Files
swift-mirror/lib/AST/RequirementMachine/RequirementMachineRequests.cpp
Kavon Farvardin ec4a125f3e NCGenerics: ext's might not infer invertible req's
If the extension adds conformance to an invertible protocol, it's
confusing for people to also infer conditional requirements on the
generic parameters for those invertible protocols. This came up in the
review of SE-427.
2024-06-12 14:44:22 -07:00

1020 lines
38 KiB
C++

//===--- RequirementMachineRequests.cpp - Request evaluator requests ------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the main entry points for computing minimized generic
// signatures using the requirement machine via the request evaluator.
//
// There are three requests:
//
// - RequirementSignatureRequest computes protocol requirement signatures from
// user-written requirements.
// - AbstractGenericSignatureRequest computes minimal generic signatures from a
// set of abstract Requirements.
// - InferredGenericSignatureRequest computes minimal generic signatures from a
// set of user-written requirements on a parsed generic declaration.
//
// Each request begins by constructing some desugared requirements using the
// entry points in RequirementLowering.cpp.
//
// The desugared requirements are fed into a new requirement machine instance,
// which is then asked to produce a minimal set of rewrite rules. These rules
// are converted into minimal canonical Requirements using the entry points in
// RuleBuilder.cpp.
//
// The actual logic for finding a minimal set of rewrite rules is implemented in
// HomotopyReduction.cpp and MinimalConformances.cpp.
//
// Routines for constructing Requirements from Rules are implemented in
// RequirementBuilder.cpp.
//
// This process is actually iterated to implement "concrete equivalence class
// splitting", a compatibility behavior to produce the same results as the
// GenericSignatureBuilder in certain esoteric edge cases:
//
// ------------------------
// / Desugared Requirement /
// ------------------------
// |
// | +---------------------+
// | | |
// v v |
// +-------------+ |
// | RuleBuilder | |
// +-------------+ |
// | |
// v |
// +--------------+ |
// | Minimization | |
// +--------------+ |
// | |
// v |
// +--------------------+ |
// | RequirementBuilder | |
// +--------------------+ |
// | |
// v |
// -------------- |
// / Requirement / |
// -------------- |
// | |
// v |
// +------------------------------------+ |
// | Split concrete equivalence classes | ----+
// +------------------------------------+
// |
// v
// --------------
// / Requirement /
// --------------
//
// This transformation is described in splitConcreteEquivalenceClasses() below.
//
//===----------------------------------------------------------------------===//
#include "RequirementMachine.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Decl.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/LazyResolver.h"
#include "swift/AST/Requirement.h"
#include "swift/AST/RequirementSignature.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/AST/TypeRepr.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/Statistic.h"
#include <memory>
#include <vector>
#include "RequirementLowering.h"
using namespace swift;
using namespace rewriting;
/// Hack for GenericSignatureBuilder compatibility. We might end up with a
/// same-type requirement between type parameters where one of them has an
/// implied concrete type requirement. In this case, split it up into two
/// concrete type requirements.
static bool shouldSplitConcreteEquivalenceClass(
Requirement req,
const ProtocolDecl *proto,
const RequirementMachine *machine) {
return (req.getKind() == RequirementKind::SameType &&
req.getSecondType()->isTypeParameter() &&
machine->isConcreteType(req.getSecondType(), proto));
}
/// Returns true if this generic signature contains abstract same-type
/// requirements between concrete type parameters. In this case, we split
/// the abstract same-type requirements into pairs of concrete type
/// requirements, and minimize the signature again.
static bool shouldSplitConcreteEquivalenceClasses(
ArrayRef<Requirement> requirements,
const ProtocolDecl *proto,
const RequirementMachine *machine) {
for (auto req : requirements) {
if (shouldSplitConcreteEquivalenceClass(req, proto, machine))
return true;
}
return false;
}
/// Same as the above, but with the requirements of a protocol connected
/// component.
static bool shouldSplitConcreteEquivalenceClasses(
const llvm::DenseMap<const ProtocolDecl *, RequirementSignature> &protos,
const RequirementMachine *machine) {
for (const auto &pair : protos) {
if (shouldSplitConcreteEquivalenceClasses(pair.second.getRequirements(),
pair.first, machine))
return true;
}
return false;
}
/// Replace each same-type requirement 'T == U' where 'T' (and therefore 'U')
/// is known to equal a concrete type 'C' with a pair of requirements
/// 'T == C' and 'U == C'. We build the signature again in this case, since
/// one of the two requirements will be redundant, but we don't know which
/// ahead of time.
