Files
swift-mirror/lib/AST/Requirement.cpp
Slava Pestov e7d7f6f69f RequirementMachine: Add Copyable/Escapable requirements to 'placeholder' generic signatures
If we fail to build a generic signature (or requirement signature of a
protocol) because of a request cycle or because Knuth-Bendix completion
failed, we would create a placeholder signature with no requirements.

However in a move-only world, a completely unconstrained generic
parameter might generate spurious diagnostics when used in a copyable
way. For this reason, let's outfit these placeholder signatures with
a default set of conformance requirements to Copyable and Escapable.
2024-02-20 18:26:05 -05:00

409 lines
12 KiB
C++

//===--- Requirement.cpp - Generic requirement ----------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2022 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the Requirement class.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/ASTContext.h"
#include "swift/AST/Requirement.h"
#include "swift/AST/Decl.h"
#include "swift/AST/GenericParamList.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/Module.h"
#include "swift/AST/Types.h"
using namespace swift;
bool Requirement::hasError() const {
if (getFirstType()->hasError())
return true;
if (getKind() != RequirementKind::Layout && getSecondType()->hasError())
return true;
return false;
}
bool Requirement::isCanonical() const {
if (!getFirstType()->isCanonical())
return false;
switch (getKind()) {
case RequirementKind::SameShape:
case RequirementKind::Conformance:
case RequirementKind::SameType:
case RequirementKind::Superclass:
if (!getSecondType()->isCanonical())
return false;
break;
case RequirementKind::Layout:
break;
}
return true;
}
/// Get the canonical form of this requirement.
Requirement Requirement::getCanonical() const {
Type firstType = getFirstType()->getCanonicalType();
switch (getKind()) {
case RequirementKind::SameShape:
case RequirementKind::Conformance:
case RequirementKind::SameType:
case RequirementKind::Superclass: {
Type secondType = getSecondType()->getCanonicalType();
return Requirement(getKind(), firstType, secondType);
}
case RequirementKind::Layout:
return Requirement(getKind(), firstType, getLayoutConstraint());
}
llvm_unreachable("Unhandled RequirementKind in switch");
}
ProtocolDecl *Requirement::getProtocolDecl() const {
assert(getKind() == RequirementKind::Conformance);
return getSecondType()->castTo<ProtocolType>()->getDecl();
}
CheckRequirementResult Requirement::checkRequirement(
SmallVectorImpl<Requirement> &subReqs,
bool allowMissing) const {
if (hasError())
return CheckRequirementResult::SubstitutionFailure;
auto firstType = getFirstType();
auto expandPackRequirement = [&](PackType *packType) {
for (auto eltType : packType->getElementTypes()) {
// FIXME: Doesn't seem right
if (auto *expansionType = eltType->getAs<PackExpansionType>())
eltType = expansionType->getPatternType();
auto kind = getKind();
if (kind == RequirementKind::Layout) {
subReqs.emplace_back(kind, eltType,
getLayoutConstraint());
} else {
subReqs.emplace_back(kind, eltType,
getSecondType());
}
}
return CheckRequirementResult::PackRequirement;
};
switch (getKind()) {
case RequirementKind::Conformance: {
if (auto packType = firstType->getAs<PackType>()) {
return expandPackRequirement(packType);
}
auto *proto = getProtocolDecl();
auto *module = proto->getParentModule();
auto conformance = module->lookupConformance(
firstType, proto, allowMissing);
if (!conformance)
return CheckRequirementResult::RequirementFailure;
auto condReqs = conformance.getConditionalRequirements();
if (condReqs.empty())
return CheckRequirementResult::Success;
subReqs.append(condReqs.begin(), condReqs.end());
return CheckRequirementResult::ConditionalConformance;
}
case RequirementKind::Layout: {
if (auto packType = firstType->getAs<PackType>()) {
return expandPackRequirement(packType);
}
if (auto *archetypeType = firstType->getAs<ArchetypeType>()) {
auto layout = archetypeType->getLayoutConstraint();
if (layout && layout.merge(getLayoutConstraint()))
return CheckRequirementResult::Success;
return CheckRequirementResult::RequirementFailure;
}
if (getLayoutConstraint()->isClass()) {
if (firstType->satisfiesClassConstraint())
return CheckRequirementResult::Success;
return CheckRequirementResult::RequirementFailure;
}
// TODO: Statically check other layout constraints, once they can
// be spelled in Swift.
