Files
swift-mirror/lib/Sema/CodeSynthesis.cpp
Slava Pestov e7d8c3c4bc Sema: Fix synthesis of materializeForSet for subscripts in protocol extensions
Since each override of a subscript protocol requirement provides
its own materializeForSet, there is no need to do dynamic dispatch,
a peer call to the setter suffices. However, since CodeSynthesis
runs at the AST level, it would create a SubscriptExpr which
overload resolution would later bind to the protocol requirement
subscript rather than the static witness in the extension.

This triggered an assertion. Solve the problem by binding the
actual ConcreteDeclRef of the SubscriptExpr at synthesis time,
and modifying CSGen to special-case SubscriptExprs that already
have a ConcreteDeclRef set.

Fixes <rdar://problem/21370629>.

Swift SVN r29906
2015-07-03 02:25:26 +00:00

2293 lines
90 KiB
C++

//===--- TypeCheckDecl.cpp - Type Checking for Declarations ---------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for declarations.
//
//===----------------------------------------------------------------------===//
#include "CodeSynthesis.h"
#include "ConstraintSystem.h"
#include "TypeChecker.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/Attr.h"
#include "swift/AST/Availability.h"
#include "swift/AST/Expr.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
using namespace swift;
const bool IsImplicit = true;
/// Insert the specified decl into the DeclContext's member list. If the hint
/// decl is specified, the new decl is inserted next to the hint.
static void addMemberToContextIfNeeded(Decl *D, DeclContext *DC,
Decl *Hint = nullptr) {
if (auto *ntd = dyn_cast<NominalTypeDecl>(DC))
ntd->addMember(D, Hint);
else if (auto *ed = dyn_cast<ExtensionDecl>(DC))
ed->addMember(D, Hint);
else
assert((isa<AbstractFunctionDecl>(DC) || isa<FileUnit>(DC)) &&
"Unknown declcontext");
}
static VarDecl *getParamDeclAtIndex(FuncDecl *fn, unsigned index) {
TuplePatternElt singleParam;
Pattern *paramPattern = fn->getBodyParamPatterns().back();
ArrayRef<TuplePatternElt> params;
if (auto paramTuple = dyn_cast<TuplePattern>(paramPattern)) {
params = paramTuple->getElements();
} else {
singleParam = TuplePatternElt(
cast<ParenPattern>(paramPattern)->getSubPattern());
params = singleParam;
}
auto firstParamPattern = params[index].getPattern();
return firstParamPattern->getSingleVar();
}
static VarDecl *getFirstParamDecl(FuncDecl *fn) {
return getParamDeclAtIndex(fn, 0);
};
/// \brief Build an implicit 'self' parameter for the specified DeclContext.
static Pattern *buildImplicitSelfParameter(SourceLoc Loc, DeclContext *DC) {
ASTContext &Ctx = DC->getASTContext();
auto *SelfDecl = new (Ctx) ParamDecl(/*IsLet*/ true, Loc, Identifier(),
Loc, Ctx.Id_self, Type(), DC);
SelfDecl->setImplicit();
Pattern *P = new (Ctx) NamedPattern(SelfDecl, /*Implicit=*/true);
return new (Ctx) TypedPattern(P, TypeLoc());
}
static TuplePatternElt buildArgumentPattern(SourceLoc loc, DeclContext *DC,
StringRef name, Type type,
bool isLet,
VarDecl **paramDecl,
ASTContext &Context) {
auto *param = new (Context) ParamDecl(isLet, SourceLoc(), Identifier(),
loc, Context.getIdentifier(name),
Type(), DC);
if (paramDecl) *paramDecl = param;
param->setImplicit();
Pattern *valuePattern
= new (Context) TypedPattern(new (Context) NamedPattern(param, true),
TypeLoc::withoutLoc(type));
valuePattern->setImplicit();
return TuplePatternElt(valuePattern);
}
static TuplePatternElt buildLetArgumentPattern(SourceLoc loc, DeclContext *DC,
StringRef name, Type type,
VarDecl **paramDecl,
ASTContext &ctx) {
return buildArgumentPattern(loc, DC, name, type,
/*isLet*/ true, paramDecl, ctx);
}
static TuplePatternElt buildInOutArgumentPattern(SourceLoc loc, DeclContext *DC,
StringRef name, Type type,
VarDecl **paramDecl,
ASTContext &ctx) {
return buildArgumentPattern(loc, DC, name, InOutType::get(type),
/*isLet*/ false, paramDecl, ctx);
}
static Type getTypeOfStorage(AbstractStorageDecl *storage,
TypeChecker &TC) {
if (auto var = dyn_cast<VarDecl>(storage)) {
return TC.getTypeOfRValue(var, /*want interface type*/ false);
} else {
// None of the transformations done by getTypeOfRValue are
// necessary for subscripts.
auto subscript = cast<SubscriptDecl>(storage);
return subscript->getElementType();
}
}
static TuplePatternElt
buildSetterValueArgumentPattern(AbstractStorageDecl *storage,
VarDecl **valueDecl, TypeChecker &TC) {
auto storageType = getTypeOfStorage(storage, TC);
return buildLetArgumentPattern(storage->getLoc(),
storage->getDeclContext(),
"value", storageType, valueDecl, TC.Context);
}
/// Build a pattern which can forward the formal index parameters of a
/// declaration.
///
/// \param prefix optional arguments to be prefixed onto the index
/// forwarding pattern
static Pattern *buildIndexForwardingPattern(AbstractStorageDecl *storage,
MutableArrayRef<TuplePatternElt> prefix,
TypeChecker &TC) {
auto subscript = dyn_cast<SubscriptDecl>(storage);
// Fast path: if this isn't a subscript, and we have a first
// pattern, we can just use that.
if (!subscript) {
auto tuple = TuplePattern::createSimple(TC.Context, SourceLoc(), prefix,
SourceLoc());
tuple->setImplicit();
return tuple;
}
// Otherwise, we need to build up a new TuplePattern.
SmallVector<TuplePatternElt, 4> elements;
// Start with the fields from the first pattern, if there are any.
elements.append(prefix.begin(), prefix.end());
// Clone index patterns in a manner that allows them to be
// perfectly forwarded.
DeclContext *DC = storage->getDeclContext();
auto addVarPatternFor = [&](Pattern *P) {
Pattern *vp = P->cloneForwardable(TC.Context, DC, Pattern::Implicit);
elements.push_back(TuplePatternElt(vp));
};
// This is the same breakdown the parser does.
auto indices = subscript->getIndices();
if (auto pp = dyn_cast<ParenPattern>(indices)) {
addVarPatternFor(pp);
} else {
auto tp = cast<TuplePattern>(indices);
for (auto &element : tp->getElements()) {
addVarPatternFor(element.getPattern());
}
}
return TuplePattern::createSimple(TC.Context, SourceLoc(), elements,
SourceLoc());
}
static FuncDecl *createGetterPrototype(AbstractStorageDecl *storage,
TypeChecker &TC) {
SourceLoc loc = storage->getLoc();
// Create the parameter list for the getter.
SmallVector<Pattern *, 2> getterParams;
// The implicit 'self' argument if in a type context.
if (storage->getDeclContext()->isTypeContext())
getterParams.push_back(
buildImplicitSelfParameter(loc, storage->getDeclContext()));
// Add an index-forwarding clause.
getterParams.push_back(buildIndexForwardingPattern(storage, {}, TC));
SourceLoc staticLoc;
if (auto var = dyn_cast<VarDecl>(storage)) {
if (var->isStatic())
staticLoc = var->getLoc();
}
auto storageType = getTypeOfStorage(storage, TC);
auto getter = FuncDecl::create(
TC.Context, staticLoc, StaticSpellingKind::None, loc, Identifier(), loc,
SourceLoc(), /*GenericParams=*/nullptr, Type(), getterParams,
TypeLoc::withoutLoc(storageType), storage->getDeclContext());
getter->setImplicit();
if (storage->isGetterMutating())
getter->setMutating();
// If the var is marked final, then so is the getter.
if (storage->isFinal())
makeFinal(TC.Context, getter);
if (storage->isStatic())
getter->setStatic();
return getter;
}
static FuncDecl *createSetterPrototype(AbstractStorageDecl *storage,
VarDecl *&valueDecl,
TypeChecker &TC) {
SourceLoc loc = storage->getLoc();
// Create the parameter list for the setter.
SmallVector<Pattern *, 2> params;
// The implicit 'self' argument if in a type context.
if (storage->getDeclContext()->isTypeContext()) {
params.push_back(
buildImplicitSelfParameter(loc, storage->getDeclContext()));
}
// Add a "(value : T, indices...)" pattern.
TuplePatternElt valuePattern =
buildSetterValueArgumentPattern(storage, &valueDecl, TC);
params.push_back(buildIndexForwardingPattern(storage, valuePattern, TC));
Type setterRetTy = TupleType::getEmpty(TC.Context);
FuncDecl *setter = FuncDecl::create(
TC.Context, /*StaticLoc=*/SourceLoc(), StaticSpellingKind::None, loc,
Identifier(), loc, SourceLoc(), /*generic=*/nullptr, Type(), params,
TypeLoc::withoutLoc(setterRetTy), storage->getDeclContext());
setter->setImplicit();
if (!storage->isSetterNonMutating())
setter->setMutating();
// If the var is marked final, then so is the getter.
if (storage->isFinal())
makeFinal(TC.Context, setter);
if (storage->isStatic())
setter->setStatic();
return setter;
}
/// Returns the type of the self argument of a materializeForSet
/// callback. If we don't have a meaningful direct self type, just
/// use something meaningless and hope it doesn't matter.
static Type getSelfTypeForMaterializeForSetCallback(ASTContext &ctx,
DeclContext *DC,
bool isStatic) {
Type selfType = DC->getDeclaredTypeInContext();
if (!selfType) {
// This restriction is theoretically liftable by writing the necessary
// contextual information into the callback storage.
assert(!DC->isGenericContext() &&
"no enclosing type for generic materializeForSet; callback "
"will not be able to bind type arguments!");
return TupleType::getEmpty(ctx);
}
// If we're in a protocol, we want to actually use the Self type.
if (selfType->is<ProtocolType>()) {
selfType = DC->getProtocolSelf()->getArchetype();
}
// Use the metatype if this is a static member.
if (isStatic) {
return MetatypeType::get(selfType, ctx);
} else {
return selfType;
}
}
// True if the storage is dynamic or imported from Objective-C. In these cases,
// we need to emit a static materializeForSet thunk that dynamically dispatches
// to 'get' and 'set', rather than the normal dynamically dispatched
// materializeForSet that peer dispatches to 'get' and 'set'.
static bool needsDynamicMaterializeForSet(AbstractStorageDecl *storage) {
return storage->isDynamic() || storage->hasClangNode();
}
// True if a generated accessor needs to be registered as an external decl.
bool needsToBeRegisteredAsExternalDecl(AbstractStorageDecl *storage) {
// Either the storage itself was imported from Clang...
if (storage->hasClangNode())
return true;
// ...or it was synthesized into an imported type.
auto nominal = dyn_cast<NominalTypeDecl>(storage->getDeclContext());
if (!nominal)
return false;
return nominal->hasClangNode();
}
static FuncDecl *createMaterializeForSetPrototype(AbstractStorageDecl *storage,
VarDecl *&bufferParamDecl,
TypeChecker &TC) {
auto &ctx = storage->getASTContext();
SourceLoc loc = storage->getLoc();
// Create the parameter list:
SmallVector<Pattern *, 2> params;
// - The implicit 'self' argument if in a type context.
auto DC = storage->getDeclContext();
if (DC->isTypeContext())
params.push_back(buildImplicitSelfParameter(loc, DC));
// - The buffer parameter, (buffer: Builtin.RawPointer,
// inout storage: Builtin.UnsafeValueBuffer,
// indices...).