static void splitConcreteEquivalenceClasses(
ASTContext &ctx,
ArrayRef<Requirement> requirements,
const ProtocolDecl *proto,
const RequirementMachine *machine,
ArrayRef<GenericTypeParamType *> genericParams,
SmallVectorImpl<StructuralRequirement> &splitRequirements,
unsigned &attempt) {
bool debug = machine->getDebugOptions().contains(
DebugFlags::SplitConcreteEquivalenceClass);
unsigned maxAttempts =
ctx.LangOpts.RequirementMachineMaxSplitConcreteEquivClassAttempts;
if (attempt >= maxAttempts) {
llvm::errs() << "Splitting concrete equivalence classes did not "
<< "reach fixed point after " << attempt << " attempts.\n";
llvm::errs() << "Last attempt produced these requirements:\n";
for (auto req : requirements) {
req.dump(llvm::errs());
llvm::errs() << "\n";
}
machine->dump(llvm::errs());
abort();
}
splitRequirements.clear();
if (debug) {
llvm::dbgs() << "\n# Splitting concrete equivalence classes:\n";
}
for (auto req : requirements) {
if (shouldSplitConcreteEquivalenceClass(req, proto, machine)) {
auto concreteType = machine->getConcreteType(
req.getSecondType(), genericParams, proto);
Requirement firstReq(RequirementKind::SameType,
req.getFirstType(), concreteType);
Requirement secondReq(RequirementKind::SameType,
req.getSecondType(), concreteType);
splitRequirements.push_back({firstReq, SourceLoc()});
splitRequirements.push_back({secondReq, SourceLoc()});
if (debug) {
llvm::dbgs() << "- First split: ";
firstReq.dump(llvm::dbgs());
llvm::dbgs() << "\n- Second split: ";
secondReq.dump(llvm::dbgs());
llvm::dbgs() << "\n";
}
continue;
}
splitRequirements.push_back({req, SourceLoc()});
if (debug) {
llvm::dbgs() << "- Not split: ";
req.dump(llvm::dbgs());
llvm::dbgs() << "\n";
}
}
}
/// Same as the above, but with the requirements of a protocol connected
/// component.
static void splitConcreteEquivalenceClasses(
ASTContext &ctx,
const llvm::DenseMap<const ProtocolDecl *, RequirementSignature> &protos,
const RequirementMachine *machine,
llvm::DenseMap<const ProtocolDecl *,
SmallVector<StructuralRequirement, 4>> &splitProtos,
unsigned &attempt) {
for (const auto &pair : protos) {
const auto *proto = pair.first;
auto genericParams = proto->getGenericSignature().getGenericParams();
splitConcreteEquivalenceClasses(ctx, pair.second.getRequirements(),
proto, machine, genericParams,
splitProtos[proto],
attempt);
}
}
/// Builds the requirement signatures for each protocol in this strongly
/// connected component.
llvm::DenseMap<const ProtocolDecl *, RequirementSignature>
RequirementMachine::computeMinimalProtocolRequirements() {
auto protos = System.getProtocols();
assert(protos.size() > 0 &&
"Not a protocol connected component rewrite system");
System.minimizeRewriteSystem(Map);
if (Dump) {
llvm::dbgs() << "Minimized rewrite system:\n";
dump(llvm::dbgs());
}
auto rules = System.getMinimizedProtocolRules();
auto &ctx = Context.getASTContext();
// Note that we build 'result' by iterating over 'protos' rather than
// 'rules'; this is intentional, so that even if a protocol has no
// rules, we still end up creating an entry for it in 'result'.
llvm::DenseMap<const ProtocolDecl *, RequirementSignature> result;
for (const auto *proto : protos) {
auto genericParams = proto->getGenericSignature().getGenericParams();
const auto &entry = rules[proto];
std::vector<Requirement> reqs;
std::vector<ProtocolTypeAlias> aliases;
buildRequirementsFromRules(entry.Requirements,
entry.TypeAliases,
genericParams,
/*reconstituteSugar=*/true,
reqs, aliases);
result[proto] = RequirementSignature(ctx.AllocateCopy(reqs),
ctx.AllocateCopy(aliases),
getErrors());
}
return result;
}
RequirementSignature
RequirementSignatureRequest::evaluate(Evaluator &evaluator,
ProtocolDecl *proto) const {
ASTContext &ctx = proto->getASTContext();
// First check if we have a deserializable requirement signature.
