|
return;
|
|
}
|
|
|
|
case SILInstructionKind::AwaitAsyncContinuationInst: {
|
|
auto AACI = cast<AwaitAsyncContinuationInst>(T);
|
|
|
|
switch (edgeIdx) {
|
|
case 0:
|
|
// resume BB. this takes the resume value argument if the operand is
|
|
// GetAsyncContinuation, or no argument if the operand is
|
|
// GetAsyncContinuationAddr
|
|
if (auto contOperand = dyn_cast<GetAsyncContinuationInst>(AACI->getOperand())) {
|
|
args.push_back(newEdgeBB->createPhiArgument(
|
|
contOperand->getLoweredResumeType(), OwnershipKind::Owned));
|
|
}
|
|
return;
|
|
|
|
case 1: {
|
|
assert(AACI->getErrorBB());
|
|
auto &C = AACI->getFunction()->getASTContext();
|
|
auto errorTy = C.getErrorDecl()->getDeclaredType();
|
|
auto errorSILTy = SILType::getPrimitiveObjectType(errorTy->getCanonicalType());
|
|
// error BB. this takes the error value argument
|
|
args.push_back(
|
|
newEdgeBB->createPhiArgument(errorSILTy, OwnershipKind::Owned));
|
|
return;
|
|
}
|
|
|
|
default:
|
|
llvm_unreachable("only has at most two edges");
|
|
}
|
|
}
|
|
|
|
case SILInstructionKind::SwitchValueInst: {
|
|
auto SEI = cast<SwitchValueInst>(T);
|
|
auto *succBB = getNthEdgeBlock(SEI, edgeIdx);
|
|
assert(succBB->getNumArguments() == 0 && "Can't take an argument");
|
|
(void)succBB;
|
|
return;
|
|
}
|
|
|
|
// A switch_enum can implicitly pass the enum payload. We need to look at the
|
|
// destination block to figure this out.
|
|
case SILInstructionKind::SwitchEnumInst:
|
|
case SILInstructionKind::SwitchEnumAddrInst: {
|
|
SwitchEnumTermInst branch(T);
|
|
auto *succBB = getNthEdgeBlock(branch, edgeIdx);
|
|
assert(succBB->getNumArguments() < 2 && "Can take at most one argument");
|
|
if (!succBB->getNumArguments())
|
|
return;
|
|
args.push_back(newEdgeBB->createPhiArgument(
|
|
succBB->getArgument(0)->getType(), OwnershipKind::Owned));
|
|
return;
|
|
}
|
|
|
|
// A dynamic_method_br passes the function to the first basic block.
|
|
case SILInstructionKind::DynamicMethodBranchInst: {
|
|
auto DMBI = cast<DynamicMethodBranchInst>(T);
|
|
auto *succBB =
|
|
(edgeIdx == 0) ? DMBI->getHasMethodBB() : DMBI->getNoMethodBB();
|
|
if (!succBB->getNumArguments())
|
|
return;
|
|
args.push_back(newEdgeBB->createPhiArgument(
|
|
succBB->getArgument(0)->getType(), OwnershipKind::Owned));
|
|
return;
|
|
}
|
|
|
|
/// A checked_cast_br passes the result of the cast to the first basic block.