TuplePatternElt bufferElements[] = {
buildLetArgumentPattern(loc, DC, "buffer", ctx.TheRawPointerType,
&bufferParamDecl, TC.Context),
buildInOutArgumentPattern(loc, DC, "callbackStorage",
ctx.TheUnsafeValueBufferType,
nullptr, TC.Context),
};
params.push_back(buildIndexForwardingPattern(storage, bufferElements, TC));
// Construct the callback type.
Type callbackSelfType =
getSelfTypeForMaterializeForSetCallback(ctx, DC, storage->isStatic());
TupleTypeElt callbackArgs[] = {
ctx.TheRawPointerType,
InOutType::get(ctx.TheUnsafeValueBufferType),
InOutType::get(callbackSelfType),
MetatypeType::get(callbackSelfType, MetatypeRepresentation::Thick),
};
auto callbackExtInfo = FunctionType::ExtInfo()
.withRepresentation(FunctionType::Representation::Thin);
auto callbackType = FunctionType::get(TupleType::get(callbackArgs, ctx),
TupleType::getEmpty(ctx),
callbackExtInfo);
// Try to make the callback type optional. Don't crash if it doesn't
// work, though.
auto optCallbackType = TC.getOptionalType(loc, callbackType);
if (!optCallbackType) optCallbackType = callbackType;
// The accessor returns (Builtin.RawPointer, (@convention(thin) (...) -> ())?),
// where the first pointer is the materialized address and the
// second is an optional callback.
TupleTypeElt retElts[] = {
{ ctx.TheRawPointerType },
{ optCallbackType },
};
Type retTy = TupleType::get(retElts, ctx);
auto *materializeForSet = FuncDecl::create(
ctx, /*StaticLoc=*/SourceLoc(), StaticSpellingKind::None, loc,
Identifier(), loc, SourceLoc(), /*generic=*/nullptr, Type(), params,
TypeLoc::withoutLoc(retTy), DC);
materializeForSet->setImplicit();
// materializeForSet is mutating and static if the setter is.
auto setter = storage->getSetter();
materializeForSet->setMutating(setter->isMutating());
materializeForSet->setStatic(setter->isStatic());
// materializeForSet is final if the storage is.
if (storage->isFinal())
makeFinal(ctx, materializeForSet);
// If the storage is dynamic or ObjC-native, we can't add a dynamically-
// dispatched method entry for materializeForSet, so force it to be
// statically dispatched. ("final" would be inappropriate because the
// property can still be overridden.)
if (needsDynamicMaterializeForSet(storage))
materializeForSet->setForcedStaticDispatch(true);
// Make sure materializeForSet is available enough to access
// the storage (and its getters/setters if it has them).
SmallVector<const Decl *, 2> asAvailableAs;
asAvailableAs.push_back(storage);
if (FuncDecl *getter = storage->getGetter()) {
asAvailableAs.push_back(getter);
}
if (FuncDecl *setter = storage->getSetter()) {
asAvailableAs.push_back(setter);
}
AvailabilityInference::applyInferredAvailableAttrs(materializeForSet,
asAvailableAs, ctx);
// If the property came from ObjC, we need to register this as an external
// definition to be compiled.
if (needsToBeRegisteredAsExternalDecl(storage))
TC.Context.addedExternalDecl(materializeForSet);
return materializeForSet;
}
void swift::convertStoredVarInProtocolToComputed(VarDecl *VD, TypeChecker &TC) {
auto *Get = createGetterPrototype(VD, TC);
// Okay, we have both the getter and setter. Set them in VD.
VD->makeComputed(VD->getLoc(), Get, nullptr, nullptr, VD->getLoc());
// We've added some members to our containing class, add them to the members
// list.
addMemberToContextIfNeeded(Get, VD->getDeclContext());
// Type check the getter declaration.
TC.typeCheckDecl(VD->getGetter(), true);
TC.typeCheckDecl(VD->getGetter(), false);
}
/// Build a tuple around the given arguments.
static Expr *buildTupleExpr(ASTContext &ctx, ArrayRef<Expr*> args) {
if (args.size() == 1) {
return args[0];
}
SmallVector<Identifier, 4> labels(args.size());
SmallVector<SourceLoc, 4> labelLocs(args.size());
return TupleExpr::create(ctx, SourceLoc(), args, labels, labelLocs,
SourceLoc(), false, IsImplicit);
}
static Expr *buildTupleForwardingRefExpr(ASTContext &ctx,
ArrayRef<TuplePatternElt> params,
ArrayRef<TupleTypeElt> formalIndexTypes) {
assert(params.size() == formalIndexTypes.size());
SmallVector<Identifier, 4> labels;
SmallVector<SourceLoc, 4> labelLocs;
SmallVector<Expr *, 4> args;
for (unsigned i = 0, e = params.size(); i != e; ++i) {
const Pattern *param = params[i].getPattern();
args.push_back(param->buildForwardingRefExpr(ctx));
labels.push_back(formalIndexTypes[i].getName());
labelLocs.push_back(SourceLoc());
}
// A single unlabelled value is not a tuple.
if (args.size() == 1 && labels[0].empty())
return args[0];
return TupleExpr::create(ctx, SourceLoc(), args, labels, labelLocs,
SourceLoc(), false, IsImplicit);
}
/// Build a reference to the subscript index variables for this
/// subscript accessor.
static Expr *buildSubscriptIndexReference(ASTContext &ctx, FuncDecl *accessor) {
// Pull out the body parameters, which we should have cloned
// previously to be forwardable. Drop the initial buffer/value
// parameter in accessors that have one.
TuplePatternElt singleParam;
Pattern *paramPattern = accessor->getBodyParamPatterns().back();
ArrayRef<TuplePatternElt> params;
if (auto paramTuple = dyn_cast<TuplePattern>(paramPattern)) {
params = paramTuple->getElements();
} else {
singleParam = TuplePatternElt(
cast<ParenPattern>(paramPattern)->getSubPattern());
params = singleParam;
}
auto accessorKind = accessor->getAccessorKind();
// Ignore the value/buffer parameter.
if (accessorKind != AccessorKind::IsGetter)
params = params.slice(1);
// Ignore the materializeForSet callback storage parameter.
if (accessorKind == AccessorKind::IsMaterializeForSet)
params = params.slice(1);
// Look for formal subscript labels.
auto subscript = cast<SubscriptDecl>(accessor->getAccessorStorageDecl());
auto indexType = subscript->getIndicesType();
if (auto indexTuple = indexType->getAs<TupleType>()) {
return buildTupleForwardingRefExpr(ctx, params, indexTuple->getElements());
} else {
return buildTupleForwardingRefExpr(ctx, params, TupleTypeElt(indexType));
}
}
enum class SelfAccessKind {
/// We're building a derived accessor on top of whatever this
/// class provides.
Peer,
/// We're building a setter or something around an underlying
/// implementation, which might be storage or inherited from a
/// superclass.
Super,
};
static Expr *buildSelfReference(VarDecl *selfDecl,
SelfAccessKind selfAccessKind,
TypeChecker &TC) {
switch (selfAccessKind) {
case SelfAccessKind::Peer:
return new (TC.Context) DeclRefExpr(selfDecl, SourceLoc(), IsImplicit);
case SelfAccessKind::Super:
return new (TC.Context) SuperRefExpr(selfDecl, SourceLoc(), IsImplicit);
}
llvm_unreachable("bad self access kind");
}
namespace {
/// A simple helper interface for buildStorageReference.
class StorageReferenceContext {
StorageReferenceContext(const StorageReferenceContext &) = delete;
public:
StorageReferenceContext() = default;
virtual ~StorageReferenceContext() = default;
/// Returns the declaration of the entity to use as the base of
/// the access, or nil if no base is required.
virtual VarDecl *getSelfDecl() const = 0;
/// Returns an expression producing the index value, assuming that
/// the storage is a subscript declaration.
virtual Expr *getIndexRefExpr(ASTContext &ctx,
SubscriptDecl *subscript) const = 0;
};
/// A reference to storage from within an accessor.
class AccessorStorageReferenceContext : public StorageReferenceContext {
FuncDecl *Accessor;
public:
AccessorStorageReferenceContext(FuncDecl *accessor) : Accessor(accessor) {}
virtual ~AccessorStorageReferenceContext() = default;
VarDecl *getSelfDecl() const override {
return Accessor->getImplicitSelfDecl();
}
Expr *getIndexRefExpr(ASTContext &ctx,
SubscriptDecl *subscript) const override {
return buildSubscriptIndexReference(ctx, Accessor);
}
};
}
/// Build an l-value for the storage of a declaration.
static Expr *buildStorageReference(
const StorageReferenceContext &referenceContext,
AbstractStorageDecl *storage,
AccessSemantics semantics,
SelfAccessKind selfAccessKind,
TypeChecker &TC) {
ASTContext &ctx = TC.Context;
VarDecl *selfDecl = referenceContext.getSelfDecl();
if (!selfDecl) {
return new (ctx) DeclRefExpr(storage, SourceLoc(), IsImplicit, semantics);
}
// If we should use a super access if applicable, and we have an
// overridden decl, then use ordinary access to it.
if (selfAccessKind == SelfAccessKind::Super) {
if (auto overridden = storage->getOverriddenDecl()) {
storage = overridden;
semantics = AccessSemantics::Ordinary;
} else {
selfAccessKind = SelfAccessKind::Peer;
}
}
Expr *selfDRE = buildSelfReference(selfDecl, selfAccessKind, TC);
if (auto subscript = dyn_cast<SubscriptDecl>(storage)) {
Expr *indices = referenceContext.getIndexRefExpr(ctx, subscript);
return new (ctx) SubscriptExpr(selfDRE, indices, storage,
IsImplicit, semantics);
}
// This is a potentially polymorphic access, which is unnecessary;
// however, it shouldn't be problematic because any overrides
// should also redefine materializeForSet.
return new (ctx) MemberRefExpr(selfDRE, SourceLoc(), storage,
SourceLoc(), IsImplicit, semantics);
}
static Expr *buildStorageReference(FuncDecl *accessor,
AbstractStorageDecl *storage,
AccessSemantics semantics,
SelfAccessKind selfAccessKind,
TypeChecker &TC) {
return buildStorageReference(AccessorStorageReferenceContext(accessor),
storage, semantics, selfAccessKind, TC);
}
/// Load the value of VD. If VD is an @override of another value, we call the
/// superclass getter. Otherwise, we do a direct load of the value.
static Expr *createPropertyLoadOrCallSuperclassGetter(FuncDecl *accessor,
AbstractStorageDecl *storage,
TypeChecker &TC) {
return buildStorageReference(accessor, storage,
AccessSemantics::DirectToStorage,
SelfAccessKind::Super, TC);
}
/// Look up the NSCopying protocol from the Foundation module, if present.
