Files
swift-mirror/lib/AST/ModuleNameLookup.cpp
Jordan Rose eb4ade4462 Honor @testable import for internal decls in ValueDecl::isAccessibleFrom.
We can now use internal declarations safely and correctly in source files!
The remaining work is to make sure testable imports work reliably through
modules, which is important for debugging unit tests.

It's also possible this work will affect compile time, but for the most
part we don't have large quantities of internal declarations that are
being ignored, and some day we will strip them out of non-testable modules
altogether.

Part of rdar://problem/17732115

Swift SVN r26633
2015-03-27 16:36:46 +00:00

296 lines
12 KiB
C++

//===--- ModuleNameLookup.cpp - Name lookup within a module ----*- c++ -*--===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/AST/NameLookup.h"
#include "swift/AST/AST.h"
#include "swift/AST/LazyResolver.h"
#include "llvm/Support/raw_ostream.h"
using namespace swift;
using namespace namelookup;
namespace {
using ModuleLookupCache = llvm::SmallDenseMap<Module::ImportedModule,
TinyPtrVector<ValueDecl *>,
32>;
class SortCanType {
public:
bool operator()(CanType lhs, CanType rhs) const {
return std::less<TypeBase *>()(lhs.getPointer(), rhs.getPointer());
}
};
using CanTypeSet = llvm::SmallSet<CanType, 4, SortCanType>;
using NamedCanTypeSet =
llvm::DenseMap<Identifier, std::pair<ResolutionKind, CanTypeSet>>;
static_assert(ResolutionKind() == ResolutionKind::Overloadable,
"Entries in NamedCanTypeSet should be overloadable initially");
} // end anonymous namespace
/// Returns true if this particular ValueDecl is overloadable.
static bool isOverloadable(const ValueDecl *VD) {
return isa<FuncDecl>(VD) ||
isa<ConstructorDecl>(VD) ||
isa<SubscriptDecl>(VD);
}
static bool isValidOverload(CanTypeSet &overloads, const ValueDecl *VD) {
if (!isOverloadable(VD))
return overloads.empty();
if (overloads.count(VD->getType()->getCanonicalType()))
return false;
return true;
}
static bool isValidOverload(NamedCanTypeSet &overloads, const ValueDecl *VD) {
auto &entry = overloads[VD->getName()];
if (entry.first != ResolutionKind::Overloadable)
return false;
return isValidOverload(entry.second, VD);
}
/// Updates \p overloads with the types of the given decls.
///
/// \returns true if all of the given decls are overloadable, false if not.
static bool updateOverloadSet(CanTypeSet &overloads,
ArrayRef<ValueDecl *> decls) {
for (auto result : decls) {
if (!isOverloadable(result))
return false;
if (!result->hasType())
continue;
overloads.insert(result->getType()->getCanonicalType());
}
return true;
}
/// Updates \p overloads with the types of the given decls.
///
/// \returns true, since there can always be more overloadable decls.
static bool updateOverloadSet(NamedCanTypeSet &overloads,
ArrayRef<ValueDecl *> decls) {
for (auto result : decls) {
auto &entry = overloads[result->getName()];
if (!isOverloadable(result))
entry.first = ResolutionKind::Exact;
else if (!result->hasType())
continue;
else
entry.second.insert(result->getType()->getCanonicalType());
}
return true;
}
/// After finding decls by name lookup, filter based on the given
/// resolution kind and existing overload set and add them to \p results.
template <typename OverloadSetTy>
static ResolutionKind recordImportDecls(LazyResolver *typeResolver,
SmallVectorImpl<ValueDecl *> &results,
ArrayRef<ValueDecl *> newDecls,
OverloadSetTy &overloads,
ResolutionKind resolutionKind) {
switch (resolutionKind) {
case ResolutionKind::Overloadable: {
// Add new decls if they provide a new overload. Note that the new decls
// may be ambiguous with respect to each other, just not any existing decls.
std::copy_if(newDecls.begin(), newDecls.end(), std::back_inserter(results),
[&](ValueDecl *result) -> bool {
if (!result->hasType()) {
if (typeResolver)
typeResolver->resolveDeclSignature(result);
else
return true;
}
return isValidOverload(overloads, result);
});
// Update the overload set.
bool stillOverloadable = updateOverloadSet(overloads, newDecls);
return stillOverloadable ? ResolutionKind::Overloadable
: ResolutionKind::Exact;
}
case ResolutionKind::Exact:
// Add all decls. If they're ambiguous, they're ambiguous.
results.append(newDecls.begin(), newDecls.end());
return ResolutionKind::Exact;
case ResolutionKind::TypesOnly:
// Add type decls only. If they're ambiguous, they're ambiguous.
std::copy_if(newDecls.begin(), newDecls.end(), std::back_inserter(results),
[](const ValueDecl *VD) { return isa<TypeDecl>(VD); });
return ResolutionKind::TypesOnly;
}
llvm_unreachable("bad ResolutionKind");
}
/// Performs a qualified lookup into the given module and, if necessary, its
/// reexports, observing proper shadowing rules.
template <typename OverloadSetTy, typename CallbackTy>
static void lookupInModule(Module *module, Module::AccessPathTy accessPath,
SmallVectorImpl<ValueDecl *> &decls,
ResolutionKind resolutionKind, bool canReturnEarly,
LazyResolver *typeResolver,
ModuleLookupCache &cache,
