Files
swift-mirror/lib/SILOptimizer/Utils/BasicBlockOptUtils.cpp
Andrew Trick e9d0b08706 Add utilities to support OSSA update after running SSAUpdater.
This directly adds support to BasicBlockCloner for updating OSSA.

It also adds a much more general-purpose GuaranteedPhiBorrowFixup
utility which can be used for more complicated SSA updates, in which
multiple phis need to be created. More generally, it handles adding
nested borrow scopes for guaranteed phis even when that phi is used by
other guaranteed phis.
2021-03-18 00:14:13 -07:00

402 lines
14 KiB
C++

//===--- BasicBlockOptUtils.cpp - SILOptimizer basic block utilities ------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2019 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SILOptimizer/Utils/BasicBlockOptUtils.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "swift/SILOptimizer/Utils/OwnershipOptUtils.h"
#include "swift/SILOptimizer/Utils/SILSSAUpdater.h"
using namespace swift;
/// Invoke \p visitor for each reachable block in \p f in worklist order (at
/// least one predecessor has been visited).
bool ReachableBlocks::visit(function_ref<bool(SILBasicBlock *)> visitor) {
// Walk over the CFG, starting at the entry block, until all reachable blocks
// are visited.
SILBasicBlock *entryBB = visited.getFunction()->getEntryBlock();
SmallVector<SILBasicBlock *, 8> worklist = {entryBB};
visited.insert(entryBB);
while (!worklist.empty()) {
SILBasicBlock *bb = worklist.pop_back_val();
if (!visitor(bb))
return false;
for (auto &succ : bb->getSuccessors()) {
if (visited.insert(succ))
worklist.push_back(succ);
}
}
return true;
}
/// Remove all instructions in the body of \p bb in safe manner by using
/// undef.
void swift::clearBlockBody(SILBasicBlock *bb) {
for (SILArgument *arg : bb->getArguments()) {
arg->replaceAllUsesWithUndef();
// To appease the ownership verifier, just set to None.
arg->setOwnershipKind(OwnershipKind::None);
}
// Instructions in the dead block may be used by other dead blocks. Replace
// any uses of them with undef values.
while (!bb->empty()) {
// Grab the last instruction in the bb.
auto *inst = &bb->back();
// Replace any still-remaining uses with undef values and erase.
inst->replaceAllUsesOfAllResultsWithUndef();
inst->eraseFromParent();
}
}
// Handle the mechanical aspects of removing an unreachable block.
void swift::removeDeadBlock(SILBasicBlock *bb) {
// Clear the body of bb.
clearBlockBody(bb);
// Now that the bb is empty, eliminate it.
bb->eraseFromParent();
}
bool swift::removeUnreachableBlocks(SILFunction &f) {
ReachableBlocks reachable(&f);
// Visit all the blocks without doing any extra work.
reachable.visit([](SILBasicBlock *) { return true; });
// Remove the blocks we never reached. Assume the entry block is visited.
// Reachable's visited set contains dangling pointers during this loop.
bool changed = false;
for (auto ii = std::next(f.begin()), end = f.end(); ii != end;) {
auto *bb = &*ii++;
if (!reachable.isVisited(bb)) {
removeDeadBlock(bb);
changed = true;
}
}
return changed;
}
//===----------------------------------------------------------------------===//
// BasicBlock Cloning
//===----------------------------------------------------------------------===//
// Return true if a guaranteed terminator result can be borrowed such that the
// nested borrow scope covers all its uses.
static bool canBorrowGuaranteedResult(SILValue guaranteedResult) {
if (guaranteedResult.getOwnershipKind() != OwnershipKind::Guaranteed) {
// Either this terminator forwards an owned value, or it is some legal
// conversion to a non-guaranteed value. Either way, not interesting.
return true;
}
SmallVector<Operand *, 16> usePoints;
return findInnerTransitiveGuaranteedUses(guaranteedResult, usePoints);
}
bool swift::canCloneTerminator(TermInst *termInst) {
// TODO: this is an awkward way to check for guaranteed terminator results.
for (Operand &oper : termInst->getAllOperands()) {
if (oper.getOperandOwnership() != OperandOwnership::ForwardingBorrow)
continue;
if (!ForwardingOperand(&oper).visitForwardedValues(
[&](SILValue termResult) {
return canBorrowGuaranteedResult(termResult);
})) {
return false;
}
}
return true;
}
/// Given a terminator result, either from the original or the cloned block,
/// update OSSA for any phis created for the result during edge splitting.
