mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
* [AST] Remove stored TypeLoc from TypedPattern TypedPattern was only using this TypeLoc as a means to a TypeRepr, which caused it to store the pattern type twice (through the superclass and through the TypeLoc itself.) This also fixes a bug where deserializing a TypedPattern doesn't store the type correctly and generally cleans up TypedPattern initialization. Resolves rdar://44144435 * Address review comments
493 lines
15 KiB
C++
493 lines
15 KiB
C++
//===--- Pattern.cpp - Swift Language Pattern-Matching ASTs ---------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Pattern class and subclasses.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/AST/Pattern.h"
|
|
#include "swift/AST/ASTContext.h"
|
|
#include "swift/AST/Expr.h"
|
|
#include "swift/AST/ASTWalker.h"
|
|
#include "swift/AST/GenericEnvironment.h"
|
|
#include "swift/AST/TypeLoc.h"
|
|
#include "swift/Basic/Statistic.h"
|
|
#include "llvm/ADT/APFloat.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
using namespace swift;
|
|
|
|
/// Diagnostic printing of PatternKinds.
|
|
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &OS, PatternKind kind) {
|
|
switch (kind) {
|
|
case PatternKind::Paren:
|
|
return OS << "parenthesized pattern";
|
|
case PatternKind::Tuple:
|
|
return OS << "tuple pattern";
|
|
case PatternKind::Named:
|
|
return OS << "pattern variable binding";
|
|
case PatternKind::Any:
|
|
return OS << "'_' pattern";
|
|
case PatternKind::Typed:
|
|
return OS << "pattern type annotation";
|
|
case PatternKind::Is:
|
|
return OS << "prefix 'is' pattern";
|
|
case PatternKind::Expr:
|
|
return OS << "expression pattern";
|
|
case PatternKind::Var:
|
|
return OS << "'var' binding pattern";
|
|
case PatternKind::EnumElement:
|
|
return OS << "enum case matching pattern";
|
|
case PatternKind::OptionalSome:
|
|
return OS << "optional .Some matching pattern";
|
|
case PatternKind::Bool:
|
|
return OS << "bool matching pattern";
|
|
}
|
|
llvm_unreachable("bad PatternKind");
|
|
}
|
|
|
|
StringRef Pattern::getKindName(PatternKind K) {
|
|
switch (K) {
|
|
#define PATTERN(Id, Parent) case PatternKind::Id: return #Id;
|
|
#include "swift/AST/PatternNodes.def"
|
|
}
|
|
llvm_unreachable("bad PatternKind");
|
|
}
|
|
|
|
// Metaprogram to verify that every concrete class implements
|
|
// a 'static bool classof(const Pattern*)'.
|
|
template <bool fn(const Pattern*)> struct CheckClassOfPattern {
|
|
static const bool IsImplemented = true;
|
|
};
|
|
template <> struct CheckClassOfPattern<Pattern::classof> {
|
|
static const bool IsImplemented = false;
|
|
};
|
|
|
|
#define PATTERN(ID, PARENT) \
|
|
static_assert(CheckClassOfPattern<ID##Pattern::classof>::IsImplemented, \
|
|
#ID "Pattern is missing classof(const Pattern*)");
|
|
#include "swift/AST/PatternNodes.def"
|
|
|
|
// Metaprogram to verify that every concrete class implements
|
|
// 'SourceRange getSourceRange()'.
|
|
typedef const char (&TwoChars)[2];
|
|
template<typename Class>
|
|
inline char checkSourceRangeType(SourceRange (Class::*)() const);
|
|
inline TwoChars checkSourceRangeType(SourceRange (Pattern::*)() const);
|
|
|
|
/// getSourceRange - Return the full source range of the pattern.