|
|
case SILInstructionKind::CheckedCastBranchInst: {
|
|
auto CBI = cast<CheckedCastBranchInst>(T);
|
|
auto succBB = edgeIdx == 0 ? CBI->getSuccessBB() : CBI->getFailureBB();
|
|
if (!succBB->getNumArguments())
|
|
return;
|
|
args.push_back(newEdgeBB->createPhiArgument(
|
|
succBB->getArgument(0)->getType(), OwnershipKind::Owned));
|
|
return;
|
|
}
|
|
case SILInstructionKind::CheckedCastAddrBranchInst: {
|
|
auto CBI = cast<CheckedCastAddrBranchInst>(T);
|
|
auto succBB = edgeIdx == 0 ? CBI->getSuccessBB() : CBI->getFailureBB();
|
|
if (!succBB->getNumArguments())
|
|
return;
|
|
args.push_back(newEdgeBB->createPhiArgument(
|
|
succBB->getArgument(0)->getType(), OwnershipKind::Owned));
|
|
return;
|
|
}
|
|
case SILInstructionKind::CheckedCastValueBranchInst: {
|
|
auto CBI = cast<CheckedCastValueBranchInst>(T);
|
|
auto succBB = edgeIdx == 0 ? CBI->getSuccessBB() : CBI->getFailureBB();
|
|
if (!succBB->getNumArguments())
|
|
return;
|
|
args.push_back(newEdgeBB->createPhiArgument(
|
|
succBB->getArgument(0)->getType(), OwnershipKind::Owned));
|
|
return;
|
|
}
|
|
|
|
case SILInstructionKind::TryApplyInst: {
|
|
auto *TAI = cast<TryApplyInst>(T);
|
|
auto *succBB = edgeIdx == 0 ? TAI->getNormalBB() : TAI->getErrorBB();
|
|
if (!succBB->getNumArguments())
|
|
return;
|
|
args.push_back(newEdgeBB->createPhiArgument(
|
|
succBB->getArgument(0)->getType(), OwnershipKind::Owned));
|
|
return;
|
|
}
|
|
|
|
case SILInstructionKind::YieldInst:
|
|
// The edges from 'yield' never have branch arguments.
|
|
return;
|
|
|
|
case SILInstructionKind::ReturnInst:
|
|
case SILInstructionKind::ThrowInst:
|
|
case SILInstructionKind::UnwindInst:
|
|
case SILInstructionKind::UnreachableInst:
|
|
llvm_unreachable("terminator never has successors");
|
|
|
|
#define TERMINATOR(ID, ...)
|
|
#define INST(ID, BASE) case SILInstructionKind::ID:
|
|
#include "swift/SIL/SILNodes.def"
|
|
llvm_unreachable("not a terminator");
|
|
}
|
|
llvm_unreachable("bad instruction kind");
|
|
}
|
|
|
|
SILBasicBlock *swift::splitEdge(TermInst *T, unsigned edgeIdx,
|
|
DominanceInfo *DT, SILLoopInfo *LI) {
|
|
auto *srcBB = T->getParent();
|
|
auto *F = srcBB->getParent();
|
|
|
|
SILBasicBlock *destBB = T->getSuccessors()[edgeIdx];
|
|
|
|
// Create a new basic block in the edge, and insert it after the srcBB.
|
|
auto *edgeBB = F->createBasicBlockAfter(srcBB);
|
|
|
|
SmallVector<SILValue, 16> args;
|
|
getEdgeArgs(T, edgeIdx, edgeBB, args);
|
|
|
|
SILBuilderWithScope(edgeBB, T).createBranch(T->getLoc(), destBB, args);
|
|
|
|
// Strip the arguments and rewire the branch in the source block.
|
|
changeBranchTarget(T, edgeIdx, edgeBB, /*PreserveArgs=*/false);
|
|
|
|
if (!DT && !LI)
|
|
return edgeBB;
|
|
|
|
// Update the dominator tree.
|
|
if (DT) {
|
|
auto *srcBBNode = DT->getNode(srcBB);
|
|
|
|
// Unreachable code could result in a null return here.
|
|
if (srcBBNode) {
|
|
// The new block is dominated by the srcBB.
|
|
auto *edgeBBNode = DT->addNewBlock(edgeBB, srcBB);
|
|
|
|
// Are all predecessors of destBB dominated by destBB?
|
|
auto *destBBNode = DT->getNode(destBB);
|
|
bool oldSrcBBDominatesAllPreds = std::all_of(
|
|
destBB->pred_begin(), destBB->pred_end(), [=](SILBasicBlock *B) {
|
|
if (B == edgeBB)
|
|
return true;
|
|
auto *PredNode = DT->getNode(B);
|
|
if (!PredNode)
|
|
return true;
|
|
if (DT->dominates(destBBNode, PredNode))
|
|
return true;
|
|
return false;
|
|
});
|
|
|
|
// If so, the new bb dominates destBB now.
|
|
if (oldSrcBBDominatesAllPreds)
|
|
DT->changeImmediateDominator(destBBNode, edgeBBNode);
|
|
}
|
|
}
|
|
|
|
if (!LI)
|
|
return edgeBB;
|
|
|
|
// Update loop info. Both blocks must be in a loop otherwise the split block
|
|
// is outside the loop.