/// Otherwise return null.
static ProtocolDecl *getNSCopyingProtocol(TypeChecker &TC,
DeclContext *DC) {
ASTContext &ctx = TC.Context;
auto foundation = ctx.getLoadedModule(ctx.Id_Foundation);
if (!foundation)
return nullptr;
SmallVector<ValueDecl *, 2> results;
DC->lookupQualified(ModuleType::get(foundation),
ctx.getIdentifier("NSCopying"),
NL_QualifiedDefault | NL_KnownNonCascadingDependency,
/*resolver=*/nullptr,
results);
if (results.size() != 1)
return nullptr;
return dyn_cast<ProtocolDecl>(results.front());
}
/// Synthesize the code to store 'Val' to 'VD', given that VD has an @NSCopying
/// attribute on it. We know that VD is a stored property in a class, so we
/// just need to generate something like "self.property = val.copyWithZone(nil)"
/// here. This does some type checking to validate that the call will succeed.
static Expr *synthesizeCopyWithZoneCall(Expr *Val, VarDecl *VD,
TypeChecker &TC) {
auto &Ctx = TC.Context;
// We support @NSCopying on class types (which conform to NSCopying),
// protocols which conform, and option types thereof.
Type UnderlyingType = TC.getTypeOfRValue(VD, /*want interface type*/false);
bool isOptional = false;
if (Type optionalEltTy = UnderlyingType->getAnyOptionalObjectType()) {
UnderlyingType = optionalEltTy;
isOptional = true;
}
// The element type must conform to NSCopying. If not, emit an error and just
// recovery by synthesizing without the copy call.
auto *CopyingProto = getNSCopyingProtocol(TC, VD->getDeclContext());
if (!CopyingProto || !TC.conformsToProtocol(UnderlyingType, CopyingProto,
VD->getDeclContext(), None)) {
TC.diagnose(VD->getLoc(), diag::nscopying_doesnt_conform);
return Val;
}
// If we have an optional type, we have to "?" the incoming value to only
// evaluate the subexpression if the incoming value is non-null.
if (isOptional)
Val = new (Ctx) BindOptionalExpr(Val, SourceLoc(), 0);
// Generate:
// (force_value_expr type='<null>'
// (call_expr type='<null>'
// (unresolved_dot_expr type='<null>' field 'copyWithZone'
// "Val")
// (paren_expr type='<null>'
// (nil_literal_expr type='<null>'))))
auto UDE = new (Ctx) UnresolvedDotExpr(Val, SourceLoc(),
Ctx.getIdentifier("copyWithZone"),
SourceLoc(), /*implicit*/true);
Expr *Nil = new (Ctx) NilLiteralExpr(SourceLoc(), /*implicit*/true);
Nil = new (Ctx) ParenExpr(SourceLoc(), Nil, SourceLoc(), false);
//- (id)copyWithZone:(NSZone *)zone;
Expr *Call = new (Ctx) CallExpr(UDE, Nil, /*implicit*/true);
TypeLoc ResultTy;
ResultTy.setType(VD->getType(), true);
// If we're working with non-optional types, we're forcing the cast.
if (!isOptional) {
Call = new (Ctx) ForcedCheckedCastExpr(Call, SourceLoc(), SourceLoc(),
TypeLoc::withoutLoc(UnderlyingType));
Call->setImplicit();
return Call;
}
// We're working with optional types, so perform a conditional checked
// downcast.
Call = new (Ctx) ConditionalCheckedCastExpr(Call, SourceLoc(), SourceLoc(),
TypeLoc::withoutLoc(UnderlyingType));
Call->setImplicit();
// Use OptionalEvaluationExpr to evaluate the "?".
return new (Ctx) OptionalEvaluationExpr(Call);
}
/// In a synthesized accessor body, store 'value' to the appropriate element.
///
/// If the property is an override, we call the superclass setter.
/// Otherwise, we do a direct store of the value.
static void createPropertyStoreOrCallSuperclassSetter(FuncDecl *accessor,
Expr *value,
AbstractStorageDecl *storage,
SmallVectorImpl<ASTNode> &body,
TypeChecker &TC) {
// If the storage is an @NSCopying property, then we store the
// result of a copyWithZone call on the value, not the value itself.
if (auto property = dyn_cast<VarDecl>(storage)) {
if (property->getAttrs().hasAttribute<NSCopyingAttr>())
value = synthesizeCopyWithZoneCall(value, property, TC);
}
// Create:
// (assign (decl_ref_expr(VD)), decl_ref_expr(value))
// or:
// (assign (member_ref_expr(decl_ref_expr(self), VD)), decl_ref_expr(value))
Expr *dest = buildStorageReference(accessor, storage,
AccessSemantics::DirectToStorage,
SelfAccessKind::Super, TC);
body.push_back(new (TC.Context) AssignExpr(dest, SourceLoc(), value,
IsImplicit));
}
/// Synthesize the body of a trivial getter. For a non-member vardecl or one
/// which is not an override of a base class property, it performs a a direct
/// storage load. For an override of a base member property, it chains up to
/// super.
static void synthesizeTrivialGetter(FuncDecl *getter,
AbstractStorageDecl *storage,
TypeChecker &TC) {
auto &ctx = TC.Context;
Expr *result = createPropertyLoadOrCallSuperclassGetter(getter, storage, TC);
ASTNode returnStmt = new (ctx) ReturnStmt(SourceLoc(), result, IsImplicit);
SourceLoc loc = storage->getLoc();
getter->setBody(BraceStmt::create(ctx, loc, returnStmt, loc, true));
// Mark it transparent, there is no user benefit to this actually existing, we
// just want it for abstraction purposes (i.e., to make access to the variable
// uniform and to be able to put the getter in a vtable).
getter->getAttrs().add(new (ctx) TransparentAttr(IsImplicit));
// Register the accessor as an external decl if the storage was imported.
if (needsToBeRegisteredAsExternalDecl(storage))
TC.Context.addedExternalDecl(getter);
}
/// Synthesize the body of a trivial setter.
static void synthesizeTrivialSetter(FuncDecl *setter,
AbstractStorageDecl *storage,
VarDecl *valueVar,
TypeChecker &TC) {
if (storage->isInvalid()) return;
auto &ctx = TC.Context;
SourceLoc loc = storage->getLoc();
auto *valueDRE = new (ctx) DeclRefExpr(valueVar, SourceLoc(), IsImplicit);
SmallVector<ASTNode, 1> setterBody;
createPropertyStoreOrCallSuperclassSetter(setter, valueDRE, storage,
setterBody, TC);
setter->setBody(BraceStmt::create(ctx, loc, setterBody, loc, true));
// Mark it transparent, there is no user benefit to this actually existing.
setter->getAttrs().add(new (ctx) TransparentAttr(IsImplicit));
// Register the accessor as an external decl if the storage was imported.
if (needsToBeRegisteredAsExternalDecl(storage))
TC.Context.addedExternalDecl(setter);
}
/// Build the result expression of a materializeForSet accessor.
///
/// \param address an expression yielding the address to return
/// \param callbackFn an optional closure expression for the callback
static Expr *buildMaterializeForSetResult(ASTContext &ctx, Expr *address,
Expr *callbackFn) {
if (!callbackFn) {
callbackFn = new (ctx) NilLiteralExpr(SourceLoc(), IsImplicit);
}
return TupleExpr::create(ctx, SourceLoc(), { address, callbackFn },
{ Identifier(), Identifier() },
{ SourceLoc(), SourceLoc() },
SourceLoc(), false, IsImplicit);
}
/// Create a call to the builtin function with the given name.
static Expr *buildCallToBuiltin(ASTContext &ctx, StringRef builtinName,
ArrayRef<Expr*> args) {
auto builtin = getBuiltinValueDecl(ctx, ctx.getIdentifier(builtinName));
Expr *builtinDRE = new (ctx) DeclRefExpr(builtin, SourceLoc(), IsImplicit);
Expr *arg = buildTupleExpr(ctx, args);
return new (ctx) CallExpr(builtinDRE, arg, IsImplicit);
}
/// Synthesize the body of a materializeForSet accessor for a stored
/// property.
static void synthesizeStoredMaterializeForSet(FuncDecl *materializeForSet,
AbstractStorageDecl *storage,
VarDecl *bufferDecl,
TypeChecker &TC) {
ASTContext &ctx = TC.Context;
// return (Builtin.addressof(&self.property), nil)
Expr *result = buildStorageReference(materializeForSet, storage,
AccessSemantics::DirectToStorage,
SelfAccessKind::Peer, TC);
result = new (ctx) InOutExpr(SourceLoc(), result, Type(), IsImplicit);
result = buildCallToBuiltin(ctx, "addressof", result);
result = buildMaterializeForSetResult(ctx, result, /*callback*/ nullptr);
ASTNode returnStmt = new (ctx) ReturnStmt(SourceLoc(), result, IsImplicit);
SourceLoc loc = storage->getLoc();
materializeForSet->setBody(BraceStmt::create(ctx, loc, returnStmt, loc,true));
// Mark it transparent, there is no user benefit to this actually existing.
materializeForSet->getAttrs().add(new (ctx) TransparentAttr(IsImplicit));
TC.typeCheckDecl(materializeForSet, true);
// Register the accessor as an external decl if the storage was imported.
if (needsToBeRegisteredAsExternalDecl(storage))
TC.Context.addedExternalDecl(materializeForSet);
}
/// Does a storage decl currently lacking accessor functions require a
/// setter to be synthesized?
static bool doesStorageNeedSetter(AbstractStorageDecl *storage) {
assert(!storage->hasAccessorFunctions());
switch (storage->getStorageKind()) {
// Add a setter to a stored variable unless it's a let.
case AbstractStorageDecl::Stored:
return !cast<VarDecl>(storage)->isLet();
// Addressed storage gets a setter if it has a mutable addressor.
case AbstractStorageDecl::Addressed:
return storage->getMutableAddressor() != nullptr;
// These should already have accessor functions.
case AbstractStorageDecl::StoredWithTrivialAccessors:
case AbstractStorageDecl::StoredWithObservers:
case AbstractStorageDecl::InheritedWithObservers:
case AbstractStorageDecl::AddressedWithTrivialAccessors:
case AbstractStorageDecl::AddressedWithObservers:
case AbstractStorageDecl::ComputedWithMutableAddress:
llvm_unreachable("already has accessor functions");
case AbstractStorageDecl::Computed:
llvm_unreachable("not stored");
}
llvm_unreachable("bad storage kind");
}
/// Add a materializeForSet accessor to the given declaration.
static FuncDecl *addMaterializeForSet(AbstractStorageDecl *storage,
TypeChecker &TC) {
VarDecl *bufferDecl;
auto materializeForSet =
createMaterializeForSetPrototype(storage, bufferDecl, TC);
addMemberToContextIfNeeded(materializeForSet, storage->getDeclContext(),
storage->getSetter());
storage->setMaterializeForSetFunc(materializeForSet);
TC.computeAccessibility(materializeForSet);
TC.validateDecl(materializeForSet);
return materializeForSet;
}
/// Add trivial accessors to a Stored or Addressed property.
void swift::addTrivialAccessorsToStorage(AbstractStorageDecl *storage,
TypeChecker &TC) {
assert(!storage->hasAccessorFunctions() && "already has accessors?");
// Create the getter.
auto *getter = createGetterPrototype(storage, TC);
// Create the setter.