if (proto->hasLazyRequirementSignature()) {
// FIXME: (transitional) increment the redundant "always-on" counter.
if (ctx.Stats)
++ctx.Stats->getFrontendCounters().NumLazyRequirementSignaturesLoaded;
auto contextData = static_cast<LazyProtocolData *>(
ctx.getOrCreateLazyContextData(proto, nullptr));
SmallVector<Requirement, 2> requirements;
SmallVector<ProtocolTypeAlias, 2> typeAliases;
contextData->loader->loadRequirementSignature(
proto, contextData->requirementSignatureData,
requirements, typeAliases);
return RequirementSignature(ctx.AllocateCopy(requirements),
ctx.AllocateCopy(typeAliases));
}
auto &rewriteCtx = ctx.getRewriteContext();
// We build requirement signatures for all protocols in a strongly connected
// component at the same time.
auto component = rewriteCtx.startComputingRequirementSignatures(proto);
SWIFT_DEFER {
rewriteCtx.finishComputingRequirementSignatures(proto);
};
SmallVector<RequirementError, 4> errors;
// Collect user-written requirements from the protocols in this connected
// component.
llvm::DenseMap<const ProtocolDecl *,
SmallVector<StructuralRequirement, 4>> protos;
for (const auto *proto : component) {
auto &requirements = protos[proto];
for (auto req : proto->getStructuralRequirements())
requirements.push_back(req);
for (auto req : proto->getTypeAliasRequirements())
requirements.push_back({req, SourceLoc()});
}
if (rewriteCtx.getDebugOptions().contains(DebugFlags::Timers)) {
rewriteCtx.beginTimer("RequirementSignatureRequest");
llvm::dbgs() << "[";
for (auto *proto : component)
llvm::dbgs() << " " << proto->getName();
llvm::dbgs() << " ]\n";
}
SWIFT_DEFER {
if (rewriteCtx.getDebugOptions().contains(DebugFlags::Timers)) {
rewriteCtx.endTimer("RequirementSignatureRequest");
llvm::dbgs() << "[";
for (auto *proto : component)
llvm::dbgs() << " " << proto->getName();
llvm::dbgs() << " ]\n";
}
};
unsigned attempt = 0;
for (;;) {
for (const auto *otherProto : component) {
auto &requirements = protos[otherProto];
// Preprocess requirements to eliminate conformances on type parameters
// which are made concrete.
if (ctx.LangOpts.EnableRequirementMachineConcreteContraction) {
SmallVector<StructuralRequirement, 4> contractedRequirements;
bool debug = rewriteCtx.getDebugOptions()
.contains(DebugFlags::ConcreteContraction);
if (performConcreteContraction(requirements, contractedRequirements,
errors, debug)) {
std::swap(contractedRequirements, requirements);
}
}
}
// Heap-allocate the requirement machine to save stack space.
std::unique_ptr<RequirementMachine> machine(new RequirementMachine(
rewriteCtx));
auto status = machine->initWithProtocolWrittenRequirements(component, protos);
// If completion failed, diagnose an error and return a dummy signature.
if (status.first != CompletionResult::Success) {
// All we can do at this point is diagnose and give each protocol an empty
// requirement signature.
for (const auto *otherProto : component) {
ctx.Diags.diagnose(otherProto->getLoc(),
diag::requirement_machine_completion_failed,
/*protocol=*/1,
unsigned(status.first));
auto rule = machine->getRuleAsStringForDiagnostics(status.second);
ctx.Diags.diagnose(otherProto->getLoc(),
diag::requirement_machine_completion_rule,
rule);
if (otherProto != proto) {
ctx.evaluator.cacheOutput(
RequirementSignatureRequest{const_cast<ProtocolDecl *>(otherProto)},
RequirementSignature::getPlaceholderRequirementSignature(
otherProto, GenericSignatureErrorFlags::CompletionFailed));
}
}
return RequirementSignature::getPlaceholderRequirementSignature(
proto, GenericSignatureErrorFlags::CompletionFailed);
}
auto minimalRequirements = machine->computeMinimalProtocolRequirements();
// Don't bother splitting concrete equivalence classes if there were invalid
// requirements, because the signature is not going to be ABI anyway.
