Files
swift-mirror/lib/IRGen/IRGenFunction.cpp
Roman Levenstein ec04b22145 Properly propagate the calling convention into LLVM's call instructions.
Each runtime function definition in RuntimeFunctions.def states which calling convention
should be used for this runtime function.  But IRGen and LLVMPasses were not always
properly propagating this declared calling convention all the way down to llvm's Call instructions.
In many cases, the standard C convention was set for the call irrespective of the actual calling
convention defined for a given runtime function. As a result, incorrect code was generated.

This commit tries to fix all those places, where such a mismatch was found. In many cases this is
achieved by defining a helper function CreateCall in such a way that makes sure that the call instruction
gets the same calling convention as the one used by its callee operand.
2016-02-25 05:30:59 -08:00

236 lines
8.3 KiB
C++

//===--- IRGenFunction.cpp - Swift Per-Function IR Generation -------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements basic setup and teardown for the class which
// performs IR generation for function bodies.
//
//===----------------------------------------------------------------------===//
#include "swift/Basic/SourceLoc.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/raw_ostream.h"
#include "Explosion.h"
#include "IRGenDebugInfo.h"
#include "IRGenFunction.h"
#include "IRGenModule.h"
#include "Linking.h"
#include "LoadableTypeInfo.h"
using namespace swift;
using namespace irgen;
IRGenFunction::IRGenFunction(IRGenModule &IGM,
llvm::Function *Fn,
const SILDebugScope *DbgScope,
Optional<SILLocation> DbgLoc)
: IGM(IGM), Builder(IGM.getLLVMContext()),
CurFn(Fn), DbgScope(DbgScope)
{
// Make sure the instructions in this function are attached its debug scope.
if (IGM.DebugInfo) {
// Functions, especially artificial thunks and closures, are often
// generated on-the-fly while we are in the middle of another
// function. Be nice and preserve the current debug location until
// after we're done with this function.
IGM.DebugInfo->pushLoc();
}
emitPrologue();
}
IRGenFunction::~IRGenFunction() {
emitEpilogue();
// Restore the debug location.
if (IGM.DebugInfo) IGM.DebugInfo->popLoc();
// Tear down any side-table data structures.
if (LocalTypeData) destroyLocalTypeData();
}
/// Call the llvm.memcpy intrinsic. The arguments need not already
/// be of i8* type.
void IRGenFunction::emitMemCpy(llvm::Value *dest, llvm::Value *src,
Size size, Alignment align) {
emitMemCpy(dest, src, IGM.getSize(size), align);
}
void IRGenFunction::emitMemCpy(llvm::Value *dest, llvm::Value *src,
llvm::Value *size, Alignment align) {
Builder.CreateMemCpy(dest, src, size, align.getValue(), false);
}
void IRGenFunction::emitMemCpy(Address dest, Address src, Size size) {
emitMemCpy(dest, src, IGM.getSize(size));
}
void IRGenFunction::emitMemCpy(Address dest, Address src, llvm::Value *size) {
// Map over to the inferior design of the LLVM intrinsic.
emitMemCpy(dest.getAddress(), src.getAddress(), size,
std::min(dest.getAlignment(), src.getAlignment()));
}
static llvm::Value *emitAllocatingCall(IRGenFunction &IGF,
llvm::Value *fn,
std::initializer_list<llvm::Value*> args,
const llvm::Twine &name) {
auto allocAttrs = IGF.IGM.getAllocAttrs();
llvm::CallInst *call =
IGF.Builder.CreateCall(fn, makeArrayRef(args.begin(), args.size()));
call->setAttributes(allocAttrs);
return call;
}
/// Emit a 'raw' allocation, which has no heap pointer and is
/// not guaranteed to be zero-initialized.
llvm::Value *IRGenFunction::emitAllocRawCall(llvm::Value *size,
llvm::Value *alignMask,
const llvm::Twine &name) {
// For now, all we have is swift_slowAlloc.