FuncDecl *setter = nullptr;
VarDecl *setterValueParam = nullptr;
if (doesStorageNeedSetter(storage)) {
setter = createSetterPrototype(storage, setterValueParam, TC);
}
// Okay, we have both the getter and setter. Set them in VD.
storage->addTrivialAccessors(getter, setter, nullptr);
bool isDynamic = (storage->isDynamic() && storage->isObjC());
if (isDynamic)
getter->getAttrs().add(new (TC.Context) DynamicAttr(IsImplicit));
// Synthesize and type-check the body of the getter.
synthesizeTrivialGetter(getter, storage, TC);
TC.typeCheckDecl(getter, true);
TC.typeCheckDecl(getter, false);
if (setter) {
if (isDynamic)
setter->getAttrs().add(new (TC.Context) DynamicAttr(IsImplicit));
// Synthesize and type-check the body of the setter.
synthesizeTrivialSetter(setter, storage, setterValueParam, TC);
TC.typeCheckDecl(setter, true);
TC.typeCheckDecl(setter, false);
}
// We've added some members to our containing type, add them to the
// members list.
addMemberToContextIfNeeded(getter, storage->getDeclContext());
if (setter)
addMemberToContextIfNeeded(setter, storage->getDeclContext());
// Always add a materializeForSet when we're creating trivial
// accessors for a mutable stored property. We only do this when we
// need to be able to access something polymorphicly, and we always
// want a materializeForSet in such situations.
if (setter) {
FuncDecl *materializeForSet = addMaterializeForSet(storage, TC);
synthesizeMaterializeForSet(materializeForSet, storage, TC);
TC.typeCheckDecl(materializeForSet, true);
TC.typeCheckDecl(materializeForSet, false);
}
}
/// Add a trivial setter and materializeForSet to a
/// ComputedWithMutableAddress storage decl.
void swift::
synthesizeSetterForMutableAddressedStorage(AbstractStorageDecl *storage,
TypeChecker &TC) {
auto setter = storage->getSetter();
assert(setter);
assert(!storage->getSetter()->getBody());
assert(storage->getStorageKind() ==
AbstractStorageDecl::ComputedWithMutableAddress);
// Synthesize and type-check the body of the setter.
VarDecl *valueParamDecl = getFirstParamDecl(setter);
synthesizeTrivialSetter(setter, storage, valueParamDecl, TC);
TC.typeCheckDecl(setter, true);
TC.typeCheckDecl(setter, false);
}
/// The specified AbstractStorageDecl was just found to satisfy a
/// protocol property requirement. Ensure that it has the full
/// complement of accessors.
void TypeChecker::synthesizeWitnessAccessorsForStorage(
AbstractStorageDecl *requirement,
AbstractStorageDecl *storage) {
// If the decl is stored, convert it to StoredWithTrivialAccessors
// by synthesizing the full set of accessors.
if (!storage->hasAccessorFunctions()) {
addTrivialAccessorsToStorage(storage, *this);
return;
}
// Otherwise, if the requirement is settable, ensure that there's a
// materializeForSet function.
//
// @objc protocols don't need a materializeForSet since ObjC doesn't have
// that concept.
if (!requirement->isObjC() &&
requirement->getSetter() && !storage->getMaterializeForSetFunc()) {
FuncDecl *materializeForSet = addMaterializeForSet(storage, *this);
synthesizeMaterializeForSet(materializeForSet, storage, *this);
typeCheckDecl(materializeForSet, true);
typeCheckDecl(materializeForSet, false);
}
return;
}
using CallbackGenerator =
llvm::function_ref<void(SmallVectorImpl<ASTNode> &callbackBody,
VarDecl *selfDecl, VarDecl *bufferDecl,
VarDecl *callbackStorageDecl)>;
/// Build a materializeForSet callback function.
/// It should have type
/// (Builtin.RawPointer, inout Builtin.UnsafeValueBuffer,
/// inout T, T.Type) -> ()
static Expr *buildMaterializeForSetCallback(ASTContext &ctx,
FuncDecl *materializeForSet,
AbstractStorageDecl *storage,
const CallbackGenerator &generator) {
auto DC = storage->getDeclContext();
SourceLoc loc = storage->getLoc();
Type selfType =
getSelfTypeForMaterializeForSetCallback(ctx, DC,
materializeForSet->isStatic());
// Build the parameters pattern.
//
// Unexpected subtlety: it actually important to call the inout self
// parameter something other than 'self' so that we don't trigger
// the "implicit use of self" diagnostic.
VarDecl *bufferDecl;
VarDecl *callbackStorageDecl;
VarDecl *selfDecl;
TuplePatternElt argPatterns[] = {
buildLetArgumentPattern(loc, DC, "buffer", ctx.TheRawPointerType,
&bufferDecl, ctx),
buildInOutArgumentPattern(loc, DC, "callbackStorage",
ctx.TheUnsafeValueBufferType,
&callbackStorageDecl, ctx),
buildInOutArgumentPattern(loc, DC, "selfValue", selfType, &selfDecl, ctx),
buildLetArgumentPattern(loc, DC, "selfType", MetatypeType::get(selfType),
nullptr, ctx),
};
auto args = TuplePattern::createSimple(ctx, SourceLoc(), argPatterns,
SourceLoc());
args->setImplicit();
// Create the closure expression itself.
auto closure = new (ctx) ClosureExpr(args, SourceLoc(), SourceLoc(),
SourceLoc(), TypeLoc(),
/*discriminator*/ 0, materializeForSet);
// Generate the body of the closure.
SmallVector<ASTNode, 4> body;
generator(body, selfDecl, bufferDecl, callbackStorageDecl);
closure->setBody(BraceStmt::create(ctx, SourceLoc(), body, SourceLoc(),
IsImplicit),
/*isSingleExpression*/ false);
closure->setImplicit(IsImplicit);
// Call our special builtin to turn that into an opaque thin function.
auto result = buildCallToBuiltin(ctx, "makeMaterializeForSetCallback",
{ closure });
return result;
}
/// Build a builtin operation on a Builtin.UnsafeValueBuffer.
static Expr *buildValueBufferOperation(ASTContext &ctx, StringRef builtinName,
VarDecl *bufferDecl, Type valueType) {
// &buffer
Expr *bufferRef = new (ctx) DeclRefExpr(bufferDecl, SourceLoc(), IsImplicit);
bufferRef = new (ctx) InOutExpr(SourceLoc(), bufferRef, Type(), IsImplicit);
// T.self
Expr *metatypeRef = TypeExpr::createImplicit(valueType, ctx);
metatypeRef = new (ctx) DotSelfExpr(metatypeRef, SourceLoc(), SourceLoc());
metatypeRef->setImplicit(IsImplicit);
// Builtin.whatever(&buffer, T.self)
return buildCallToBuiltin(ctx, builtinName, { bufferRef, metatypeRef });
}
/// Build a call to Builtin.take.
static Expr *buildBuiltinTake(ASTContext &ctx, Expr *address,
Type valueType) {
// Builtin.take(address) as ValueType
Expr *result = buildCallToBuiltin(ctx, "take", { address });
result = new (ctx) CoerceExpr(result, SourceLoc(),
TypeLoc::withoutLoc(valueType));
result->setImplicit(IsImplicit);
return result;
}
/// Build an expression to initialize callback storage.
static ASTNode buildInitializeCallbackStorage(FuncDecl *materializeForSet,
Expr *initializer,
Type initializerType,
ASTContext &ctx) {
// let allocatedCallbackStorage =
// Builtin.allocateValueBuffer(&callbackStorage, IndexType.self))
VarDecl *callbackStorageDecl = getParamDeclAtIndex(materializeForSet, 1);
Expr *allocatedCallbackStorage =
buildValueBufferOperation(ctx, "allocValueBuffer", callbackStorageDecl,
initializerType);
// Builtin.initialize(indexArgs, allocatedCallbackStorage)
return buildCallToBuiltin(ctx, "initialize",
{ initializer, allocatedCallbackStorage });
}
/// Build an expression to take from callback storage.
static Expr *buildTakeFromCallbackStorage(VarDecl *storage, Type valueType,
ASTContext &ctx) {
Expr *address =
buildValueBufferOperation(ctx, "projectValueBuffer", storage, valueType);
return buildBuiltinTake(ctx, address, valueType);
}
namespace {
/// A reference to storage from the context of a materializeForSet
/// callback.
class CallbackStorageReferenceContext : public StorageReferenceContext {
VarDecl *Self;
VarDecl *CallbackStorage;
public:
CallbackStorageReferenceContext(VarDecl *self, VarDecl *callbackStorage)
: Self(self), CallbackStorage(callbackStorage) {}
virtual ~CallbackStorageReferenceContext() = default;
VarDecl *getSelfDecl() const override {
return Self;
}
Expr *getIndexRefExpr(ASTContext &ctx,
SubscriptDecl *subscript) const override {
return buildTakeFromCallbackStorage(CallbackStorage,
subscript->getIndicesType(), ctx);
}
};
}
/// Synthesize the body of a materializeForSet accessor for a
/// computed property.
static void synthesizeComputedMaterializeForSet(FuncDecl *materializeForSet,
AbstractStorageDecl *storage,
VarDecl *bufferDecl,
TypeChecker &TC) {
ASTContext &ctx = TC.Context;
SmallVector<ASTNode, 4> body;
AccessSemantics semantics;
// If the storage is dynamic, we must dynamically redispatch through the
// accessor. Otherwise, we can do a direct peer access.
if (needsDynamicMaterializeForSet(storage))
semantics = AccessSemantics::Ordinary;
else
semantics = AccessSemantics::DirectToAccessor;
// Builtin.initialize(self.property, buffer)
Expr *curValue = buildStorageReference(materializeForSet, storage,
semantics,
SelfAccessKind::Peer, TC);
Expr *bufferRef = new (ctx) DeclRefExpr(bufferDecl, SourceLoc(), IsImplicit);
body.push_back(buildCallToBuiltin(ctx, "initialize",
{ curValue, bufferRef }));
// If this is a subscript, preserve the index value:
if (auto subscript = dyn_cast<SubscriptDecl>(storage)) {
Expr *indices = buildSubscriptIndexReference(ctx, materializeForSet);
ASTNode initialize =
buildInitializeCallbackStorage(materializeForSet, indices,
subscript->getIndicesType(), ctx);
body.push_back(initialize);
}
// Build the callback.