if (!machine->getErrors().contains(
GenericSignatureErrorFlags::HasInvalidRequirements)) {
if (shouldSplitConcreteEquivalenceClasses(minimalRequirements, machine.get())) {
++attempt;
splitConcreteEquivalenceClasses(ctx, minimalRequirements,
machine.get(), protos, attempt);
continue;
}
}
bool debug = machine->getDebugOptions().contains(DebugFlags::Minimization);
// The requirement signature for the actual protocol that the result
// was kicked off with.
std::optional<RequirementSignature> result;
if (debug) {
llvm::dbgs() << "\nRequirement signatures:\n";
}
// Cache the requirement signatures for all other protocols in this
// connected component.
for (const auto &pair : minimalRequirements) {
auto *otherProto = pair.first;
const auto &reqs = pair.second;
// Dump the result if requested.
if (debug) {
llvm::dbgs() << "- Protocol " << otherProto->getName() << ": ";
auto sig = GenericSignature::get(
otherProto->getGenericSignature().getGenericParams(),
reqs.getRequirements());
PrintOptions opts;
opts.ProtocolQualifiedDependentMemberTypes = true;
sig.print(llvm::dbgs(), opts);
llvm::dbgs() << "\n";
}
// Don't call setRequirementSignature() on the original proto; the
// request evaluator will do it for us.
if (otherProto == proto)
result = reqs;
else {
auto temp = reqs;
ctx.evaluator.cacheOutput(
RequirementSignatureRequest{const_cast<ProtocolDecl *>(otherProto)},
std::move(temp));
}
}
// FIXME: We don't have the inverses from desugaring available here!
SmallVector<InverseRequirement, 2> missingInverses;
// Diagnose redundant requirements and conflicting requirements.
machine->computeRequirementDiagnostics(errors, missingInverses,
proto->getLoc());
diagnoseRequirementErrors(ctx, errors,
AllowConcreteTypePolicy::NestedAssocTypes);
for (auto *protocol : machine->System.getProtocols()) {
auto selfType = protocol->getSelfInterfaceType();
auto concrete = machine->getConcreteType(selfType,
machine->getGenericParams(),
protocol);
if (!concrete || concrete->hasError())
continue;
protocol->diagnose(diag::requires_generic_param_made_equal_to_concrete,
selfType);
}
if (!machine->getErrors()) {
// If this signature was minimized without errors or non-redundant
// concrete conformances, we can re-use the requirement machine for
// subsequent queries, instead of building a new requirement machine
// from the minimized signature.
rewriteCtx.installRequirementMachine(proto, std::move(machine));
}
// Return the result for the specific protocol this request was kicked off on.
return *result;
}
}
/// Builds the top-level generic signature requirements for this rewrite system.
GenericSignature
RequirementMachine::computeMinimalGenericSignature(
bool reconstituteSugar) {
assert(!Sig &&
"Already computed minimal generic signature");
assert(System.getProtocols().empty() &&
"Not a top-level generic signature rewrite system");
assert(!Params.empty() &&
"Not a from-source top-level generic signature rewrite system");
System.minimizeRewriteSystem(Map);
if (Dump) {
llvm::dbgs() << "Minimized rewrite system:\n";
dump(llvm::dbgs());
}
auto rules = System.getMinimizedGenericSignatureRules();
std::vector<Requirement> reqs;
std::vector<ProtocolTypeAlias> aliases;
buildRequirementsFromRules(rules, ArrayRef<unsigned>(), getGenericParams(),
reconstituteSugar, reqs, aliases);
assert(aliases.empty());
auto sig = GenericSignature::get(getGenericParams(), reqs);
// Remember the signature for generic signature queries. In particular,
// getConformancePath() needs the current requirement machine's
// generic signature.