|
|
SourceRange Pattern::getSourceRange() const {
|
|
switch (getKind()) {
|
|
#define PATTERN(ID, PARENT) \
|
|
case PatternKind::ID: \
|
|
static_assert(sizeof(checkSourceRangeType(&ID##Pattern::getSourceRange)) == 1, \
|
|
#ID "Pattern is missing getSourceRange()"); \
|
|
return cast<ID##Pattern>(this)->getSourceRange();
|
|
#include "swift/AST/PatternNodes.def"
|
|
}
|
|
|
|
llvm_unreachable("pattern type not handled!");
|
|
}
|
|
|
|
void Pattern::setDelayedInterfaceType(Type interfaceTy, DeclContext *dc) {
|
|
assert(interfaceTy->hasTypeParameter() && "Not an interface type");
|
|
Ty = interfaceTy;
|
|
ASTContext &ctx = interfaceTy->getASTContext();
|
|
ctx.DelayedPatternContexts[this] = dc;
|
|
Bits.Pattern.hasInterfaceType = true;
|
|
}
|
|
|
|
Type Pattern::getType() const {
|
|
assert(hasType());
|
|
|
|
// If this pattern has an interface type, map it into the context type.
|
|
if (Bits.Pattern.hasInterfaceType) {
|
|
ASTContext &ctx = Ty->getASTContext();
|
|
|
|
// Retrieve the generic environment to use for the mapping.
|
|
auto found = ctx.DelayedPatternContexts.find(this);
|
|
assert(found != ctx.DelayedPatternContexts.end());
|
|
auto dc = found->second;
|
|
|
|
if (auto genericEnv = dc->getGenericEnvironmentOfContext()) {
|
|
ctx.DelayedPatternContexts.erase(this);
|
|
Ty = genericEnv->mapTypeIntoContext(Ty);
|
|
const_cast<Pattern*>(this)->Bits.Pattern.hasInterfaceType = false;
|
|
}
|
|
}
|
|
|
|
return Ty;
|
|
}
|
|
|
|
/// getLoc - Return the caret location of the pattern.
|
|
SourceLoc Pattern::getLoc() const {
|
|
switch (getKind()) {
|
|
#define PATTERN(ID, PARENT) \
|
|
case PatternKind::ID: \
|
|
if (&Pattern::getLoc != &ID##Pattern::getLoc) \
|
|
return cast<ID##Pattern>(this)->getLoc(); \
|
|
break;
|
|
#include "swift/AST/PatternNodes.def"
|
|
}
|
|
|
|
return getStartLoc();
|
|
}
|
|
|
|
void Pattern::collectVariables(SmallVectorImpl<VarDecl *> &variables) const {
|
|
forEachVariable([&](VarDecl *VD) { variables.push_back(VD); });
|
|
}
|
|
|
|
VarDecl *Pattern::getSingleVar() const {
|
|
auto pattern = getSemanticsProvidingPattern();
|
|
if (auto named = dyn_cast<NamedPattern>(pattern))
|
|
return named->getDecl();
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
namespace {
|
|
class WalkToVarDecls : public ASTWalker {
|
|
const std::function<void(VarDecl*)> &fn;
|
|
public:
|
|
|
|
WalkToVarDecls(const std::function<void(VarDecl*)> &fn)
|
|
: fn(fn) {}
|
|
|
|
Pattern *walkToPatternPost(Pattern *P) override {
|
|
// Handle vars.
|
|
if (auto *Named = dyn_cast<NamedPattern>(P))
|
|
fn(Named->getDecl());
|
|
return P;
|
|
}
|
|
|
|
// Only walk into an expression insofar as it doesn't open a new scope -
|
|
// that is, don't walk into a closure body.
|
|
std::pair<bool, Expr *> walkToExprPre(Expr *E) override {
|
|
if (isa<ClosureExpr>(E)) {
|
|
return { false, E };
|
|
}
|
|
return { true, E };
|
|
}
|
|
|
|
// Don't walk into anything else.
|
|
std::pair<bool, Stmt *> walkToStmtPre(Stmt *S) override {
|
|
return { false, S };
|
|
}
|
|
bool walkToTypeLocPre(TypeLoc &TL) override { return false; }
|
|
bool walkToTypeReprPre(TypeRepr *T) override { return false; }
|
|
bool walkToParameterListPre(ParameterList *PL) override { return false; }
|
|
bool walkToDeclPre(Decl *D) override { return false; }
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
|
|
/// \brief apply the specified function to all variables referenced in this
|
|
/// pattern.