Expr *callback =
buildMaterializeForSetCallback(ctx, materializeForSet, storage,
[&](SmallVectorImpl<ASTNode> &body,
VarDecl *selfDecl, VarDecl *bufferDecl,
VarDecl *callbackStorageDecl) {
// self.property = Builtin.take(buffer)
Expr *bufferRef =
new (ctx) DeclRefExpr(bufferDecl, SourceLoc(), IsImplicit);
Expr *value = buildBuiltinTake(ctx, bufferRef,
getTypeOfStorage(storage, TC));
Expr *storageRef =
buildStorageReference(
CallbackStorageReferenceContext{selfDecl, callbackStorageDecl},
storage, semantics,
SelfAccessKind::Peer, TC);
body.push_back(new (ctx) AssignExpr(storageRef, SourceLoc(),
value, IsImplicit));
// If this is a subscript, deallocate the subscript buffer:
if (auto subscript = dyn_cast<SubscriptDecl>(storage)) {
// Builtin.deallocValueBuffer(&callbackStorage, IndexType.self)
body.push_back(buildValueBufferOperation(ctx, "deallocValueBuffer",
callbackStorageDecl,
subscript->getIndicesType()));
}
});
// return (buffer, callback)
Expr *result = new (ctx) DeclRefExpr(bufferDecl, SourceLoc(), IsImplicit);
result = buildMaterializeForSetResult(ctx, result, callback);
body.push_back(new (ctx) ReturnStmt(SourceLoc(), result, IsImplicit));
SourceLoc loc = storage->getLoc();
materializeForSet->setBody(BraceStmt::create(ctx, loc, body, loc, true));
// Mark it transparent, there is no user benefit to this actually existing.
materializeForSet->getAttrs().add(new (ctx) TransparentAttr(IsImplicit));
TC.typeCheckDecl(materializeForSet, true);
// Register the accessor as an external decl if the storage was imported.
if (needsToBeRegisteredAsExternalDecl(storage))
TC.Context.addedExternalDecl(materializeForSet);
}
/// Build a direct call to an addressor from within a
/// materializeForSet method.
static Expr *buildCallToAddressor(FuncDecl *materializeForSet,
AbstractStorageDecl *storage,
VarDecl *bufferDecl,
FuncDecl *addressor,
ASTContext &ctx) {
// Build a direct reference to the addressor.
Expr *fn;
// Apply the self argument if applicable.
if (auto self = materializeForSet->getImplicitSelfDecl()) {
Expr *selfRef = new (ctx) DeclRefExpr(self, SourceLoc(), IsImplicit);
// if (addressor->computeSelfType(nullptr)->is<LValueType>()) {
// selfRef = new (ctx) InOutExpr(SourceLoc(), selfRef, Type(), IsImplicit);
// }
ValueDecl *localMembers[] = { addressor };
fn = new (ctx) OverloadedMemberRefExpr(selfRef, SourceLoc(),
ctx.AllocateCopy(localMembers),
SourceLoc(), IsImplicit, Type(),
AccessSemantics::DirectToStorage);
} else {
fn = new (ctx) DeclRefExpr(addressor, SourceLoc(), IsImplicit,
AccessSemantics::DirectToStorage);
}
// Apply the rest of the addressor arguments.
Expr *args;
if (isa<SubscriptDecl>(storage)) {
args = buildSubscriptIndexReference(ctx, materializeForSet);
} else {
args = TupleExpr::createImplicit(ctx, {}, {});
}
return new (ctx) CallExpr(fn, args, IsImplicit);
}
/// Given an expression of type UnsafeMutablePointer<T>, create an
/// expression of type Builtin.RawPointer.
static Expr *buildUnsafeMutablePointerToRawPointer(Expr *operand,
ASTContext &ctx) {
// Just directly drill in.
NominalTypeDecl *ptrType = ctx.getUnsafeMutablePointerDecl();
// If that doesn't work, just bail out; the result probably won't
// type-check, but there are worse failure modes for a broken stdlib.
if (!ptrType) return operand;
auto props = ptrType->getStoredProperties();
if (props.begin() == props.end()) return operand;
auto storageProp = props.front();
return new (ctx) MemberRefExpr(operand, SourceLoc(), storageProp,
SourceRange(), IsImplicit);
}
/// Synthesize the body of a materializeForSet accessor for an
/// addressed property.
static void synthesizeAddressedMaterializeForSet(FuncDecl *materializeForSet,
AbstractStorageDecl *storage,
VarDecl *bufferDecl,
TypeChecker &TC) {
ASTContext &ctx = TC.Context;
SmallVector<ASTNode, 4> body;
// Call the mutable addressor.
auto addressor = storage->getMutableAddressor();
Expr *addressorResult = buildCallToAddressor(materializeForSet, storage,
bufferDecl, addressor, ctx);
Expr *result;
Expr *callback;
switch (addressor->getAddressorKind()) {
case AddressorKind::NotAddressor:
llvm_unreachable("addressor is not an addressor?");
// If we have an unsafe addressor, this is easy: we just pull out
// the raw pointer and use that as the result.
case AddressorKind::Unsafe:
result = buildUnsafeMutablePointerToRawPointer(addressorResult, ctx);
callback = nullptr;
break;
case AddressorKind::Owning:
case AddressorKind::NativeOwning:
case AddressorKind::NativePinning: {
// We need to bind the result to a temporary variable.
// let temporary = addressor(self)(indices)
auto tempDecl = new (ctx) VarDecl(/*static*/ false, /*let*/ true,
SourceLoc(), ctx.getIdentifier("tmp"),
Type(), materializeForSet);
tempDecl->setImplicit(IsImplicit);
auto bindingPattern = new (ctx) NamedPattern(tempDecl, IsImplicit);
auto bindingDecl = PatternBindingDecl::create(ctx, /*static*/ SourceLoc(),
StaticSpellingKind::None,
SourceLoc(), bindingPattern,
addressorResult,
materializeForSet);
bindingDecl->setImplicit(IsImplicit);
body.push_back(bindingDecl);
body.push_back(tempDecl);
// This should be Builtin.NativePointer or something like it.
Type ownerType = [&]() -> Type {
switch (addressor->getAddressorKind()){
case AddressorKind::NotAddressor:
case AddressorKind::Unsafe:
llvm_unreachable("filtered out");
case AddressorKind::Owning:
return ctx.TheUnknownObjectType;
case AddressorKind::NativeOwning:
return ctx.TheNativeObjectType;
case AddressorKind::NativePinning:
return OptionalType::get(ctx.TheNativeObjectType);
}
llvm_unreachable("bad addressor kind");
}();
// Initialize the callback storage with the owner value, which is
// the second elemenet of the addressor result.
Expr *owner = new (ctx) DeclRefExpr(tempDecl, SourceLoc(), IsImplicit);
owner = new (ctx) TupleElementExpr(owner, SourceLoc(), /*field index*/ 1,
SourceLoc(), Type());
owner->setImplicit(IsImplicit);
body.push_back(buildInitializeCallbackStorage(materializeForSet, owner,
ownerType, ctx));
// The result is the first element of the addressor result.
result = new (ctx) DeclRefExpr(tempDecl, SourceLoc(), IsImplicit);
result = new (ctx) TupleElementExpr(result, SourceLoc(), /*field index*/ 0,
SourceLoc(), Type());
result->setImplicit(IsImplicit);
result = buildUnsafeMutablePointerToRawPointer(result, ctx);
// Build the callback.
callback = buildMaterializeForSetCallback(ctx, materializeForSet, storage,
[&](SmallVectorImpl<ASTNode> &body, VarDecl *selfDecl,
VarDecl *bufferDecl, VarDecl *callbackStorageDecl) {
// Pull the owner out of callback storage.
Expr *owner =
buildTakeFromCallbackStorage(callbackStorageDecl, ownerType, ctx);
// For an owning addressor, we can just drop the value we pulled out.
if (addressor->getAddressorKind() != AddressorKind::NativePinning) {
body.push_back(owner);
// For a pinning addressor, we have to unpin it.
} else {
Expr *unpin = buildCallToBuiltin(ctx, "unpin", { owner });
body.push_back(unpin);
}
// This should always be a no-op, but do it for the sake of formalism.
// Builtin.deallocValueBuffer(&callbackStorage, OwnerType.self)
body.push_back(buildValueBufferOperation(ctx, "deallocValueBuffer",
callbackStorageDecl,
ownerType));
});
break;
}
}
// return (buffer, callback)
result = buildMaterializeForSetResult(ctx, result, callback);
body.push_back(new (ctx) ReturnStmt(SourceLoc(), result, IsImplicit));
SourceLoc loc = storage->getLoc();
materializeForSet->setBody(BraceStmt::create(ctx, loc, body, loc));
// Mark it transparent, there is no user benefit to this actually existing.
materializeForSet->getAttrs().add(new (ctx) TransparentAttr(IsImplicit));
TC.typeCheckDecl(materializeForSet, true);
// Register the accessor as an external decl if the storage was imported.
if (needsToBeRegisteredAsExternalDecl(storage))
TC.Context.addedExternalDecl(materializeForSet);
}
void swift::synthesizeMaterializeForSet(FuncDecl *materializeForSet,
AbstractStorageDecl *storage,
TypeChecker &TC) {
VarDecl *bufferDecl = getFirstParamDecl(materializeForSet);
switch (storage->getStorageKind()) {
case AbstractStorageDecl::Stored:
case AbstractStorageDecl::Addressed:
llvm_unreachable("no accessors");
// We can use direct access to stored variables, but not if they're
// weak, unowned, or dynamic.
case AbstractStorageDecl::StoredWithTrivialAccessors: {
// Only variables can be Stored, and only variables can be weak/unowned.
auto var = cast<VarDecl>(storage);
if (var->getType()->is<ReferenceStorageType>()
|| needsDynamicMaterializeForSet(var)) {
synthesizeComputedMaterializeForSet(materializeForSet, storage,
bufferDecl, TC);
return;
}
synthesizeStoredMaterializeForSet(materializeForSet, storage,
bufferDecl, TC);
return;
}
// We should access these by calling mutableAddress.
case AbstractStorageDecl::AddressedWithTrivialAccessors:
case AbstractStorageDecl::ComputedWithMutableAddress:
synthesizeAddressedMaterializeForSet(materializeForSet, storage,
bufferDecl, TC);
return;
// These must be accessed with a getter/setter pair.