return CheckRequirementResult::Success;
}
case RequirementKind::Superclass:
if (auto packType = firstType->getAs<PackType>()) {
return expandPackRequirement(packType);
}
if (getSecondType()->isExactSuperclassOf(firstType))
return CheckRequirementResult::Success;
return CheckRequirementResult::RequirementFailure;
case RequirementKind::SameType:
if (firstType->isEqual(getSecondType()))
return CheckRequirementResult::Success;
return CheckRequirementResult::RequirementFailure;
case RequirementKind::SameShape:
if (firstType->getReducedShape() ==
getSecondType()->getReducedShape())
return CheckRequirementResult::Success;
return CheckRequirementResult::RequirementFailure;
}
llvm_unreachable("Bad requirement kind");
}
bool Requirement::canBeSatisfied() const {
switch (getKind()) {
case RequirementKind::SameShape:
llvm_unreachable("Same-shape requirements not supported here");
case RequirementKind::Conformance:
return getFirstType()->is<ArchetypeType>();
case RequirementKind::Layout: {
if (auto *archetypeType = getFirstType()->getAs<ArchetypeType>()) {
auto layout = archetypeType->getLayoutConstraint();
return (!layout || layout.merge(getLayoutConstraint()));
}
return false;
}
case RequirementKind::Superclass:
return (getFirstType()->isBindableTo(getSecondType()) ||
getSecondType()->isBindableTo(getFirstType()));
case RequirementKind::SameType:
return (getFirstType()->isBindableTo(getSecondType()) ||
getSecondType()->isBindableTo(getFirstType()));
}
llvm_unreachable("Bad requirement kind");
}
/// Determine the canonical ordering of requirements.
static unsigned getRequirementKindOrder(RequirementKind kind) {
switch (kind) {
case RequirementKind::SameShape: return 4;
case RequirementKind::Conformance: return 2;
case RequirementKind::Superclass: return 0;
case RequirementKind::SameType: return 3;
case RequirementKind::Layout: return 1;
}
llvm_unreachable("unhandled kind");
}
/// Linear order on requirements in a generic signature.
int Requirement::compare(const Requirement &other) const {
int compareLHS =
compareDependentTypes(getFirstType(), other.getFirstType());
if (compareLHS != 0)
return compareLHS;
int compareKind = (getRequirementKindOrder(getKind()) -
getRequirementKindOrder(other.getKind()));
if (compareKind != 0)
return compareKind;
// We should only have multiple conformance requirements.
if (getKind() != RequirementKind::Conformance) {
llvm::errs() << "Unordered generic requirements\n";
llvm::errs() << "LHS: "; dump(llvm::errs()); llvm::errs() << "\n";
llvm::errs() << "RHS: "; other.dump(llvm::errs()); llvm::errs() << "\n";
abort();
}
int compareProtos =
TypeDecl::compare(getProtocolDecl(), other.getProtocolDecl());
assert(compareProtos != 0 && "Duplicate conformance requirements");
return compareProtos;
}
CheckRequirementsResult swift::checkRequirements(ArrayRef<Requirement> requirements) {
SmallVector<Requirement, 4> worklist(requirements.begin(), requirements.end());
bool hadSubstFailure = false;
while (!worklist.empty()) {
auto req = worklist.pop_back_val();
// Check preconditions.