Sig = sig.getCanonicalSignature();
return sig;
}
/// Check whether the inputs to the \c AbstractGenericSignatureRequest are
/// all canonical.
static bool isCanonicalRequest(GenericSignature baseSignature,
ArrayRef<GenericTypeParamType *> genericParams,
ArrayRef<Requirement> requirements) {
if (baseSignature && !baseSignature->isCanonical())
return false;
for (auto gp : genericParams) {
if (!gp->isCanonical())
return false;
}
for (const auto &req : requirements) {
if (!req.isCanonical())
return false;
}
return true;
}
GenericSignatureWithError
AbstractGenericSignatureRequest::evaluate(
Evaluator &evaluator,
const GenericSignatureImpl *baseSignatureImpl,
SmallVector<GenericTypeParamType *, 2> addedParameters,
SmallVector<Requirement, 2> addedRequirements,
bool allowInverses) const {
GenericSignature baseSignature = GenericSignature{baseSignatureImpl};
// If nothing is added to the base signature, just return the base
// signature.
if (addedParameters.empty() && addedRequirements.empty())
return GenericSignatureWithError(baseSignature, GenericSignatureErrors());
ASTContext &ctx = addedParameters.empty()
? addedRequirements.front().getFirstType()->getASTContext()
: addedParameters.front()->getASTContext();
SmallVector<GenericTypeParamType *, 4> genericParams(
baseSignature.getGenericParams().begin(),
baseSignature.getGenericParams().end());
genericParams.append(
addedParameters.begin(),
addedParameters.end());
// If there are no added requirements, we can form the signature directly
// with the added parameters.
if (addedRequirements.empty() && !allowInverses) {
auto result = GenericSignature::get(genericParams,
baseSignature.getRequirements());
return GenericSignatureWithError(result, GenericSignatureErrors());
}
// If the request is non-canonical, we won't need to build our own
// generic signature builder.
if (!isCanonicalRequest(baseSignature, addedParameters, addedRequirements)) {
// Canonicalize the inputs so we can form the canonical request.
auto canBaseSignature = baseSignature.getCanonicalSignature();
SmallVector<GenericTypeParamType *, 2> canAddedParameters;
canAddedParameters.reserve(addedParameters.size());
for (auto gp : addedParameters) {
auto canGP = gp->getCanonicalType()->castTo<GenericTypeParamType>();
canAddedParameters.push_back(canGP);
}
SmallVector<Requirement, 2> canAddedRequirements;
canAddedRequirements.reserve(addedRequirements.size());
for (const auto &req : addedRequirements) {
canAddedRequirements.push_back(req.getCanonical());
}
// Build the canonical signature.
auto canSignatureResult = evaluateOrDefault(
ctx.evaluator,
AbstractGenericSignatureRequest{
canBaseSignature.getPointer(), std::move(canAddedParameters),
std::move(canAddedRequirements),
allowInverses},
GenericSignatureWithError());
if (!canSignatureResult.getPointer())
return GenericSignatureWithError();
// Substitute in the original generic parameters to form the sugared
// result the original request wanted.
auto canSignature = canSignatureResult.getPointer();
SmallVector<GenericTypeParamType *, 2> resugaredParameters;
resugaredParameters.reserve(canSignature.getGenericParams().size());
if (baseSignature) {
resugaredParameters.append(baseSignature.getGenericParams().begin(),
baseSignature.getGenericParams().end());
}
resugaredParameters.append(addedParameters.begin(), addedParameters.end());
assert(resugaredParameters.size() ==
canSignature.getGenericParams().size());
SmallVector<Requirement, 2> resugaredRequirements;
resugaredRequirements.reserve(canSignature.getRequirements().size());
for (const auto &req : canSignature.getRequirements()) {
auto resugaredReq = req.subst(
[&](SubstitutableType *type) {
if (auto gp = dyn_cast<GenericTypeParamType>(type)) {
unsigned ordinal = canSignature->getGenericParamOrdinal(gp);
return Type(resugaredParameters[ordinal]);
}
return Type(type);
},
MakeAbstractConformanceForGenericType(),
SubstFlags::AllowLoweredTypes |
SubstFlags::PreservePackExpansionLevel);
resugaredRequirements.push_back(resugaredReq);
}
return GenericSignatureWithError(
GenericSignature::get(resugaredParameters, resugaredRequirements),
canSignatureResult.getInt());
}
// Convert the input Requirements into StructuralRequirements by adding
// empty source locations.
SmallVector<StructuralRequirement, 2> requirements;
for (auto req : baseSignature.getRequirements())
requirements.push_back({req, SourceLoc()});
// Add the new requirements.
for (auto req : addedRequirements)
requirements.push_back({req, SourceLoc()});
// The requirements passed to this request may have been substituted,
// meaning the subject type might be a concrete type and not a type
// parameter.