// TODO: StoredWithObservers and AddressedWithObservers could be
// made to work with the callback as long as there isn't a willSet.
case AbstractStorageDecl::StoredWithObservers:
case AbstractStorageDecl::InheritedWithObservers:
case AbstractStorageDecl::AddressedWithObservers:
case AbstractStorageDecl::Computed:
synthesizeComputedMaterializeForSet(materializeForSet, storage,
bufferDecl, TC);
return;
}
llvm_unreachable("bad abstract storage kind");
}
/// Given a VarDecl with a willSet: and/or didSet: specifier, synthesize the
/// (trivial) getter and the setter, which calls these.
void swift::synthesizeObservingAccessors(VarDecl *VD, TypeChecker &TC) {
assert(VD->hasObservers());
assert(VD->getGetter() && VD->getSetter() &&
!VD->getGetter()->hasBody() && !VD->getSetter()->hasBody() &&
"willSet/didSet var already has a getter or setter");
auto &Ctx = VD->getASTContext();
SourceLoc Loc = VD->getLoc();
// The getter is always trivial: just perform a (direct!) load of storage, or
// a call of a superclass getter if this is an override.
auto *Get = VD->getGetter();
synthesizeTrivialGetter(Get, VD, TC);
// Okay, the getter is done, create the setter now. Start by finding the
// decls for 'self' and 'value'.
auto *Set = VD->getSetter();
auto *SelfDecl = Set->getImplicitSelfDecl();
VarDecl *ValueDecl = nullptr;
Set->getBodyParamPatterns().back()->forEachVariable([&](VarDecl *VD) {
assert(!ValueDecl && "Already found 'value'?");
ValueDecl = VD;
});
// The setter loads the oldValue, invokes willSet with the incoming value,
// does a direct store, then invokes didSet with the oldValue.
SmallVector<ASTNode, 6> SetterBody;
// If there is a didSet, it will take the old value. Load it into a temporary
// 'let' so we have it for later.
// TODO: check the body of didSet to only do this load (which may call the
// superclass getter) if didSet takes an argument.
VarDecl *OldValue = nullptr;
if (VD->getDidSetFunc()) {
Expr *OldValueExpr
= createPropertyLoadOrCallSuperclassGetter(Set, VD, TC);
OldValue = new (Ctx) VarDecl(/*isStatic*/false, /*isLet*/ true,
SourceLoc(), Ctx.getIdentifier("tmp"),
Type(), Set);
OldValue->setImplicit();
auto *tmpPattern = new (Ctx) NamedPattern(OldValue, /*implicit*/ true);
auto tmpPBD = PatternBindingDecl::create(Ctx, SourceLoc(),
StaticSpellingKind::None,
SourceLoc(),
tmpPattern, OldValueExpr, Set);
tmpPBD->setImplicit();
SetterBody.push_back(tmpPBD);
SetterBody.push_back(OldValue);
}
// Create:
// (call_expr (dot_syntax_call_expr (decl_ref_expr(willSet)),
// (decl_ref_expr(self))),
// (declrefexpr(value)))
// or:
// (call_expr (decl_ref_expr(willSet)), (declrefexpr(value)))
if (auto willSet = VD->getWillSetFunc()) {
Expr *Callee = new (Ctx) DeclRefExpr(willSet, SourceLoc(), /*imp*/true);
auto *ValueDRE = new (Ctx) DeclRefExpr(ValueDecl, SourceLoc(), /*imp*/true);
if (SelfDecl) {
auto *SelfDRE = new (Ctx) DeclRefExpr(SelfDecl, SourceLoc(), /*imp*/true);
Callee = new (Ctx) DotSyntaxCallExpr(Callee, SourceLoc(), SelfDRE);
}
SetterBody.push_back(new (Ctx) CallExpr(Callee, ValueDRE, true));
// Make sure the didSet/willSet accessors are marked final if in a class.
if (!willSet->isFinal() &&
VD->getDeclContext()->isClassOrClassExtensionContext())
makeFinal(Ctx, willSet);
}
// Create an assignment into the storage or call to superclass setter.
auto *ValueDRE = new (Ctx) DeclRefExpr(ValueDecl, SourceLoc(), true);
createPropertyStoreOrCallSuperclassSetter(Set, ValueDRE, VD, SetterBody, TC);
// Create:
// (call_expr (dot_syntax_call_expr (decl_ref_expr(didSet)),
// (decl_ref_expr(self))),
// (decl_ref_expr(tmp)))
// or:
// (call_expr (decl_ref_expr(didSet)), (decl_ref_expr(tmp)))
if (auto didSet = VD->getDidSetFunc()) {
auto *OldValueExpr = new (Ctx) DeclRefExpr(OldValue, SourceLoc(),
/*impl*/true);
Expr *Callee = new (Ctx) DeclRefExpr(didSet, SourceLoc(), /*imp*/true);
if (SelfDecl) {
auto *SelfDRE = new (Ctx) DeclRefExpr(SelfDecl, SourceLoc(), /*imp*/true);
Callee = new (Ctx) DotSyntaxCallExpr(Callee, SourceLoc(), SelfDRE);
}
SetterBody.push_back(new (Ctx) CallExpr(Callee, OldValueExpr, true));
// Make sure the didSet/willSet accessors are marked final if in a class.
if (!didSet->isFinal() &&
VD->getDeclContext()->isClassOrClassExtensionContext())
makeFinal(Ctx, didSet);
}
Set->setBody(BraceStmt::create(Ctx, Loc, SetterBody, Loc, true));
// Type check the body of the getter and setter.
TC.typeCheckDecl(Get, true);
TC.typeCheckDecl(Get, false);
TC.typeCheckDecl(Set, true);
TC.typeCheckDecl(Set, false);
}
static void convertNSManagedStoredVarToComputed(VarDecl *VD, TypeChecker &TC) {
assert(VD->getStorageKind() == AbstractStorageDecl::Stored);
// Create the getter.
auto *Get = createGetterPrototype(VD, TC);
// Create the setter.
VarDecl *SetValueDecl = nullptr;
auto *Set = createSetterPrototype(VD, SetValueDecl, TC);
// Okay, we have both the getter and setter. Set them in VD.
VD->makeComputed(VD->getLoc(), Get, Set, nullptr, VD->getLoc());
TC.validateDecl(Get);
TC.validateDecl(Set);
// We've added some members to our containing class/extension, add them to
// the members list.
addMemberToContextIfNeeded(Get, VD->getDeclContext());
addMemberToContextIfNeeded(Set, VD->getDeclContext());
}
namespace {
/// This ASTWalker explores an expression tree looking for expressions (which
/// are DeclContext's) and changes their parent DeclContext to NewDC.
class RecontextualizeClosures : public ASTWalker {
DeclContext *NewDC;
public:
RecontextualizeClosures(DeclContext *NewDC) : NewDC(NewDC) {}
std::pair<bool, Expr *> walkToExprPre(Expr *E) override {
// If we find a closure, update its declcontext and do *not* walk into it.
if (auto CE = dyn_cast<AbstractClosureExpr>(E)) {
CE->setParent(NewDC);
return { false, E };
}
if (auto CLE = dyn_cast<CaptureListExpr>(E)) {
// Make sure to recontextualize any decls in the capture list as well.
for (auto &CLE : CLE->getCaptureList()) {
CLE.Var->setDeclContext(NewDC);
CLE.Init->setDeclContext(NewDC);
}
}
return { true, E };
}
/// We don't want to recurse into declarations or statements.
bool walkToDeclPre(Decl *) override { return false; }
std::pair<bool, Stmt*> walkToStmtPre(Stmt *S) override { return {false,S}; }
};
}
/// Synthesize the getter for an lazy property with the specified storage
/// vardecl.
static FuncDecl *completeLazyPropertyGetter(VarDecl *VD, VarDecl *Storage,
TypeChecker &TC) {
auto &Ctx = VD->getASTContext();
// The getter checks the optional, storing the initial value in if nil. The
// specific pattern we generate is:
// get {
// let tmp1 = storage
// if tmp1 {
// return tmp1!
// }
// let tmp2 : Ty = <<initializer expression>>
// storage = tmp2
// return tmp2
// }
auto *Get = VD->getGetter();
TC.validateDecl(Get);
SmallVector<ASTNode, 6> Body;
// Load the existing storage and store it into the 'tmp1' temporary.
auto *Tmp1VD = new (Ctx) VarDecl(/*isStatic*/false, /*isLet*/true,SourceLoc(),
Ctx.getIdentifier("tmp1"), Type(), Get);
Tmp1VD->setImplicit();
auto *Tmp1PBDPattern = new (Ctx) NamedPattern(Tmp1VD, /*implicit*/true);
auto *Tmp1Init = createPropertyLoadOrCallSuperclassGetter(Get, Storage, TC);
auto *Tmp1PBD = PatternBindingDecl::create(Ctx, /*StaticLoc*/SourceLoc(),
StaticSpellingKind::None,
/*VarLoc*/SourceLoc(),
Tmp1PBDPattern, Tmp1Init, Get);
Body.push_back(Tmp1PBD);
Body.push_back(Tmp1VD);
// Build the early return inside the if.
auto *Tmp1DRE = new (Ctx) DeclRefExpr(Tmp1VD, SourceLoc(), /*Implicit*/true,
AccessSemantics::DirectToStorage);
auto *EarlyReturnVal = new (Ctx) ForceValueExpr(Tmp1DRE, SourceLoc());
auto *Return = new (Ctx) ReturnStmt(SourceLoc(), EarlyReturnVal,
/*implicit*/true);
// Build the "if" around the early return.
Tmp1DRE = new (Ctx) DeclRefExpr(Tmp1VD, SourceLoc(), /*Implicit*/true,
AccessSemantics::DirectToStorage);
// Call through "hasValue" on the decl ref.
Tmp1DRE->setType(OptionalType::get(VD->getType()));
constraints::ConstraintSystem cs(TC,
VD->getDeclContext(),
constraints::ConstraintSystemOptions());
constraints::Solution solution(cs, constraints::Score());
auto HasValueExpr = solution.convertOptionalToBool(Tmp1DRE, nullptr);
Body.push_back(new (Ctx) IfStmt(SourceLoc(), HasValueExpr, Return,
/*elseloc*/SourceLoc(), /*else*/nullptr,
/*implicit*/ true, Ctx));
auto *Tmp2VD = new (Ctx) VarDecl(/*isStatic*/false, /*isLet*/true,
SourceLoc(), Ctx.getIdentifier("tmp2"),
VD->getType(), Get);
Tmp2VD->setImplicit();
// Take the initializer from the PatternBindingDecl for VD.
// TODO: This doesn't work with complicated patterns like:
// lazy var (a,b) = foo()
auto *InitValue = VD->getParentInitializer();
auto PBD = VD->getParentPatternBinding();
unsigned entryIndex = PBD->getPatternEntryIndexForVarDecl(VD);
PBD->setInit(entryIndex, nullptr);
PBD->setInitializerChecked(entryIndex);
// Recontextualize any closure declcontexts nested in the initializer to
// realize that they are in the getter function.
InitValue->walk(RecontextualizeClosures(Get));
Pattern *Tmp2PBDPattern = new (Ctx) NamedPattern(Tmp2VD, /*implicit*/true);
Tmp2PBDPattern = new (Ctx) TypedPattern(Tmp2PBDPattern,
TypeLoc::withoutLoc(VD->getType()),
/*implicit*/true);
auto *Tmp2PBD = PatternBindingDecl::create(Ctx, /*StaticLoc*/SourceLoc(),
StaticSpellingKind::None,
InitValue->getStartLoc(),
Tmp2PBDPattern, InitValue, Get);
Body.push_back(Tmp2PBD);
Body.push_back(Tmp2VD);
// Assign tmp2 into storage.
auto Tmp2DRE = new (Ctx) DeclRefExpr(Tmp2VD, SourceLoc(), /*Implicit*/true,
AccessSemantics::DirectToStorage);
createPropertyStoreOrCallSuperclassSetter(Get, Tmp2DRE, Storage, Body, TC);
// Return tmp2.