const DeclContext *moduleScopeContext,
bool respectAccessControl,
ArrayRef<Module::ImportedModule> extraImports,
CallbackTy callback) {
ModuleLookupCache::iterator iter;
bool isNew;
std::tie(iter, isNew) = cache.insert({{accessPath, module}, {}});
if (!isNew) {
decls.append(iter->second.begin(), iter->second.end());
return;
}
size_t initialCount = decls.size();
SmallVector<ValueDecl *, 4> localDecls;
callback(module, accessPath, localDecls);
if (respectAccessControl) {
auto newEndIter = std::remove_if(localDecls.begin(), localDecls.end(),
[=](ValueDecl *VD) {
if (typeResolver) {
// Do not resolve values in a type context - doing so could potentially
// lead to an infinitely recursive validation loop.
if ((resolutionKind != ResolutionKind::TypesOnly) ||
dyn_cast<TypeDecl>(VD)) {
typeResolver->resolveDeclSignature(VD);
}
}
if (!VD->hasAccessibility())
return false;
return !VD->isAccessibleFrom(moduleScopeContext);
});
localDecls.erase(newEndIter, localDecls.end());
// This only applies to immediate imports of the top-level module.
if (moduleScopeContext && moduleScopeContext->getParentModule() != module)
moduleScopeContext = nullptr;
}
OverloadSetTy overloads;
resolutionKind = recordImportDecls(typeResolver, decls, localDecls,
overloads, resolutionKind);
bool foundDecls = decls.size() > initialCount;
if (!foundDecls || !canReturnEarly ||
resolutionKind == ResolutionKind::Overloadable) {
SmallVector<Module::ImportedModule, 8> reexports;
module->getImportedModules(reexports, Module::ImportFilter::Public);
reexports.append(extraImports.begin(), extraImports.end());
// Prefer scoped imports (import func Swift.max) to whole-module imports.
SmallVector<ValueDecl *, 8> unscopedValues;
SmallVector<ValueDecl *, 8> scopedValues;
for (auto next : reexports) {
// Filter any whole-module imports, and skip specific-decl imports if the
// import path doesn't match exactly.
Module::AccessPathTy combinedAccessPath;
if (accessPath.empty()) {
combinedAccessPath = next.first;
} else if (!next.first.empty() &&
!Module::isSameAccessPath(next.first, accessPath)) {
// If we ever allow importing non-top-level decls, it's possible the
// rule above isn't what we want.
assert(next.first.size() == 1 && "import of non-top-level decl");
continue;
} else {
combinedAccessPath = accessPath;
}
auto &resultSet = next.first.empty() ? unscopedValues : scopedValues;
lookupInModule<OverloadSetTy>(next.second, combinedAccessPath,
resultSet, resolutionKind, canReturnEarly,
typeResolver, cache, moduleScopeContext,
respectAccessControl, {}, callback);
}
// Add the results from scoped imports.
resolutionKind = recordImportDecls(typeResolver, decls, scopedValues,
overloads, resolutionKind);
// Add the results from unscoped imports.
foundDecls = decls.size() > initialCount;
if (!foundDecls || !canReturnEarly ||
resolutionKind == ResolutionKind::Overloadable) {
resolutionKind = recordImportDecls(typeResolver, decls, unscopedValues,
overloads, resolutionKind);
}
}
// Remove duplicated declarations.
llvm::SmallPtrSet<ValueDecl *, 4> knownDecls;
decls.erase(std::remove_if(decls.begin() + initialCount, decls.end(),
[&](ValueDecl *d) -> bool {
return !knownDecls.insert(d).second;
}),
decls.end());
auto &cachedValues = cache[{accessPath, module}];
cachedValues.insert(cachedValues.end(),
decls.begin() + initialCount,
decls.end());
}
void namelookup::lookupInModule(Module *startModule,
Module::AccessPathTy topAccessPath,
DeclName name,
SmallVectorImpl<ValueDecl *> &decls,
NLKind lookupKind,
ResolutionKind resolutionKind,
LazyResolver *typeResolver,
const DeclContext *moduleScopeContext,
ArrayRef<Module::ImportedModule> extraImports) {
assert(!moduleScopeContext || moduleScopeContext->isModuleScopeContext());
ModuleLookupCache cache;
bool respectAccessControl = startModule->Ctx.LangOpts.EnableAccessControl;
::lookupInModule<CanTypeSet>(startModule, topAccessPath, decls,
resolutionKind, /*canReturnEarly=*/true,
typeResolver, cache, moduleScopeContext,
respectAccessControl, extraImports,
[=](Module *module, Module::AccessPathTy path,
SmallVectorImpl<ValueDecl *> &localDecls) {
module->lookupValue(path, name, lookupKind, localDecls);
}
);
}
void namelookup::lookupVisibleDeclsInModule(
Module *M,
Module::AccessPathTy accessPath,
SmallVectorImpl<ValueDecl *> &decls,
NLKind lookupKind,
ResolutionKind resolutionKind,
LazyResolver *typeResolver,
const DeclContext *moduleScopeContext,
ArrayRef<Module::ImportedModule> extraImports) {
assert(!moduleScopeContext || moduleScopeContext->isModuleScopeContext());
ModuleLookupCache cache;
bool respectAccessControl = M->Ctx.LangOpts.EnableAccessControl;
::lookupInModule<NamedCanTypeSet>(M, accessPath, decls,
resolutionKind, /*canReturnEarly=*/false,
typeResolver, cache, moduleScopeContext,
respectAccessControl, extraImports,
[=](Module *module, Module::AccessPathTy path,
SmallVectorImpl<ValueDecl *> &localDecls) {
VectorDeclConsumer consumer(localDecls);
module->lookupVisibleDecls(path, consumer, lookupKind);
}
);
}