|
|
void Pattern::forEachVariable(llvm::function_ref<void(VarDecl *)> fn) const {
|
|
switch (getKind()) {
|
|
case PatternKind::Any:
|
|
case PatternKind::Bool:
|
|
return;
|
|
|
|
case PatternKind::Is:
|
|
if (auto SP = cast<IsPattern>(this)->getSubPattern())
|
|
SP->forEachVariable(fn);
|
|
return;
|
|
|
|
case PatternKind::Named:
|
|
fn(cast<NamedPattern>(this)->getDecl());
|
|
return;
|
|
|
|
case PatternKind::Paren:
|
|
case PatternKind::Typed:
|
|
case PatternKind::Var:
|
|
return getSemanticsProvidingPattern()->forEachVariable(fn);
|
|
|
|
case PatternKind::Tuple:
|
|
for (auto elt : cast<TuplePattern>(this)->getElements())
|
|
elt.getPattern()->forEachVariable(fn);
|
|
return;
|
|
|
|
case PatternKind::EnumElement:
|
|
if (auto SP = cast<EnumElementPattern>(this)->getSubPattern())
|
|
SP->forEachVariable(fn);
|
|
return;
|
|
|
|
case PatternKind::OptionalSome:
|
|
cast<OptionalSomePattern>(this)->getSubPattern()->forEachVariable(fn);
|
|
return;
|
|
|
|
case PatternKind::Expr:
|
|
// An ExprPattern only exists before sema has resolved a refutable pattern
|
|
// into a concrete pattern. We have to use an AST Walker to find the
|
|
// VarDecls buried down inside of it.
|
|
const_cast<Pattern*>(this)->walk(WalkToVarDecls(fn));
|
|
return;
|
|
}
|
|
}
|
|
|
|
/// \brief apply the specified function to all pattern nodes recursively in
|
|
/// this pattern. This is a pre-order traversal.
|
|
void Pattern::forEachNode(llvm::function_ref<void(Pattern*)> f) {
|
|
f(this);
|
|
|
|
switch (getKind()) {
|
|
// Leaf patterns have no recursion.
|
|
case PatternKind::Any:
|
|
case PatternKind::Named:
|
|
case PatternKind::Expr:// FIXME: expr nodes are not modeled right in general.
|
|
case PatternKind::Bool:
|
|
return;
|
|
|
|
case PatternKind::Is:
|
|
if (auto SP = cast<IsPattern>(this)->getSubPattern())
|
|
SP->forEachNode(f);
|
|
return;
|
|
|
|
case PatternKind::Paren:
|
|
return cast<ParenPattern>(this)->getSubPattern()->forEachNode(f);
|
|
case PatternKind::Typed:
|
|
return cast<TypedPattern>(this)->getSubPattern()->forEachNode(f);
|
|
case PatternKind::Var:
|
|
return cast<VarPattern>(this)->getSubPattern()->forEachNode(f);
|
|
|
|
case PatternKind::Tuple:
|
|
for (auto elt : cast<TuplePattern>(this)->getElements())
|
|
elt.getPattern()->forEachNode(f);
|
|
return;
|
|
|
|
case PatternKind::EnumElement: {
|
|
auto *OP = cast<EnumElementPattern>(this);
|
|
if (OP->hasSubPattern())
|
|
OP->getSubPattern()->forEachNode(f);
|
|
return;
|
|
}
|
|
case PatternKind::OptionalSome:
|
|
cast<OptionalSomePattern>(this)->getSubPattern()->forEachNode(f);
|
|
return;
|
|
}
|
|
}
|
|
|
|
bool Pattern::hasStorage() const {
|
|
bool HasStorage = false;
|
|
forEachVariable([&](VarDecl *VD) {
|
|
if (VD->hasStorage())
|
|
HasStorage = true;
|
|
});
|
|
|
|
return HasStorage;
|
|
}
|
|
|
|
/// Return true if this is a non-resolved ExprPattern which is syntactically
|
|
/// irrefutable.
|
|
static bool isIrrefutableExprPattern(const ExprPattern *EP) {
|
|
// If the pattern has a registered match expression, it's
|
|
// a type-checked ExprPattern.
|
|
if (EP->getMatchExpr()) return false;
|
|
|
|
auto expr = EP->getSubExpr();
|
|
while (true) {
|
|
// Drill into parens.