Tmp2DRE = new (Ctx) DeclRefExpr(Tmp2VD, SourceLoc(), /*Implicit*/true,
AccessSemantics::DirectToStorage);
Body.push_back(new (Ctx) ReturnStmt(SourceLoc(), Tmp2DRE, /*implicit*/true));
Get->setBody(BraceStmt::create(Ctx, VD->getLoc(), Body, VD->getLoc(),
/*implicit*/true));
return Get;
}
void TypeChecker::completeLazyVarImplementation(VarDecl *VD) {
assert(VD->getAttrs().hasAttribute<LazyAttr>());
assert(VD->getStorageKind() == AbstractStorageDecl::Computed &&
"variable not validated yet");
assert(!VD->isStatic() && "Static vars are already lazy on their own");
// Create the storage property as an optional of VD's type.
SmallString<64> NameBuf = VD->getName().str();
NameBuf += ".storage";
auto StorageName = Context.getIdentifier(NameBuf);
auto StorageTy = OptionalType::get(VD->getType());
auto *Storage = new (Context) VarDecl(/*isStatic*/false, /*isLet*/false,
VD->getLoc(), StorageName, StorageTy,
VD->getDeclContext());
Storage->setUserAccessible(false);
addMemberToContextIfNeeded(Storage, VD->getDeclContext(), VD);
// Create the pattern binding decl for the storage decl. This will get
// default initialized to nil.
Pattern *PBDPattern = new (Context) NamedPattern(Storage, /*implicit*/true);
PBDPattern = new (Context) TypedPattern(PBDPattern,
TypeLoc::withoutLoc(StorageTy),
/*implicit*/true);
auto *PBD = PatternBindingDecl::create(Context, /*staticloc*/SourceLoc(),
StaticSpellingKind::None,
/*varloc*/VD->getLoc(),
PBDPattern, /*init*/nullptr,
VD->getDeclContext());
PBD->setImplicit();
addMemberToContextIfNeeded(PBD, VD->getDeclContext());
// Now that we've got the storage squared away, synthesize the getter.
auto *Get = completeLazyPropertyGetter(VD, Storage, *this);
// The setter just forwards on to storage without materializing the initial
// value.
auto *Set = VD->getSetter();
validateDecl(Set);
VarDecl *SetValueDecl = getFirstParamDecl(Set);
// FIXME: This is wrong for observed properties.
synthesizeTrivialSetter(Set, Storage, SetValueDecl, *this);
// Mark the vardecl to be final, implicit, and private. In a class, this
// prevents it from being dynamically dispatched. Note that we do this after
// the accessors are set up, because we don't want the setter for the lazy
// property to inherit these properties from the storage.
if (VD->getDeclContext()->isClassOrClassExtensionContext())
makeFinal(Context, Storage);
Storage->setImplicit();
Storage->setAccessibility(Accessibility::Private);
Storage->setSetterAccessibility(Accessibility::Private);
typeCheckDecl(Get, true);
typeCheckDecl(Get, false);
typeCheckDecl(Set, true);
typeCheckDecl(Set, false);
}
/// Consider add a materializeForSet accessor to the given storage
/// decl (which has accessors).
void swift::maybeAddMaterializeForSet(AbstractStorageDecl *storage,
TypeChecker &TC) {
assert(storage->hasAccessorFunctions());
// Be idempotent. There are a bunch of places where we want to
// ensure that there's a materializeForSet accessor.
if (storage->getMaterializeForSetFunc()) return;
// Never add materializeForSet to readonly declarations.
if (!storage->getSetter()) return;
// We only need materializeForSet in polymorphic contexts:
auto containerTy =
storage->getDeclContext()->getDeclaredTypeOfContext();
if (!containerTy) return;
NominalTypeDecl *container = containerTy->getAnyNominal();
assert(container && "extension of non-nominal type?");
// - in non-ObjC protocols, but not protocol extensions.
if (auto protocol = dyn_cast<ProtocolDecl>(container)) {
if (protocol->isObjC()) return;
if (storage->getDeclContext()->isProtocolExtensionContext()) return;
// - in classes when the storage decl is not final and does
// not override a decl that requires a materializeForSet
} else if (isa<ClassDecl>(container)) {
if (storage->isFinal()) {
auto overridden = storage->getOverriddenDecl();
if (!overridden || !overridden->getMaterializeForSetFunc())
return;
}
// Structs and enums don't need this.
} else {
assert(isa<StructDecl>(container) || isa<EnumDecl>(container));
return;
}
addMaterializeForSet(storage, TC);
}
void swift::maybeAddAccessorsToVariable(VarDecl *var, TypeChecker &TC) {
if (var->getGetter() || var->isBeingTypeChecked() || isa<ParamDecl>(var))
return;
// Lazy variables need accessors.
if (var->getAttrs().hasAttribute<LazyAttr>()) {
var->setIsBeingTypeChecked();
auto *getter = createGetterPrototype(var, TC);
// lazy getters are mutating on an enclosing struct.
getter->setMutating();
getter->setAccessibility(var->getFormalAccess());
VarDecl *newValueParam = nullptr;
auto *setter = createSetterPrototype(var, newValueParam, TC);
var->makeComputed(var->getLoc(), getter, setter, nullptr,
var->getLoc());
var->setIsBeingTypeChecked(false);
TC.validateDecl(getter);
TC.validateDecl(setter);
addMemberToContextIfNeeded(getter, var->getDeclContext());
addMemberToContextIfNeeded(setter, var->getDeclContext());
return;
}
// Class instance variables also need accessors, because it affects
// vtable layout.
if (!var->hasAccessorFunctions() && !var->isImplicit() &&
var->getDeclContext()->isClassOrClassExtensionContext()) {
if (var->getAttrs().hasAttribute<NSManagedAttr>()) {
var->setIsBeingTypeChecked();
convertNSManagedStoredVarToComputed(var, TC);
var->setIsBeingTypeChecked(false);
} else {
// Variables in SIL mode don't get auto-synthesized getters.
bool isInSILMode = false;
if (auto sourceFile = var->getDeclContext()->getParentSourceFile())
isInSILMode = sourceFile->Kind == SourceFileKind::SIL;
if (!isInSILMode) {
var->setIsBeingTypeChecked();
addTrivialAccessorsToStorage(var, TC);
var->setIsBeingTypeChecked(false);
}
}
return;
}
}
/// \brief Create an implicit struct or class constructor.
///
/// \param decl The struct or class for which a constructor will be created.
/// \param ICK The kind of implicit constructor to create.
///
/// \returns The newly-created constructor, which has already been type-checked
/// (but has not been added to the containing struct or class).
ConstructorDecl *swift::createImplicitConstructor(TypeChecker &tc,
NominalTypeDecl *decl,
ImplicitConstructorKind ICK) {
ASTContext &context = tc.Context;
SourceLoc Loc = decl->getLoc();
Accessibility accessLevel = decl->getFormalAccess();
if (!decl->hasClangNode())
accessLevel = std::min(accessLevel, Accessibility::Internal);
// Determine the parameter type of the implicit constructor.
SmallVector<TuplePatternElt, 8> patternElts;
SmallVector<Identifier, 8> argNames;
if (ICK == ImplicitConstructorKind::Memberwise) {
assert(isa<StructDecl>(decl) && "Only struct have memberwise constructor");
// Computed and static properties are not initialized.
for (auto var : decl->getStoredProperties()) {
if (var->isImplicit())
continue;
tc.validateDecl(var);
// Initialized 'let' properties have storage, but don't get an argument
// to the memberwise initializer since they already have an initial
// value that cannot be overridden.
if (var->isLet() && var->getParentInitializer())
continue;
accessLevel = std::min(accessLevel, var->getFormalAccess());
auto varType = tc.getTypeOfRValue(var);
// If var is a lazy property, its value is provided for the underlying
// storage. We thus take an optional of the properties type. We only
// need to do this because the implicit constructor is added before all
// the properties are type checked. Perhaps init() synth should be moved
// later.
if (var->getAttrs().hasAttribute<LazyAttr>())
varType = OptionalType::get(varType);
// Create the parameter.
auto *arg = new (context) ParamDecl(/*IsLet*/true, Loc, var->getName(),
Loc, var->getName(), varType, decl);
arg->setImplicit();
argNames.push_back(var->getName());
Pattern *pattern = new (context) NamedPattern(arg);
pattern->setImplicit();
TypeLoc tyLoc = TypeLoc::withoutLoc(varType);
pattern = new (context) TypedPattern(pattern, tyLoc);
patternElts.push_back(TuplePatternElt(var->getName(), SourceLoc(),
pattern));
}
}
auto pattern = TuplePattern::create(context, Loc, patternElts, Loc);
pattern->setImplicit();
// Create the constructor.
DeclName name(context, context.Id_init, argNames);
Pattern *selfPat = buildImplicitSelfParameter(Loc, decl);
auto *ctor = new (context) ConstructorDecl(name, Loc, OTK_None, SourceLoc(),
selfPat, pattern,
nullptr, SourceLoc(), decl);
// Mark implicit.
ctor->setImplicit();
ctor->setAccessibility(accessLevel);
if (ICK == ImplicitConstructorKind::Memberwise)
ctor->setIsMemberwiseInitializer();
// If we are defining a default initializer for a class that has a superclass,
// it overrides the default initializer of its superclass. Add an implicit
// 'override' attribute.
if (auto classDecl = dyn_cast<ClassDecl>(decl)) {
if (classDecl->getSuperclass())
ctor->getAttrs().add(new (tc.Context) OverrideAttr(/*implicit=*/true));
}
// Type-check the constructor declaration.
tc.typeCheckDecl(ctor, /*isFirstPass=*/true);
// If the struct in which this constructor is being added was imported,
// add it as an external definition.
if (decl->hasClangNode()) {
tc.Context.addedExternalDecl(ctor);
}
return ctor;
}
/// Create an expression that references the variables in the given
/// pattern for, e.g., forwarding of these variables to another
/// function with the same signature.
static Expr *forwardArguments(TypeChecker &tc, ClassDecl *classDecl,
ConstructorDecl *toDecl,
Pattern *bodyPattern,
ArrayRef<Identifier> argumentNames) {
switch (bodyPattern->getKind()) {
#define PATTERN(Id, Parent)
#define REFUTABLE_PATTERN(Id, Parent) case PatternKind::Id:
#include "swift/AST/PatternNodes.def"
return nullptr;
case PatternKind::Paren: {
auto subExpr = forwardArguments(tc, classDecl, toDecl,
cast<ParenPattern>(bodyPattern)->getSubPattern(),
{ });
if (!subExpr) return nullptr;
// If there is a name for this single-argument thing, then form a tupleexpr.