|
|
SILLoop *srcBBLoop = LI->getLoopFor(srcBB);
|
|
if (!srcBBLoop)
|
|
return edgeBB;
|
|
SILLoop *DstBBLoop = LI->getLoopFor(destBB);
|
|
if (!DstBBLoop)
|
|
return edgeBB;
|
|
|
|
// Same loop.
|
|
if (DstBBLoop == srcBBLoop) {
|
|
DstBBLoop->addBasicBlockToLoop(edgeBB, LI->getBase());
|
|
return edgeBB;
|
|
}
|
|
|
|
// Edge from inner to outer loop.
|
|
if (DstBBLoop->contains(srcBBLoop)) {
|
|
DstBBLoop->addBasicBlockToLoop(edgeBB, LI->getBase());
|
|
return edgeBB;
|
|
}
|
|
|
|
// Edge from outer to inner loop.
|
|
if (srcBBLoop->contains(DstBBLoop)) {
|
|
srcBBLoop->addBasicBlockToLoop(edgeBB, LI->getBase());
|
|
return edgeBB;
|
|
}
|
|
|
|
// Neither loop contains the other. The destination must be the header of its
|
|
// loop. Otherwise, we would be creating irreducible control flow.
|
|
assert(DstBBLoop->getHeader() == destBB
|
|
&& "Creating irreducible control flow?");
|
|
|
|
// Add to outer loop if there is one.
|
|
if (auto *parent = DstBBLoop->getParentLoop())
|
|
parent->addBasicBlockToLoop(edgeBB, LI->getBase());
|
|
|
|
return edgeBB;
|
|
}
|
|
|
|
/// Merge the basic block with its successor if possible.
|
|
void swift::mergeBasicBlockWithSingleSuccessor(SILBasicBlock *BB,
|
|
SILBasicBlock *succBB) {
|
|
auto *BI = cast<BranchInst>(BB->getTerminator());
|
|
assert(succBB->getSinglePredecessorBlock());
|
|
|
|
// If there are any BB arguments in the destination, replace them with the
|
|
// branch operands, since they must dominate the dest block.
|
|
for (unsigned i = 0, e = BI->getArgs().size(); i != e; ++i)
|
|
succBB->getArgument(i)->replaceAllUsesWith(BI->getArg(i));
|
|
|
|
BI->eraseFromParent();
|
|
|
|
// Move the instruction from the successor block to the current block.
|
|
BB->spliceAtEnd(succBB);
|
|
|
|
succBB->eraseFromParent();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DeadEndBlocks
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void DeadEndBlocks::compute() {
|
|
assert(ReachableBlocks.empty() && "Computed twice");
|
|
|
|
// First step: find blocks which end up in a no-return block (terminated by
|
|
// an unreachable instruction).
|
|
// Search for function-exiting blocks, i.e. return and throw.
|
|
for (const SILBasicBlock &BB : *F) {
|
|
const TermInst *TI = BB.getTerminator();
|
|
if (TI->isFunctionExiting())
|
|
ReachableBlocks.insert(&BB);
|
|
}
|
|
// Propagate the reachability up the control flow graph.
|
|
unsigned Idx = 0;
|
|
while (Idx < ReachableBlocks.size()) {
|
|
const SILBasicBlock *BB = ReachableBlocks[Idx++];
|
|
for (SILBasicBlock *Pred : BB->getPredecessorBlocks())
|
|
ReachableBlocks.insert(Pred);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Post Dominance Set Completion Utilities
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void JointPostDominanceSetComputer::findJointPostDominatingSet(
|
|
SILBasicBlock *dominatingBlock, ArrayRef<SILBasicBlock *> dominatedBlockSet,
|
|
function_ref<void(SILBasicBlock *)> inputBlocksFoundDuringWalk,
|
|
function_ref<void(SILBasicBlock *)> foundJointPostDomSetCompletionBlocks,
|
|
function_ref<void(SILBasicBlock *)> inputBlocksInJointPostDomSet) {
|
|
// If our reachable block set is empty, assert. This is most likely programmer
|
|
// error.
|
|
assert(dominatedBlockSet.size() != 0);
|
|
|
|
// If we have a reachable block set with a single block and that block is
|
|
// dominatingBlock, then we return success since a block post-doms its self so
|
|
// it is already complete.