#ifndef NDEBUG
{
auto firstType = req.getFirstType();
assert(!firstType->hasTypeParameter());
assert(!firstType->hasTypeVariable());
if (req.getKind() != RequirementKind::Layout) {
auto secondType = req.getSecondType();
assert(!secondType->hasTypeParameter());
assert(!secondType->hasTypeVariable());
}
}
#endif
switch (req.checkRequirement(worklist, /*allowMissing=*/true)) {
case CheckRequirementResult::Success:
case CheckRequirementResult::ConditionalConformance:
case CheckRequirementResult::PackRequirement:
break;
case CheckRequirementResult::RequirementFailure:
return CheckRequirementsResult::RequirementFailure;
case CheckRequirementResult::SubstitutionFailure:
hadSubstFailure = true;
break;
}
}
if (hadSubstFailure)
return CheckRequirementsResult::SubstitutionFailure;
return CheckRequirementsResult::Success;
}
CheckRequirementsResult swift::checkRequirements(
ModuleDecl *module, ArrayRef<Requirement> requirements,
TypeSubstitutionFn substitutions, SubstOptions options) {
SmallVector<Requirement, 4> substReqs;
for (auto req : requirements) {
substReqs.push_back(req.subst(substitutions,
LookUpConformanceInModule(module), options));
}
return checkRequirements(substReqs);
}
InverseRequirement::InverseRequirement(Type subject,
ProtocolDecl *protocol,
SourceLoc loc)
: subject(subject), protocol(protocol), loc(loc) {
// Ensure it's an invertible protocol.
assert(protocol);
assert(protocol->getKnownProtocolKind());
assert(getInvertibleProtocolKind(*(protocol->getKnownProtocolKind())));
}
InvertibleProtocolKind InverseRequirement::getKind() const {
return *getInvertibleProtocolKind(*(protocol->getKnownProtocolKind()));
}
void InverseRequirement::enumerateDefaultedParams(
GenericContext *genericContext,
SmallVectorImpl<Type> &result) {
auto add = [&](Type t) {
assert(t->isTypeParameter());
result.push_back(t);
};
// Nothing to enumerate if it's not generic.
if (!genericContext->isGeneric())
return;
if (auto proto = dyn_cast<ProtocolDecl>(genericContext)) {
add(proto->getSelfInterfaceType());
for (auto *assocTypeDecl : proto->getAssociatedTypeMembers())
add(assocTypeDecl->getDeclaredInterfaceType());
return;
}
for (GenericTypeParamDecl *gtpd : *genericContext->getGenericParams())
add(gtpd->getDeclaredInterfaceType());
}
void InverseRequirement::expandDefaults(
ASTContext &ctx,
ArrayRef<Type> gps,
SmallVectorImpl<StructuralRequirement> &result) {
if (!SWIFT_ENABLE_EXPERIMENTAL_NONCOPYABLE_GENERICS &&
!ctx.LangOpts.hasFeature(Feature::NoncopyableGenerics))
return;
SmallVector<ProtocolDecl*, NumInvertibleProtocols> defaults;
expandDefaults(ctx, /*inverses=*/{}, defaults);
// Fast-path.
if (defaults.empty())
return;
for (auto gp : gps) {
for (auto *proto : defaults) {
auto protoTy = proto->getDeclaredInterfaceType();
result.push_back({{RequirementKind::Conformance, gp, protoTy},
SourceLoc()});
}
}
}
void InverseRequirement::expandDefaults(
ASTContext &ctx,
InvertibleProtocolSet inverses,
SmallVectorImpl<ProtocolDecl*> &protocols) {
// Skip unless noncopyable generics is enabled
if (!ctx.LangOpts.hasFeature(swift::Feature::NoncopyableGenerics))
return;
// Try to add all invertible protocols, unless:
// - an inverse was provided
// - an existing protocol already requires it
for (auto ip : InvertibleProtocolSet::full()) {
// This matches with `lookupExistentialConformance`'s use of 'inheritsFrom'.
bool alreadyRequired = false;
for (auto proto : protocols) {
if (proto->isSpecificProtocol(getKnownProtocolKind(ip))
|| proto->requiresInvertible(ip)) {
alreadyRequired = true;
break;
}
}
// If some protocol member already implies P, then we don't need to
// add a requirement for P.
if (alreadyRequired) {
assert(!inverses.contains(ip) && "cannot require P and ~P");
continue;
}
// Nothing implies P, so unless there's an inverse ~P, add the requirement.
if (inverses.contains(ip))
continue;
auto proto = ctx.getProtocol(getKnownProtocolKind(ip));
assert(proto && "missing Copyable/Escapable from stdlib!");
protocols.push_back(proto);
}
}