void BasicBlockCloner::updateOSSATerminatorResult(SILPhiArgument *termResult) {
assert(termResult->isTerminatorResult() && "precondition");
// If the terminator result is used by a phi, then it is invalid OSSA
// which was created by edge splitting.
for (Operand *termUse : termResult->getUses()) {
if (auto phiOper = PhiOperand(termUse)) {
createBorrowScopeForPhiOperands(phiOper.getValue());
}
}
}
// Cloning does not invalidate ownership lifetime. When it clones values, it
// also either clones the consumes, or creates the necessary phis that consume
// the new values on all paths. However, cloning may create new phis of
// inner guaranteed values. Since phis are reborrows, they are only allowed to
// use BorrowedValues. Therefore, we must create nested borrow scopes for any
// new phis whose arguments aren't BorrowedValues. Note that other newly created
// phis are themselves BorrowedValues, so only one level of nested borrow is
// needed per value, per new phi that the value reaches.
void BasicBlockCloner::updateOSSAAfterCloning() {
SmallVector<SILPhiArgument *, 4> updateSSAPhis;
if (!origBB->getParent()->hasOwnership()) {
updateSSAAfterCloning(updateSSAPhis);
return;
}
// If the original basic block has terminator results, then all phis in the
// exit blocks are new phis that used to be terminator results.
//
// Create nested borrow scopes for terminator results that were converted to
// phis during edge splitting. This is simpler to check before SSA update.
//
// This assumes that the phis introduced by update-SSA below cannot be users
// of the phis that were created in exitBBs during block cloning. Otherwise
// borrowPhiArguments would handle them twice.
auto *termInst = origBB->getTerminator();
// FIXME: cond_br args should not exist in OSSA
if (!isa<BranchInst>(termInst) && !isa<CondBranchInst>(termInst)) {
// Update all of the terminator results.
for (auto *succBB : origBB->getSuccessorBlocks()) {
for (SILArgument *termResult : succBB->getArguments()) {
updateOSSATerminatorResult(cast<SILPhiArgument>(termResult));
}
}
}
// Update SSA form before calling OSSA update utilities to maintain a layering
// of SIL invariants.
updateSSAAfterCloning(updateSSAPhis);
// Create nested borrow scopes for phis created during SSA update.
for (auto *phi : updateSSAPhis) {
createBorrowScopeForPhiOperands(phi);
}
}
void BasicBlockCloner::updateSSAAfterCloning(
SmallVectorImpl<SILPhiArgument *> &newPhis) {
// All instructions should have been checked by canCloneInstruction. But we
// still need to check the arguments.
for (auto arg : origBB->getArguments()) {
if ((needsSSAUpdate |= isUsedOutsideOfBlock(arg))) {
break;
}
}
if (!needsSSAUpdate)
return;
SILSSAUpdater ssaUpdater(&newPhis);
for (auto availValPair : availVals) {
auto inst = availValPair.first;
if (inst->use_empty())
continue;
SILValue newResult(availValPair.second);
SmallVector<UseWrapper, 16> useList;
// Collect the uses of the value.
for (auto *use : inst->getUses())
useList.push_back(UseWrapper(use));
ssaUpdater.initialize(inst->getType(), inst.getOwnershipKind());
ssaUpdater.addAvailableValue(origBB, inst);
ssaUpdater.addAvailableValue(getNewBB(), newResult);
if (useList.empty())
continue;
// Update all the uses.
for (auto useWrapper : useList) {
Operand *use = useWrapper; // unwrap
SILInstruction *user = use->getUser();
assert(user && "Missing user");
// Ignore uses in the same basic block.
if (user->getParent() == origBB)
continue;
ssaUpdater.rewriteUse(*use);
}
}
}
void BasicBlockCloner::sinkAddressProjections() {
// Because the address projections chains will be disjoint (an instruction
// in one chain cannot use the result of an instruction in another chain),
// the order they are sunk does not matter.
InstructionDeleter deleter;
for (auto ii = origBB->begin(), ie = origBB->end(); ii != ie;) {
bool canSink = sinkProj.analyzeAddressProjections(&*ii);
(void)canSink;
assert(canSink && "canCloneInstruction should catch this.");
sinkProj.cloneProjections();
assert((sinkProj.getInBlockDefs().empty() || needsSSAUpdate)
&& "canCloneInstruction should catch this.");
auto nextII = std::next(ii);
deleter.trackIfDead(&*ii);
ii = nextII;
}
deleter.cleanUpDeadInstructions();
}
// Populate 'projections' with the chain of address projections leading
// to and including 'inst'.
//
// Populate 'inBlockDefs' with all the non-address value definitions in
// the block that will be used outside this block after projection sinking.