if (argumentNames.size() != 1 || argumentNames[0].empty())
return new (tc.Context) ParenExpr(SourceLoc(), subExpr, SourceLoc(),
/*hasTrailingClosure=*/false);
return TupleExpr::createImplicit(tc.Context, subExpr, argumentNames);
}
case PatternKind::Tuple: {
auto bodyTuple = cast<TuplePattern>(bodyPattern);
SmallVector<Expr *, 4> values;
// FIXME: Can't forward varargs yet.
if (bodyTuple->hasVararg()) {
tc.diagnose(classDecl->getLoc(),
diag::unsupported_synthesize_init_variadic,
classDecl->getDeclaredType());
tc.diagnose(toDecl, diag::variadic_superclass_init_here);
return nullptr;
}
for (unsigned i = 0, n = bodyTuple->getNumElements(); i != n; ++i) {
// Forward the value.
auto subExpr = forwardArguments(tc, classDecl, toDecl,
bodyTuple->getElement(i).getPattern(),
{ });
if (!subExpr)
return nullptr;
values.push_back(subExpr);
// Dig out the name.
auto subPattern = bodyTuple->getElement(i).getPattern();
do {
if (auto typed = dyn_cast<TypedPattern>(subPattern)) {
subPattern = typed->getSubPattern();
continue;
}
if (auto paren = dyn_cast<ParenPattern>(subPattern)) {
subPattern = paren->getSubPattern();
continue;
}
break;
} while (true);
}
if (values.size() == 1 &&
(argumentNames.empty() || argumentNames[0].empty()))
return new (tc.Context) ParenExpr(SourceLoc(), values[0], SourceLoc(),
/*hasTrailingClosure=*/false);
return TupleExpr::createImplicit(tc.Context, values, argumentNames);
}
case PatternKind::Any:
case PatternKind::Named: {
auto decl = cast<NamedPattern>(bodyPattern)->getDecl();
Expr *declRef = new (tc.Context) DeclRefExpr(decl, SourceLoc(),
/*Implicit=*/true);
if (decl->getType()->is<InOutType>())
declRef = new (tc.Context) InOutExpr(SourceLoc(), declRef,
Type(), /*isImplicit=*/true);
return declRef;
}
case PatternKind::Typed:
return forwardArguments(tc, classDecl, toDecl,
cast<TypedPattern>(bodyPattern)->getSubPattern(),
argumentNames);
case PatternKind::Var:
return forwardArguments(tc, classDecl, toDecl,
cast<VarPattern>(bodyPattern)->getSubPattern(),
argumentNames);
}
}
/// Create a stub body that emits a fatal error message.
static void createStubBody(TypeChecker &tc, ConstructorDecl *ctor) {
auto unimplementedInitDecl = tc.Context.getUnimplementedInitializerDecl(&tc);
auto classDecl = ctor->getExtensionType()->getClassOrBoundGenericClass();
if (!unimplementedInitDecl) {
tc.diagnose(classDecl->getLoc(), diag::missing_unimplemented_init_runtime);
return;
}
// Create a call to Swift._unimplemented_initializer
auto loc = classDecl->getLoc();
Expr *fn = new (tc.Context) DeclRefExpr(unimplementedInitDecl, loc,
/*Implicit=*/true);
llvm::SmallString<64> buffer;
StringRef fullClassName = tc.Context.AllocateCopy(
(classDecl->getModuleContext()->getName().str() +
"." +
classDecl->getName().str()).toStringRef(buffer));
Expr *className = new (tc.Context) StringLiteralExpr(fullClassName, loc);
className = new (tc.Context) ParenExpr(loc, className, loc, false);
Expr *call = new (tc.Context) CallExpr(fn, className, /*Implicit=*/true);
ctor->setBody(BraceStmt::create(tc.Context, SourceLoc(),
ASTNode(call),
SourceLoc(),
/*Implicit=*/true));
// Note that this is a stub implementation.
ctor->setStubImplementation(true);
}
ConstructorDecl *
swift::createDesignatedInitOverride(TypeChecker &tc,
ClassDecl *classDecl,
ConstructorDecl *superclassCtor,
DesignatedInitKind kind) {
// Determine the initializer parameters.
Type superInitType = superclassCtor->getInitializerInterfaceType();
if (superInitType->is<GenericFunctionType>() ||
classDecl->getGenericParamsOfContext()) {
// FIXME: Handle generic initializers as well.
return nullptr;
}
auto &ctx = tc.Context;
// Create the 'self' declaration and patterns.
auto *selfDecl = new (ctx) ParamDecl(/*IsLet*/ true,
SourceLoc(), Identifier(),
SourceLoc(), ctx.Id_self,
Type(), classDecl);
selfDecl->setImplicit();
Pattern *selfBodyPattern
= new (ctx) NamedPattern(selfDecl, /*Implicit=*/true);
selfBodyPattern = new (ctx) TypedPattern(selfBodyPattern, TypeLoc());
// Create the initializer parameter patterns.
OptionSet<Pattern::CloneFlags> options = Pattern::Implicit;
options |= Pattern::Inherited;
Pattern *bodyParamPatterns
= superclassCtor->getBodyParamPatterns()[1]->clone(ctx, options);
// Fix up the default arguments in the type to refer to inherited default
// arguments.
// FIXME: If we weren't cloning the type along with the pattern, this would be
// a lot more direct.
Type argType = bodyParamPatterns->getType();
// Local function that maps default arguments to inherited default arguments.
std::function<Type(Type)> inheritDefaultArgs = [&](Type type) -> Type {
auto tuple = type->getAs<TupleType>();
if (!tuple)
return type;
bool anyChanged = false;
SmallVector<TupleTypeElt, 4> elements;
unsigned index = 0;
for (const auto &elt : tuple->getElements()) {
Type eltTy = elt.getType().transform(inheritDefaultArgs);
if (!eltTy)
return Type();
// If nothing has changed, just keep going.
if (!anyChanged && eltTy.getPointer() == elt.getType().getPointer() &&
(elt.getDefaultArgKind() == DefaultArgumentKind::None ||
elt.getDefaultArgKind() == DefaultArgumentKind::Inherited)) {
++index;
continue;
}
// If this is the first change we've seen, copy all of the previous
// elements.
if (!anyChanged) {
// Copy all of the previous elements.
for (unsigned i = 0; i != index; ++i) {
const TupleTypeElt &FromElt = tuple->getElement(i);
elements.push_back(TupleTypeElt(FromElt.getType(), FromElt.getName(),
FromElt.getDefaultArgKind(),
FromElt.isVararg()));
}
anyChanged = true;
}
// Add the new tuple element, with the new type, no initializer,
auto defaultArgKind = elt.getDefaultArgKind();
if (defaultArgKind != DefaultArgumentKind::None)
defaultArgKind = DefaultArgumentKind::Inherited;
elements.push_back(TupleTypeElt(eltTy, elt.getName(), defaultArgKind,
elt.isVararg()));
++index;
}
if (!anyChanged)
return type;
return TupleType::get(elements, ctx);
};
argType = argType.transform(inheritDefaultArgs);
bodyParamPatterns->setType(argType);
// Create the initializer declaration.
auto ctor = new (ctx) ConstructorDecl(superclassCtor->getFullName(),
classDecl->getBraces().Start,
superclassCtor->getFailability(),
SourceLoc(),
selfBodyPattern, bodyParamPatterns,
nullptr, SourceLoc(), classDecl);
ctor->setImplicit();
ctor->setAccessibility(std::min(classDecl->getFormalAccess(),
superclassCtor->getFormalAccess()));
// Make sure the constructor is only as available as its superclass's
// constructor.
AvailabilityInference::applyInferredAvailableAttrs(ctor, superclassCtor,
ctx);
// Configure 'self'.
GenericParamList *outerGenericParams = nullptr;
Type selfType = configureImplicitSelf(tc, ctor, outerGenericParams);
selfBodyPattern->setType(selfType);
cast<TypedPattern>(selfBodyPattern)->getSubPattern()->setType(selfType);
// Set the type of the initializer.
configureConstructorType(ctor, outerGenericParams, selfType,
bodyParamPatterns->getType(),
superclassCtor->isBodyThrowing());
if (superclassCtor->isObjC()) {
auto errorConvention = superclassCtor->getForeignErrorConvention();
markAsObjC(tc, ctor, ObjCReason::ImplicitlyObjC, errorConvention);
// Inherit the @objc name from the superclass initializer, if it
// has one.
if (auto objcAttr = superclassCtor->getAttrs().getAttribute<ObjCAttr>()) {
if (objcAttr->hasName()) {
auto *clonedAttr = objcAttr->clone(ctx);
// Set it to implicit to disable printing it for SIL.
clonedAttr->setImplicit(true);
ctor->getAttrs().add(clonedAttr);
}
}
}
if (superclassCtor->isRequired())
ctor->getAttrs().add(new (tc.Context) RequiredAttr(/*implicit=*/true));
// Wire up the overrides.
ctor->getAttrs().add(new (tc.Context) OverrideAttr(/*Implicit=*/true));
checkOverrides(tc, ctor);
if (kind == DesignatedInitKind::Stub) {
// Make this a stub implementation.
createStubBody(tc, ctor);
return ctor;
}
// Form the body of a chaining designated initializer.
assert(kind == DesignatedInitKind::Chaining);
// Reference to super.init.
Expr *superRef = new (ctx) SuperRefExpr(selfDecl, SourceLoc(),
/*Implicit=*/true);
Expr *ctorRef = new (ctx) UnresolvedConstructorExpr(superRef,
SourceLoc(),
SourceLoc(),
/*Implicit=*/true);
Expr *ctorArgs = forwardArguments(tc, classDecl, superclassCtor,
ctor->getBodyParamPatterns()[1],
ctor->getFullName().getArgumentNames());
if (!ctorArgs) {
// FIXME: We should be able to assert that this never happens,
// but there are currently holes when dealing with vararg
// initializers and _ parameters. Fail somewhat gracefully by
// generating a stub here.
createStubBody(tc, ctor);
return ctor;
}
Expr *superCall = new (ctx) CallExpr(ctorRef, ctorArgs, /*Implicit=*/true);
if (superclassCtor->isBodyThrowing()) {
superCall = new (ctx) TryExpr(SourceLoc(), superCall, Type(),
/*Implicit=*/true);
}
ctor->setBody(BraceStmt::create(tc.Context, SourceLoc(),
ASTNode(superCall),
SourceLoc(),
/*Implicit=*/true));
return ctor;
}
void TypeChecker::addImplicitDestructor(ClassDecl *CD) {
if (CD->hasDestructor() || CD->isInvalid())
return;
Pattern *selfPat = buildImplicitSelfParameter(CD->getLoc(), CD);
auto *DD = new (Context) DestructorDecl(Context.Id_deinit, CD->getLoc(),
selfPat, CD);
DD->setImplicit();
// Type-check the constructor declaration.
typeCheckDecl(DD, /*isFirstPass=*/true);
// Create an empty body for the destructor.
DD->setBody(BraceStmt::create(Context, CD->getLoc(), { }, CD->getLoc(),true));
CD->addMember(DD);
CD->setHasDestructor();
}