|
|
//
|
|
// NOTE: We do not consider this a visiteed
|
|
if (dominatedBlockSet.size() == 1) {
|
|
if (dominatingBlock == dominatedBlockSet[0]) {
|
|
if (inputBlocksInJointPostDomSet)
|
|
inputBlocksInJointPostDomSet(dominatingBlock);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// At the top of where we for sure are going to use state... make sure we
|
|
// always clean up any resources that we use!
|
|
SWIFT_DEFER { clear(); };
|
|
|
|
// Otherwise, we need to compute our joint post dominating set. We do this by
|
|
// performing a backwards walk up the CFG tracking back liveness until we find
|
|
// our dominating block. As we walk up, we keep track of any successor blocks
|
|
// that we need to visit before the walk completes lest we leak. After we
|
|
// finish the walk, these leaking blocks are a valid (albeit not unique)
|
|
// completion of the post dom set.
|
|
for (auto *block : dominatedBlockSet) {
|
|
// Skip dead end blocks.
|
|
if (deadEndBlocks.isDeadEnd(block))
|
|
continue;
|
|
|
|
// We require dominatedBlockSet to be a set and thus assert if we hit it to
|
|
// flag user error to our caller.
|
|
bool succeededInserting = visitedBlocks.insert(block).second;
|
|
(void)succeededInserting;
|
|
assert(succeededInserting &&
|
|
"Repeat Elt: dominatedBlockSet should be a set?!");
|
|
initialBlocks.insert(block);
|
|
worklist.push_back(block);
|
|
}
|
|
|
|
// Then until we run out of blocks...
|
|
while (!worklist.empty()) {
|
|
auto *block = worklist.pop_back_val();
|
|
|
|
// First remove block from blocksThatLeakIfNeverVisited if it is there since
|
|
// we know that it isn't leaking since we are visiting it now.
|
|
blocksThatLeakIfNeverVisited.remove(block);
|
|
|
|
// Then if our block is not one of our initial blocks, add the block's
|
|
// successors to blocksThatLeakIfNeverVisited.
|
|
if (!initialBlocks.count(block)) {
|
|
for (auto *succBlock : block->getSuccessorBlocks()) {
|
|
if (visitedBlocks.count(succBlock))
|
|
continue;
|
|
if (deadEndBlocks.isDeadEnd(succBlock))
|
|
continue;
|
|
blocksThatLeakIfNeverVisited.insert(succBlock);
|
|
}
|
|
}
|
|
|
|
// If we are the dominating block, we are done.
|
|
if (dominatingBlock == block)
|
|
continue;
|
|
|
|
// Otherwise for each predecessor that we have, first check if it was one of
|
|
// our initial blocks (signaling a loop) and then add it to the worklist if
|
|
// we haven't visited it already.
|
|
for (auto *predBlock : block->getPredecessorBlocks()) {
|
|
if (initialBlocks.count(predBlock)) {
|
|
reachableInputBlocks.push_back(predBlock);
|
|
}
|
|
if (visitedBlocks.insert(predBlock).second)
|
|
worklist.push_back(predBlock);
|
|
}
|
|
}
|
|
|
|
// After our worklist has emptied, any blocks left in
|
|
// blocksThatLeakIfNeverVisited are "leaking blocks".
|
|
for (auto *leakingBlock : blocksThatLeakIfNeverVisited)
|
|
foundJointPostDomSetCompletionBlocks(leakingBlock);
|
|
|
|
// Then unique our list of reachable input blocks and pass them to our
|
|
// callback.
|
|
sortUnique(reachableInputBlocks);
|
|
for (auto *block : reachableInputBlocks)
|
|
inputBlocksFoundDuringWalk(block);
|
|
|
|
// Then if were asked to find the subset of our input blocks that are in the
|
|
// joint-postdominance set, compute that.
|
|
if (!inputBlocksInJointPostDomSet)
|
|
return;
|
|
|
|
// Pass back the reachable input blocks that were not reachable from other
|
|
// input blocks to.
|
|
for (auto *block : dominatedBlockSet)
|
|
if (lower_bound(reachableInputBlocks, block) == reachableInputBlocks.end())
|
|
inputBlocksInJointPostDomSet(block);
|
|
}
|