//
// Return true on success, even if projections is empty.
bool SinkAddressProjections::analyzeAddressProjections(SILInstruction *inst) {
projections.clear();
inBlockDefs.clear();
SILBasicBlock *bb = inst->getParent();
auto pushOperandVal = [&](SILValue def) {
if (def->getParentBlock() != bb)
return true;
if (!def->getType().isAddress()) {
inBlockDefs.insert(def);
return true;
}
if (auto *addressProj = dyn_cast<SingleValueInstruction>(def)) {
if (addressProj->isPure()) {
projections.push_back(addressProj);
return true;
}
}
// Can't handle a multi-value or unclonable address producer.
return false;
};
// Check the given instruction for any address-type results.
for (auto result : inst->getResults()) {
if (!isUsedOutsideOfBlock(result))
continue;
if (!pushOperandVal(result))
return false;
}
// Recurse upward through address projections.
for (unsigned idx = 0; idx < projections.size(); ++idx) {
// Only one address result/operand can be handled per instruction.
if (projections.size() != idx + 1)
return false;
for (SILValue operandVal : projections[idx]->getOperandValues())
if (!pushOperandVal(operandVal))
return false;
}
return true;
}
// Clone the projections gathered by 'analyzeAddressProjections' at
// their use site outside this block.
bool SinkAddressProjections::cloneProjections() {
if (projections.empty())
return false;
SILBasicBlock *bb = projections.front()->getParent();
// Clone projections in last-to-first order.
for (unsigned idx = 0; idx < projections.size(); ++idx) {
auto *oldProj = projections[idx];
assert(oldProj->getParent() == bb);
// Reset transient per-projection sets.
usesToReplace.clear();
firstBlockUse.clear();
// Gather uses.
for (Operand *use : oldProj->getUses()) {
auto *useBB = use->getUser()->getParent();
if (useBB != bb) {
firstBlockUse.try_emplace(useBB, use);
usesToReplace.push_back(use);
}
}
// Replace uses. Uses must be handled in the same order they were discovered
// above.
//
// Avoid cloning a projection multiple times per block. This avoids extra
// projections, but also prevents the removal of DebugValue. If a
// projection's only remaining is DebugValue, then it is deleted along with
// the DebugValue.
for (Operand *use : usesToReplace) {
auto *useBB = use->getUser()->getParent();
auto *firstUse = firstBlockUse.lookup(useBB);
SingleValueInstruction *newProj;
if (use == firstUse)
newProj = cast<SingleValueInstruction>(oldProj->clone(use->getUser()));
else {
newProj = cast<SingleValueInstruction>(firstUse->get());
assert(newProj->getParent() == useBB);
newProj->moveFront(useBB);
}
use->set(newProj);
}
}
return true;
}
bool StaticInitCloner::add(SILInstruction *initVal) {
// Don't schedule an instruction twice for cloning.
if (numOpsToClone.count(initVal) != 0)
return true;
if (auto *funcRef = dyn_cast<FunctionRefInst>(initVal)) {
// We cannot inline non-public functions into functions which are serialized.
if (!getBuilder().isInsertingIntoGlobal() &&
getBuilder().getFunction().isSerialized() &&
!funcRef->getReferencedFunction()->hasValidLinkageForFragileRef()) {
return false;
}
}
ArrayRef<Operand> operands = initVal->getAllOperands();
numOpsToClone[initVal] = operands.size();
if (operands.empty()) {
// It's an instruction without operands, e.g. a literal. It's ready to be
// cloned first.
readyToClone.push_back(initVal);
} else {
// Recursively add all operands.
for (const Operand &operand : operands) {
if (!add(cast<SingleValueInstruction>(operand.get())))
return false;
}
}
return true;
}
SingleValueInstruction *
StaticInitCloner::clone(SingleValueInstruction *initVal) {
assert(numOpsToClone.count(initVal) != 0 && "initVal was not added");
if (!isValueCloned(initVal)) {
// Find the right order to clone: all operands of an instruction must be
// cloned before the instruction itself.
while (!readyToClone.empty()) {
SILInstruction *inst = readyToClone.pop_back_val();
// Clone the instruction into the SILGlobalVariable
visit(inst);
// Check if users of I can now be cloned.
for (SILValue result : inst->getResults()) {
for (Operand *use : result->getUses()) {
SILInstruction *user = use->getUser();
if (numOpsToClone.count(user) != 0 && --numOpsToClone[user] == 0)
readyToClone.push_back(user);
}
}
if (inst == initVal)
break;
}
}
return cast<SingleValueInstruction>(getMappedValue(initVal));
}