//
// Also, the right hand side of conformance requirements here might be
// a protocol composition.
//
// Desugaring converts these kinds of requirements into "proper"
// requirements where the subject type is always a type parameter,
// which is what the RuleBuilder expects.
SmallVector<RequirementError, 2> errors;
SmallVector<InverseRequirement, 2> inverses;
desugarRequirements(requirements, inverses, errors);
/// Next, we need to expand default requirements and then apply inverses.
SmallVector<Type, 2> paramsAsTypes;
if (allowInverses) {
for (auto *gtpt : addedParameters)
paramsAsTypes.push_back(gtpt);
}
SmallVector<StructuralRequirement, 2> defaults;
InverseRequirement::expandDefaults(ctx, paramsAsTypes, defaults);
applyInverses(ctx, paramsAsTypes, inverses, defaults, errors);
requirements.append(defaults);
auto &rewriteCtx = ctx.getRewriteContext();
if (rewriteCtx.getDebugOptions().contains(DebugFlags::Timers)) {
rewriteCtx.beginTimer("AbstractGenericSignatureRequest");
llvm::dbgs() << "\n";
}
unsigned attempt = 0;
for (;;) {
// Preprocess requirements to eliminate conformances on generic parameters
// which are made concrete.
if (ctx.LangOpts.EnableRequirementMachineConcreteContraction) {
SmallVector<StructuralRequirement, 4> contractedRequirements;
bool debug = rewriteCtx.getDebugOptions()
.contains(DebugFlags::ConcreteContraction);
if (performConcreteContraction(requirements, contractedRequirements,
errors, debug)) {
std::swap(contractedRequirements, requirements);
}
}
// Heap-allocate the requirement machine to save stack space.
std::unique_ptr<RequirementMachine> machine(new RequirementMachine(
rewriteCtx));
auto status =
machine->initWithWrittenRequirements(genericParams, requirements);
machine->checkCompletionResult(status.first);
// We pass reconstituteSugar=false to ensure that if the original
// requirements were canonical, the final signature remains canonical.
auto result = machine->computeMinimalGenericSignature(
/*reconstituteSugar=*/false);
auto errorFlags = machine->getErrors();
// Don't bother splitting concrete equivalence classes if there were invalid
// requirements, because the signature is not going to be ABI anyway.
if (!errorFlags.contains(GenericSignatureErrorFlags::HasInvalidRequirements)) {
if (shouldSplitConcreteEquivalenceClasses(result.getRequirements(),
/*proto=*/nullptr,
machine.get())) {
++attempt;
splitConcreteEquivalenceClasses(ctx, result.getRequirements(),
/*proto=*/nullptr, machine.get(),
result.getGenericParams(),
requirements, attempt);
continue;
}
}
if (!errorFlags) {
// If this signature was minimized without errors or non-redundant
// concrete conformances, we can re-use the requirement machine for
// subsequent queries, instead of building a new requirement machine
// from the minimized signature. Do this before verify(), which
// performs queries.
rewriteCtx.installRequirementMachine(result.getCanonicalSignature(),
std::move(machine));
}
if (!errorFlags.contains(GenericSignatureErrorFlags::HasInvalidRequirements)) {
// Check invariants.
result.verify();
}
if (rewriteCtx.getDebugOptions().contains(DebugFlags::Timers)) {
rewriteCtx.endTimer("AbstractGenericSignatureRequest");
llvm::dbgs() << result << "\n";
}
return GenericSignatureWithError(result, errorFlags);
}
}
/// If completion fails, build a dummy generic signature where everything is
/// Copyable and Escapable, to avoid spurious downstream diagnostics
/// concerning move-only types.