|
|
if (auto parens = dyn_cast<ParenExpr>(expr)) {
|
|
expr = parens->getSubExpr();
|
|
continue;
|
|
}
|
|
|
|
// A '_' is an untranslated AnyPattern.
|
|
if (isa<DiscardAssignmentExpr>(expr))
|
|
return true;
|
|
|
|
// Everything else is non-exhaustive.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// Return true if this pattern (or a subpattern) is refutable.
|
|
bool Pattern::isRefutablePattern() const {
|
|
bool foundRefutablePattern = false;
|
|
const_cast<Pattern*>(this)->forEachNode([&](Pattern *Node) {
|
|
|
|
// If this is an always matching 'is' pattern, then it isn't refutable.
|
|
if (auto *is = dyn_cast<IsPattern>(Node))
|
|
if (is->getCastKind() == CheckedCastKind::Coercion ||
|
|
is->getCastKind() == CheckedCastKind::BridgingCoercion)
|
|
return;
|
|
|
|
// If this is an ExprPattern that isn't resolved yet, do some simple
|
|
// syntactic checks.
|
|
// FIXME: This is unsound, since type checking will turn other more
|
|
// complicated patterns into non-refutable forms.
|
|
if (auto *ep = dyn_cast<ExprPattern>(Node))
|
|
if (isIrrefutableExprPattern(ep))
|
|
return;
|
|
|
|
switch (Node->getKind()) {
|
|
#define PATTERN(ID, PARENT) case PatternKind::ID: break;
|
|
#define REFUTABLE_PATTERN(ID, PARENT) \
|
|
case PatternKind::ID: foundRefutablePattern = true; break;
|
|
#include "swift/AST/PatternNodes.def"
|
|
}
|
|
});
|
|
|
|
return foundRefutablePattern;
|
|
}
|
|
|
|
/// Standard allocator for Patterns.
|
|
void *Pattern::operator new(size_t numBytes, const ASTContext &C) {
|
|
return C.Allocate(numBytes, alignof(Pattern));
|
|
}
|
|
|
|
/// Find the name directly bound by this pattern. When used as a
|
|
/// tuple element in a function signature, such names become part of
|
|
/// the type.
|
|
Identifier Pattern::getBoundName() const {
|
|
if (auto *NP = dyn_cast<NamedPattern>(getSemanticsProvidingPattern()))
|
|
return NP->getBoundName();
|
|
return Identifier();
|
|
}
|
|
|
|
Identifier NamedPattern::getBoundName() const {
|
|
return Var->getName();
|
|
}
|
|
|
|
|
|
/// Allocate a new pattern that matches a tuple.
|
|
TuplePattern *TuplePattern::create(ASTContext &C, SourceLoc lp,
|
|
ArrayRef<TuplePatternElt> elts, SourceLoc rp,
|
|
Optional<bool> implicit) {
|
|
if (!implicit.hasValue())
|
|
implicit = !lp.isValid();
|
|
|
|
unsigned n = elts.size();
|
|
void *buffer = C.Allocate(totalSizeToAlloc<TuplePatternElt>(n),
|
|
alignof(TuplePattern));
|
|
TuplePattern *pattern = ::new (buffer) TuplePattern(lp, n, rp, *implicit);
|
|
std::uninitialized_copy(elts.begin(), elts.end(),
|
|
pattern->getTrailingObjects<TuplePatternElt>());
|
|
return pattern;
|
|
}
|
|
|
|
Pattern *TuplePattern::createSimple(ASTContext &C, SourceLoc lp,
|
|
ArrayRef<TuplePatternElt> elements,
|
|
SourceLoc rp,
|
|
Optional<bool> implicit) {
|
|
assert(lp.isValid() == rp.isValid());
|
|
|
|
if (elements.size() == 1 &&
|
|
elements[0].getPattern()->getBoundName().empty()) {
|
|
auto &first = const_cast<TuplePatternElt&>(elements.front());
|
|
return new (C) ParenPattern(lp, first.getPattern(), rp, implicit);
|
|
}
|
|
|
|
return create(C, lp, elements, rp, implicit);
|
|
}
|
|
|
|
