mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
to use it. ConcurrentReadableHashMap is lock-free for readers, with writers using a lock to ensure mutual exclusion amongst each other. The intent is to eventually replace all uses ConcurrentMap with ConcurrentReadableHashMap. ConcurrentReadableHashMap provides for relatively quick lookups by using a hash table. Rearders perform an atomic increment/decrement in order to inform writers that there are active readers. The design attempts to minimize wasted memory by storing the actual elements out-of-line, and having the table store indices into a separate array of elements. The protocol conformance cache now uses ConcurrentReadableHashMap, which provides faster lookups and less memory use than the previous ConcurrentMap implementation. The previous implementation caches ProtocolConformanceDescriptors and extracts the WitnessTable after the cache lookup. The new implementation directly caches the WitnessTable, removing an extra step (potentially a quite slow one) from the fast path. The previous implementation used a generational scheme to detect when negative cache entries became obsolete due to new dynamic libraries being loaded, and update them in place. The new implementation just clears the entire cache when libraries are loaded, greatly simplifying the code and saving the memory needed to track the current generation in each negative cache entry. This means we need to re-cache all requested conformances after loading a dynamic library, but loading libraries at runtime is rare and slow anyway. rdar://problem/67268325
760 lines
27 KiB
C++
760 lines
27 KiB
C++
//===--- ProtocolConformance.cpp - Swift protocol conformance checking ----===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Checking and caching of Swift protocol conformances.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/Basic/Lazy.h"
|
|
#include "swift/Demangling/Demangle.h"
|
|
#include "swift/Runtime/Casting.h"
|
|
#include "swift/Runtime/Concurrent.h"
|
|
#include "swift/Runtime/HeapObject.h"
|
|
#include "swift/Runtime/Metadata.h"
|
|
#include "swift/Runtime/Unreachable.h"
|
|
#include "CompatibilityOverride.h"
|
|
#include "ImageInspection.h"
|
|
#include "Private.h"
|
|
|
|
#include <vector>
|
|
|
|
using namespace swift;
|
|
|
|
#ifndef NDEBUG
|
|
template <> SWIFT_USED void ProtocolDescriptor::dump() const {
|
|
printf("TargetProtocolDescriptor.\n"
|
|
"Name: \"%s\".\n",
|
|
Name.get());
|
|
}
|
|
|
|
void ProtocolDescriptorFlags::dump() const {
|
|
printf("ProtocolDescriptorFlags.\n");
|
|
printf("Is Swift: %s.\n", (isSwift() ? "true" : "false"));
|
|
printf("Needs Witness Table: %s.\n",
|
|
(needsWitnessTable() ? "true" : "false"));
|
|
printf("Is Resilient: %s.\n", (isResilient() ? "true" : "false"));
|
|
printf("Special Protocol: %s.\n",
|
|
(bool(getSpecialProtocol()) ? "Error" : "None"));
|
|
printf("Class Constraint: %s.\n",
|
|
(bool(getClassConstraint()) ? "Class" : "Any"));
|
|
printf("Dispatch Strategy: %s.\n",
|
|
(bool(getDispatchStrategy()) ? "Swift" : "ObjC"));
|
|
}
|
|
|
|
#endif
|
|
|
|
#if !defined(NDEBUG) && SWIFT_OBJC_INTEROP
|
|
#include <objc/runtime.h>
|
|
|
|
static const char *class_getName(const ClassMetadata* type) {
|
|
return class_getName(
|
|
reinterpret_cast<Class>(const_cast<ClassMetadata*>(type)));
|
|
}
|
|
|
|
template<> void ProtocolConformanceDescriptor::dump() const {