static GenericSignature getPlaceholderGenericSignature(
ASTContext &ctx, ArrayRef<GenericTypeParamType *> genericParams) {
SmallVector<Requirement, 2> requirements;
for (auto param : genericParams) {
for (auto ip : InvertibleProtocolSet::allKnown()) {
auto proto = ctx.getProtocol(getKnownProtocolKind(ip));
requirements.emplace_back(RequirementKind::Conformance, param,
proto->getDeclaredInterfaceType());
}
}
return GenericSignature::get(genericParams, requirements);
}
GenericSignatureWithError
InferredGenericSignatureRequest::evaluate(
Evaluator &evaluator,
const GenericSignatureImpl *parentSigImpl,
GenericParamList *genericParamList,
WhereClauseOwner whereClause,
SmallVector<Requirement, 2> addedRequirements,
SmallVector<TypeBase *, 2> inferenceSources,
SourceLoc loc, bool isExtension, bool allowInverses) const {
GenericSignature parentSig(parentSigImpl);
SmallVector<GenericTypeParamType *, 4> genericParams(
parentSig.getGenericParams().begin(),
parentSig.getGenericParams().end());
unsigned numOuterParams = genericParams.size();
if (isExtension) {
numOuterParams = 0;
}
SmallVector<StructuralRequirement, 2> requirements;
SmallVector<RequirementError, 2> errors;
SmallVector<InverseRequirement, 2> inverses;
for (const auto &req : parentSig.getRequirements())
requirements.push_back({req, loc});
DeclContext *lookupDC = nullptr;
const auto visitRequirement = [&](const Requirement &req,
RequirementRepr *reqRepr) {
realizeRequirement(lookupDC, req, reqRepr, /*inferRequirements=*/true,
requirements, errors);
return false;
};
if (genericParamList) {
// If we have multiple parameter lists, we're in SIL mode, and there's
// no parent signature from context.
assert(genericParamList->getOuterParameters() == nullptr || !parentSig);
// Collect all outer generic parameter lists.
SmallVector<GenericParamList *, 2> gpLists;
for (auto *outerParamList = genericParamList;
outerParamList != nullptr;
outerParamList = outerParamList->getOuterParameters()) {
gpLists.push_back(outerParamList);
}
// The generic parameter lists must appear from innermost to outermost.
// We walk them backwards to order outer parameters before inner
// parameters.
for (auto *gpList : llvm::reverse(gpLists)) {
assert(gpList->size() > 0 &&
"Parsed an empty generic parameter list?");
for (auto *gpDecl : *gpList) {
auto *gpType = gpDecl->getDeclaredInterfaceType()
->castTo<GenericTypeParamType>();
genericParams.push_back(gpType);
realizeInheritedRequirements(gpDecl, gpType,
/*inferRequirements=*/true,
requirements, errors);
}
lookupDC = (*gpList->begin())->getDeclContext();
// Add the generic parameter list's 'where' clause to the builder.
//
// The only time generic parameter lists have a 'where' clause is
// in SIL mode; all other generic declarations have a free-standing
// 'where' clause, which will be visited below.
WhereClauseOwner(lookupDC, gpList)
.visitRequirements(TypeResolutionStage::Structural,
visitRequirement);
}
}
// Realize all requirements in the free-standing 'where' clause, if there
// is one.
if (whereClause) {
lookupDC = whereClause.dc;
std::move(whereClause).visitRequirements(
TypeResolutionStage::Structural,
visitRequirement);
}
auto *moduleForInference = lookupDC->getParentModule();
auto &ctx = moduleForInference->getASTContext();
// Perform requirement inference from function parameter and result
// types and such.
for (auto source : inferenceSources) {
inferRequirements(source, moduleForInference, lookupDC, requirements);
}
// Finish by adding any remaining requirements. This is used to introduce
// inferred same-type requirements when building the generic signature of
// an extension whose extended type is a generic typealias.
for (const auto &req : addedRequirements)
requirements.push_back({req, SourceLoc()});
desugarRequirements(requirements, inverses, errors);
// After realizing requirements, expand default requirements only for local
// generic parameters, as the outer parameters have already been expanded.
SmallVector<Type, 4> paramTypes;
if (allowInverses) {
paramTypes.append(genericParams.begin() + numOuterParams,
genericParams.end());
}
SmallVector<StructuralRequirement, 2> defaults;
InverseRequirement::expandDefaults(ctx, paramTypes, defaults);
applyInverses(ctx, paramTypes, inverses, defaults, errors);
requirements.append(defaults);
auto &rewriteCtx = ctx.getRewriteContext();
if (rewriteCtx.getDebugOptions().contains(DebugFlags::Timers)) {
rewriteCtx.beginTimer("InferredGenericSignatureRequest");
llvm::dbgs() << "@ ";
auto &sourceMgr = ctx.SourceMgr;
loc.print(llvm::dbgs(), sourceMgr);
llvm::dbgs() << "\n";
}
unsigned attempt = 0;
for (;;) {
// Preprocess requirements to eliminate conformances on generic parameters
// which are made concrete.