return emitAllocatingCall(*this, IGM.getSlowAllocFn(),
{size, alignMask},
name);
}
/// Emit a heap allocation.
llvm::Value *IRGenFunction::emitAllocObjectCall(llvm::Value *metadata,
llvm::Value *size,
llvm::Value *alignMask,
const llvm::Twine &name) {
// For now, all we have is swift_allocObject.
return emitAllocatingCall(*this, IGM.getAllocObjectFn(),
{ metadata, size, alignMask }, name);
}
llvm::Value *IRGenFunction::emitInitStackObjectCall(llvm::Value *metadata,
llvm::Value *object,
const llvm::Twine &name) {
llvm::CallInst *call =
Builder.CreateCall(IGM.getInitStackObjectFn(), { metadata, object }, name);
call->setDoesNotThrow();
return call;
}
llvm::Value *IRGenFunction::emitVerifyEndOfLifetimeCall(llvm::Value *object,
const llvm::Twine &name) {
llvm::CallInst *call =
Builder.CreateCall(IGM.getVerifyEndOfLifetimeFn(), { object }, name);
call->setDoesNotThrow();
return call;
}
void IRGenFunction::emitAllocBoxCall(llvm::Value *typeMetadata,
llvm::Value *&box,
llvm::Value *&valueAddress) {
auto attrs = llvm::AttributeSet::get(IGM.LLVMContext,
llvm::AttributeSet::FunctionIndex,
llvm::Attribute::NoUnwind);
llvm::CallInst *call =
Builder.CreateCall(IGM.getAllocBoxFn(), typeMetadata);
call->setAttributes(attrs);
box = Builder.CreateExtractValue(call, 0);
valueAddress = Builder.CreateExtractValue(call, 1);
}
void IRGenFunction::emitDeallocBoxCall(llvm::Value *box,
llvm::Value *typeMetadata) {
auto attrs = llvm::AttributeSet::get(IGM.LLVMContext,
llvm::AttributeSet::FunctionIndex,
llvm::Attribute::NoUnwind);
llvm::CallInst *call =
Builder.CreateCall(IGM.getDeallocBoxFn(), box);
call->setCallingConv(IGM.RuntimeCC);
call->setAttributes(attrs);
}
llvm::Value *IRGenFunction::emitProjectBoxCall(llvm::Value *box,
llvm::Value *typeMetadata) {
llvm::Attribute::AttrKind attrKinds[] = {
llvm::Attribute::NoUnwind,
llvm::Attribute::ReadNone,
};
auto attrs = llvm::AttributeSet::get(IGM.LLVMContext,
llvm::AttributeSet::FunctionIndex,
attrKinds);
llvm::CallInst *call =
Builder.CreateCall(IGM.getProjectBoxFn(), box);
call->setCallingConv(IGM.RuntimeCC);
call->setAttributes(attrs);
return call;
}
static void emitDeallocatingCall(IRGenFunction &IGF, llvm::Constant *fn,
std::initializer_list<llvm::Value *> args) {
auto cc = IGF.IGM.RuntimeCC;
if (auto fun = dyn_cast<llvm::Function>(fn))
cc = fun->getCallingConv();
llvm::CallInst *call =
IGF.Builder.CreateCall(fn, makeArrayRef(args.begin(), args.size()));
call->setCallingConv(cc);
call->setDoesNotThrow();
}
/// Emit a 'raw' deallocation, which has no heap pointer and is not
/// guaranteed to be zero-initialized.
void IRGenFunction::emitDeallocRawCall(llvm::Value *pointer,
llvm::Value *size,
llvm::Value *alignMask) {
// For now, all we have is swift_slowDealloc.
return emitDeallocatingCall(*this, IGM.getSlowDeallocFn(),
{pointer, size, alignMask});
}
void IRGenFunction::emitFakeExplosion(const TypeInfo &type,
Explosion &explosion) {
if (!isa<LoadableTypeInfo>(type)) {
explosion.add(llvm::UndefValue::get(type.getStorageType()->getPointerTo()));
return;
}
ExplosionSchema schema = cast<LoadableTypeInfo>(type).getSchema();
for (auto &element : schema) {
llvm::Type *elementType;
if (element.isAggregate()) {
elementType = element.getAggregateType()->getPointerTo();
} else {
elementType = element.getScalarType();
}
explosion.add(llvm::UndefValue::get(elementType));
}
}
void IRGenFunction::unimplemented(SourceLoc Loc, StringRef Message) {
return IGM.unimplemented(Loc, Message);
}
// Debug output for Explosions.
void Explosion::print(llvm::raw_ostream &OS) {
for (auto value : makeArrayRef(Values).slice(NextValue)) {
value->print(OS);
OS << '\n';
}
}
void Explosion::dump() {
print(llvm::errs());
}