|
|
auto symbolName = [&](const void *addr) -> const char * {
|
|
SymbolInfo info;
|
|
int ok = lookupSymbol(addr, &info);
|
|
if (!ok)
|
|
return "<unknown addr>";
|
|
return info.symbolName.get();
|
|
};
|
|
|
|
switch (auto kind = getTypeKind()) {
|
|
case TypeReferenceKind::DirectObjCClassName:
|
|
printf("direct Objective-C class name %s", getDirectObjCClassName());
|
|
break;
|
|
|
|
case TypeReferenceKind::IndirectObjCClass:
|
|
printf("indirect Objective-C class %s",
|
|
class_getName(*getIndirectObjCClass()));
|
|
break;
|
|
|
|
case TypeReferenceKind::DirectTypeDescriptor:
|
|
case TypeReferenceKind::IndirectTypeDescriptor:
|
|
printf("unique nominal type descriptor %s", symbolName(getTypeDescriptor()));
|
|
break;
|
|
}
|
|
|
|
printf(" => ");
|
|
|
|
printf("witness table %pattern s\n", symbolName(getWitnessTablePattern()));
|
|
}
|
|
#endif
|
|
|
|
#ifndef NDEBUG
|
|
template <> SWIFT_USED void ProtocolConformanceDescriptor::verify() const {
|
|
auto typeKind = unsigned(getTypeKind());
|
|
assert(((unsigned(TypeReferenceKind::First_Kind) <= typeKind) &&
|
|
(unsigned(TypeReferenceKind::Last_Kind) >= typeKind)) &&
|
|
"Corrupted type metadata record kind");
|
|
}
|
|
#endif
|
|
|
|
#if SWIFT_OBJC_INTEROP
|
|
template <>
|
|
const ClassMetadata *TypeReference::getObjCClass(TypeReferenceKind kind) const {
|
|
switch (kind) {
|
|
case TypeReferenceKind::IndirectObjCClass:
|
|
return *getIndirectObjCClass(kind);
|
|
|
|
case TypeReferenceKind::DirectObjCClassName:
|
|
return reinterpret_cast<const ClassMetadata *>(
|
|
objc_lookUpClass(getDirectObjCClassName(kind)));
|
|
|
|
case TypeReferenceKind::DirectTypeDescriptor:
|
|
case TypeReferenceKind::IndirectTypeDescriptor:
|
|
return nullptr;
|
|
}
|
|
|
|
swift_runtime_unreachable("Unhandled TypeReferenceKind in switch.");
|
|
}
|
|
#endif
|
|
|
|
/// Take the type reference inside a protocol conformance record and fetch the
|
|
/// canonical metadata pointer for the type it refers to.
|
|
/// Returns nil for universal or generic type references.
|
|
template <>
|
|
const Metadata *
|
|
ProtocolConformanceDescriptor::getCanonicalTypeMetadata() const {
|
|
switch (getTypeKind()) {
|
|
case TypeReferenceKind::IndirectObjCClass:
|
|
case TypeReferenceKind::DirectObjCClassName:
|
|
#if SWIFT_OBJC_INTEROP
|
|
// The class may be ObjC, in which case we need to instantiate its Swift
|
|
// metadata. The class additionally may be weak-linked, so we have to check
|
|
// for null.
|
|
if (auto cls = TypeRef.getObjCClass(getTypeKind()))
|
|
return getMetadataForClass(cls);
|
|
#endif
|
|
return nullptr;
|
|
|
|
case TypeReferenceKind::DirectTypeDescriptor:
|
|
case TypeReferenceKind::IndirectTypeDescriptor: {
|
|
if (auto anyType = getTypeDescriptor()) {
|
|
if (auto type = dyn_cast<TypeContextDescriptor>(anyType)) {
|
|
if (!type->isGeneric()) {
|
|
if (auto accessFn = type->getAccessFunction())
|
|
return accessFn(MetadataState::Abstract).Value;
|
|
}
|
|
} else if (auto protocol = dyn_cast<ProtocolDescriptor>(anyType)) {
|
|
return _getSimpleProtocolTypeMetadata(protocol);
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
swift_runtime_unreachable("Unhandled TypeReferenceKind in switch.");
|
|
}
|
|
|
|
template<>
|
|
const WitnessTable *
|
|
ProtocolConformanceDescriptor::getWitnessTable(const Metadata *type) const {
|
|
// If needed, check the conditional requirements.