SourceRange TuplePattern::getSourceRange() const {
|
|
if (LPLoc.isValid())
|
|
return { LPLoc, RPLoc };
|
|
auto Fields = getElements();
|
|
if (Fields.empty())
|
|
return {};
|
|
return { Fields.front().getPattern()->getStartLoc(),
|
|
Fields.back().getPattern()->getEndLoc() };
|
|
}
|
|
|
|
TypedPattern::TypedPattern(Pattern *pattern, TypeRepr *tr,
|
|
Optional<bool> implicit)
|
|
: Pattern(PatternKind::Typed), SubPattern(pattern), PatTypeRepr(tr) {
|
|
if (implicit ? *implicit : tr && !tr->getSourceRange().isValid())
|
|
setImplicit();
|
|
Bits.TypedPattern.IsPropagatedType = false;
|
|
}
|
|
|
|
TypeLoc TypedPattern::getTypeLoc() const {
|
|
TypeLoc loc = TypeLoc(PatTypeRepr);
|
|
|
|
if (hasType())
|
|
loc.setType(getType());
|
|
|
|
return loc;
|
|
}
|
|
|
|
SourceLoc TypedPattern::getLoc() const {
|
|
if (SubPattern->isImplicit() && PatTypeRepr)
|
|
return PatTypeRepr->getSourceRange().Start;
|
|
|
|
return SubPattern->getLoc();
|
|
}
|
|
|
|
SourceRange TypedPattern::getSourceRange() const {
|
|
if (isImplicit() || isPropagatedType()) {
|
|
// If a TypedPattern is implicit, then its type is definitely implicit, so
|
|
// we should ignore its location. On the other hand, the sub-pattern can
|
|
// be explicit or implicit.
|
|
return SubPattern->getSourceRange();
|
|
}
|
|
|
|
if (!PatTypeRepr)
|
|
return SourceRange();
|
|
|
|
if (SubPattern->isImplicit())
|
|
return PatTypeRepr->getSourceRange();
|
|
|
|
return { SubPattern->getSourceRange().Start,
|
|
PatTypeRepr->getSourceRange().End };
|
|
}
|
|
|
|
/// Construct an ExprPattern.
|
|
ExprPattern::ExprPattern(Expr *e, bool isResolved, Expr *matchExpr,
|
|
VarDecl *matchVar,
|
|
Optional<bool> implicit)
|
|
: Pattern(PatternKind::Expr), SubExprAndIsResolved(e, isResolved),
|
|
MatchExpr(matchExpr), MatchVar(matchVar) {
|
|
assert(!matchExpr || e->isImplicit() == matchExpr->isImplicit());
|
|
if (implicit.hasValue() ? *implicit : e->isImplicit())
|
|
setImplicit();
|
|
}
|
|
|
|
SourceLoc ExprPattern::getLoc() const {
|
|
return getSubExpr()->getLoc();
|
|
}
|
|
|
|
SourceRange ExprPattern::getSourceRange() const {
|
|
return getSubExpr()->getSourceRange();
|
|
}
|
|
|
|
// See swift/Basic/Statistic.h for declaration: this enables tracing Patterns, is
|
|
// defined here to avoid too much layering violation / circular linkage
|
|
// dependency.
|
|
|
|
struct PatternTraceFormatter : public UnifiedStatsReporter::TraceFormatter {
|
|
void traceName(const void *Entity, raw_ostream &OS) const {
|
|
if (!Entity)
|
|
return;
|
|
const Pattern *P = static_cast<const Pattern *>(Entity);
|
|
if (const NamedPattern *NP = dyn_cast<NamedPattern>(P)) {
|
|
OS << NP->getBoundName();
|
|
}
|
|
}
|
|
void traceLoc(const void *Entity, SourceManager *SM,
|
|
clang::SourceManager *CSM, raw_ostream &OS) const {
|
|
if (!Entity)
|
|
return;
|
|
const Pattern *P = static_cast<const Pattern *>(Entity);
|
|
P->getSourceRange().print(OS, *SM, false);
|
|
}
|
|
};
|
|
|
|
static PatternTraceFormatter TF;
|
|
|
|
template<>
|
|
const UnifiedStatsReporter::TraceFormatter*
|
|
FrontendStatsTracer::getTraceFormatter<const Pattern *>() {
|
|
return &TF;
|
|
}
|