if (ctx.LangOpts.EnableRequirementMachineConcreteContraction) {
SmallVector<StructuralRequirement, 4> contractedRequirements;
bool debug = rewriteCtx.getDebugOptions()
.contains(DebugFlags::ConcreteContraction);
if (performConcreteContraction(requirements, contractedRequirements,
errors, debug)) {
std::swap(contractedRequirements, requirements);
}
}
// Heap-allocate the requirement machine to save stack space.
std::unique_ptr<RequirementMachine> machine(new RequirementMachine(
rewriteCtx));
auto status =
machine->initWithWrittenRequirements(genericParams, requirements);
// If completion failed, diagnose an error and return a dummy signature.
if (status.first != CompletionResult::Success) {
ctx.Diags.diagnose(loc,
diag::requirement_machine_completion_failed,
/*protocol=*/0,
unsigned(status.first));
auto rule = machine->getRuleAsStringForDiagnostics(status.second);
ctx.Diags.diagnose(loc,
diag::requirement_machine_completion_rule,
rule);
auto result = getPlaceholderGenericSignature(ctx, genericParams);
if (rewriteCtx.getDebugOptions().contains(DebugFlags::Timers)) {
rewriteCtx.endTimer("InferredGenericSignatureRequest");
llvm::dbgs() << result << "\n";
}
return GenericSignatureWithError(
result, GenericSignatureErrorFlags::CompletionFailed);
}
auto result = machine->computeMinimalGenericSignature(
/*reconstituteSugar=*/true);
auto errorFlags = machine->getErrors();
// Diagnose redundant requirements and conflicting requirements.
if (attempt == 0) {
machine->computeRequirementDiagnostics(errors, inverses, loc);
diagnoseRequirementErrors(ctx, errors,
(isExtension || !genericParamList)
? AllowConcreteTypePolicy::All
: AllowConcreteTypePolicy::AssocTypes);
}
// Don't bother splitting concrete equivalence classes if there were invalid
// requirements, because the signature is not going to be ABI anyway.
if (!errorFlags.contains(GenericSignatureErrorFlags::HasInvalidRequirements)) {
// Check if we need to rebuild the signature.
if (shouldSplitConcreteEquivalenceClasses(result.getRequirements(),
/*proto=*/nullptr,
machine.get())) {
++attempt;
splitConcreteEquivalenceClasses(ctx, result.getRequirements(),
/*proto=*/nullptr, machine.get(),
result.getGenericParams(),
requirements, attempt);
continue;
}
}
if (!errorFlags) {
// If this signature was minimized without errors or non-redundant
// concrete conformances, we can re-use the requirement machine for
// subsequent queries, instead of building a new requirement machine
// from the minimized signature. Do this before verify(), which
// performs queries.
rewriteCtx.installRequirementMachine(result.getCanonicalSignature(),
std::move(machine));
}
if (genericParamList && !isExtension) {
for (auto genericParam : result.getInnermostGenericParams()) {
auto reduced = result.getReducedType(genericParam);
if (reduced->hasError() || reduced->isEqual(genericParam))
continue;
if (reduced->isTypeParameter()) {
// If one side is a parameter pack and the other is not, this is a
// same-element requirement that cannot be expressed with only one
// type parameter.
if (genericParam->isParameterPack() != reduced->isParameterPack())
continue;
ctx.Diags.diagnose(loc, diag::requires_generic_params_made_equal,
genericParam, result->getSugaredType(reduced))
.warnUntilSwiftVersion(6);
} else {
ctx.Diags.diagnose(loc,
diag::requires_generic_param_made_equal_to_concrete,
genericParam)
.warnUntilSwiftVersion(6);
}
}
}
if (!errorFlags.contains(GenericSignatureErrorFlags::HasInvalidRequirements)) {
// Check invariants.
result.verify();
}
if (rewriteCtx.getDebugOptions().contains(DebugFlags::Timers)) {
rewriteCtx.endTimer("InferredGenericSignatureRequest");
llvm::dbgs() << result << "\n";
}
return GenericSignatureWithError(result, errorFlags);
}
}