Files
swift-mirror/SwiftCompilerSources/Sources/SIL/DataStructures/Stack.swift

222 lines
7.1 KiB
Swift

//===--- Stack.swift - defines the Stack data structure -------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2022 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
import SILBridging
/// A very efficient implementation of a stack, which can also be iterated over.
///
/// A Stack is the best choice for things like worklists, etc., if no random
/// access is needed.
/// Compared to Array, it does not require any memory allocations, because it
/// uses a recycling bump pointer allocator for allocating the slabs.
/// All operations have (almost) zero cost.
///
/// This type should be a move-only type, but unfortunately we don't have move-only
/// types yet. Therefore it's needed to call `deinitialize()` explicitly to
/// destruct this data structure, e.g. in a `defer {}` block.
public struct Stack<Element> : CollectionLikeSequence {
private let bridgedContext: BridgedContext
private var firstSlab = BridgedContext.Slab(nil)
private var lastSlab = BridgedContext.Slab(nil)
private var endIndex: Int = 0
private static var slabCapacity: Int {
BridgedContext.Slab.getCapacity() / MemoryLayout<Element>.stride
}
private func allocate(after lastSlab: BridgedContext.Slab? = nil) -> BridgedContext.Slab {
let lastSlab = lastSlab ?? BridgedContext.Slab(nil)
let newSlab = bridgedContext.allocSlab(lastSlab)
UnsafeMutableRawPointer(newSlab.data!).bindMemory(to: Element.self, capacity: Stack.slabCapacity)
return newSlab
}
private static func element(in slab: BridgedContext.Slab, at index: Int) -> Element {
return pointer(in: slab, at: index).pointee
}
private static func pointer(in slab: BridgedContext.Slab, at index: Int) -> UnsafeMutablePointer<Element> {
return UnsafeMutableRawPointer(slab.data!).assumingMemoryBound(to: Element.self) + index
}
public struct Iterator : IteratorProtocol {
var slab: BridgedContext.Slab
var index: Int
let lastSlab: BridgedContext.Slab
let endIndex: Int
public mutating func next() -> Element? {
let end = (slab.data == lastSlab.data ? endIndex : slabCapacity)
guard index < end else { return nil }
let elem = Stack.element(in: slab, at: index)
index += 1
if index >= end && slab.data != lastSlab.data {
slab = slab.getNext()
index = 0
}
return elem
}
}
public init(_ context: some Context) { self.bridgedContext = context._bridged }
public func makeIterator() -> Iterator {
return Iterator(slab: firstSlab, index: 0, lastSlab: lastSlab, endIndex: endIndex)
}
public var first: Element? {
isEmpty ? nil : Stack.element(in: firstSlab, at: 0)
}
public var last: Element? {
isEmpty ? nil : Stack.element(in: lastSlab, at: endIndex &- 1)
}
public mutating func push(_ element: Element) {
if endIndex >= Stack.slabCapacity {
lastSlab = allocate(after: lastSlab)
endIndex = 0
} else if firstSlab.data == nil {
assert(endIndex == 0)
firstSlab = allocate()
lastSlab = firstSlab
}
Stack.pointer(in: lastSlab, at: endIndex).initialize(to: element)
endIndex += 1
}
/// The same as `push` to provide an Array-like append API.
public mutating func append(_ element: Element) { push(element) }
public mutating func append<S: Sequence>(contentsOf other: S) where S.Element == Element {
for elem in other {
append(elem)
}
}
public var isEmpty: Bool { return endIndex == 0 }
public mutating func pop() -> Element? {
if isEmpty {
return nil
}
assert(endIndex > 0)
endIndex -= 1
let elem = Stack.pointer(in: lastSlab, at: endIndex).move()
if endIndex == 0 {
if lastSlab.data == firstSlab.data {
_ = bridgedContext.freeSlab(lastSlab)
firstSlab.data = nil
lastSlab.data = nil
endIndex = 0
} else {
lastSlab = bridgedContext.freeSlab(lastSlab)
endIndex = Stack.slabCapacity
}
}
return elem
}
public mutating func removeAll() {
while pop() != nil { }
}
/// TODO: once we have move-only types, make this a real deinit.
public mutating func deinitialize() { removeAll() }
}
extension Stack {
/// Mark a stack location for future iteration.
///
/// TODO: Marker should be ~Escapable.
struct Marker {
let slab: BridgedContext.Slab
let index: Int
}
var top: Marker { Marker(slab: lastSlab, index: endIndex) }
struct Segment : CollectionLikeSequence {
let low: Marker
let high: Marker
init(in stack: Stack, low: Marker, high: Marker) {
if low.slab.data == nil {
assert(low.index == 0, "invalid empty stack marker")
// `low == nil` and `high == nil` is a valid empty segment,
// even though `assertValid(marker:)` would return false.
if high.slab.data != nil {
stack.assertValid(marker: high)
}
self.low = Marker(slab: stack.firstSlab, index: 0)
self.high = high
return
}
stack.assertValid(marker: low)
stack.assertValid(marker: high)
self.low = low
self.high = high
}
func makeIterator() -> Stack.Iterator {
return Iterator(slab: low.slab, index: low.index,
lastSlab: high.slab, endIndex: high.index)
}
}
/// Assert that `marker` is valid based on the current `top`.
///
/// This is an assert rather than a query because slabs can reuse
/// memory leading to a stale marker that appears valid.
func assertValid(marker: Marker) {
var currentSlab = lastSlab
var currentIndex = endIndex
while currentSlab.data != marker.slab.data {
assert(currentSlab.data != firstSlab.data, "Invalid stack marker")
currentSlab = currentSlab.getPrevious()
currentIndex = Stack.slabCapacity
}
assert(marker.index <= currentIndex, "Invalid stack marker")
}
/// Execute the `body` closure, passing it `self` for further
/// mutation of the stack and passing `marker` to mark the stack
/// position prior to executing `body`. `marker` must not escape the
/// `body` closure.
mutating func withMarker<R>(
_ body: (inout Stack<Element>, Marker) throws -> R) rethrows -> R {
return try body(&self, top)
}
/// Record a stack marker, execute a `body` closure, then execute a
/// `handleNewElements` closure with the Segment that contains all
/// elements that remain on the stack after being pushed on the
/// stack while executing `body`. `body` must push more elements
/// than it pops.
mutating func withMarker<R>(
pushElements body: (inout Stack) throws -> R,
withNewElements handleNewElements: ((Segment) -> ())
) rethrows -> R {
return try withMarker { (stack: inout Stack<Element>, marker: Marker) in
let result = try body(&stack)
handleNewElements(Segment(in: stack, low: marker, high: stack.top))
return result
}
}
}