|
|
llvm::SmallVector<const void *, 8> conditionalArgs;
|
|
if (hasConditionalRequirements()) {
|
|
SubstGenericParametersFromMetadata substitutions(type);
|
|
bool failed =
|
|
_checkGenericRequirements(getConditionalRequirements(), conditionalArgs,
|
|
[&substitutions](unsigned depth, unsigned index) {
|
|
return substitutions.getMetadata(depth, index);
|
|
},
|
|
[&substitutions](const Metadata *type, unsigned index) {
|
|
return substitutions.getWitnessTable(type, index);
|
|
});
|
|
if (failed) return nullptr;
|
|
}
|
|
|
|
return swift_getWitnessTable(this, type, conditionalArgs.data());
|
|
}
|
|
|
|
namespace {
|
|
struct ConformanceSection {
|
|
const ProtocolConformanceRecord *Begin, *End;
|
|
const ProtocolConformanceRecord *begin() const {
|
|
return Begin;
|
|
}
|
|
const ProtocolConformanceRecord *end() const {
|
|
return End;
|
|
}
|
|
};
|
|
|
|
struct ConformanceCacheKey {
|
|
const Metadata *Type;
|
|
const ProtocolDescriptor *Proto;
|
|
|
|
ConformanceCacheKey(const Metadata *type, const ProtocolDescriptor *proto)
|
|
: Type(type), Proto(proto) {
|
|
assert(type);
|
|
}
|
|
|
|
friend llvm::hash_code hash_value(const ConformanceCacheKey &key) {
|
|
return llvm::hash_combine(key.Type, key.Proto);
|
|
}
|
|
};
|
|
|
|
struct ConformanceCacheEntry {
|
|
private:
|
|
ConformanceCacheKey Key;
|
|
const WitnessTable *Witness;
|
|
|
|
public:
|
|
ConformanceCacheEntry(ConformanceCacheKey key, const WitnessTable *witness)
|
|
: Key(key), Witness(witness) {}
|
|
|
|
bool matchesKey(const ConformanceCacheKey &key) const {
|
|
return Key.Type == key.Type && Key.Proto == key.Proto;
|
|
}
|
|
|
|
friend llvm::hash_code hash_value(const ConformanceCacheEntry &entry) {
|
|
return hash_value(entry.Key);
|
|
}
|
|
|
|
template <class... Args>
|
|
static size_t getExtraAllocationSize(Args &&... ignored) {
|
|
return 0;
|
|
}
|
|
|
|
/// Get the cached witness table, or null if we cached failure.
|
|
const WitnessTable *getWitnessTable() const {
|
|
return Witness;
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
// Conformance Cache.
|
|
struct ConformanceState {
|
|
ConcurrentReadableHashMap<ConformanceCacheEntry> Cache;
|
|
ConcurrentReadableArray<ConformanceSection> SectionsToScan;
|
|
|
|
ConformanceState() {
|
|
initializeProtocolConformanceLookup();
|
|
}
|
|
|
|
void cacheResult(const Metadata *type, const ProtocolDescriptor *proto,
|
|
const WitnessTable *witness, size_t sectionsCount) {
|
|
Cache.getOrInsert(ConformanceCacheKey(type, proto),
|
|
[&](ConformanceCacheEntry *entry, bool created) {
|
|
// Create the entry if needed. If it already exists,
|
|
// we're done.
|
|
if (!created)
|
|
return false;
|
|
|
|
// Check the current sections count against what was
|
|
// passed in. If a section count was passed in and they
|
|
// don't match, then this is not an authoritative entry
|
|
// and it may have been obsoleted, because the new
|
|
// sections could contain a conformance in a more
|
|
// specific type.
|
|
//
|
|
// If they DO match, then we can safely add. Another
|
|
// thread might be adding new sections at this point,
|
|
// but we will not race with them. That other thread
|
|
// will add the new sections, then clear the cache. When
|
|
// it clears the cache, it will block waiting for this
|
|
// code to complete and relinquish Cache's writer lock.
|
|
// If we cache a stale entry, it will be immediately
|
|
// cleared.
|
|
if (sectionsCount > 0 &&
|
|
SectionsToScan.snapshot().count() != sectionsCount)
|
|
return false; // abandon the new entry
|
|
|
|
new (entry) ConformanceCacheEntry(
|
|
ConformanceCacheKey(type, proto), witness);
|
|
return true; // keep the new entry
|
|
});
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
void verify() const SWIFT_USED;
|
|
#endif
|
|
};
|
|
|
|
#ifndef NDEBUG
|
|
void ConformanceState::verify() const {
|
|
// Iterate over all of the sections and verify all of the protocol
|
|
// descriptors.
|
|
auto &Self = const_cast<ConformanceState &>(*this);
|
|
for (const auto &Section : Self.SectionsToScan.snapshot()) {
|
|
for (const auto &Record : Section) {
|
|
Record.get()->verify();
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static Lazy<ConformanceState> Conformances;
|
|
|
|
const void * const swift::_swift_debug_protocolConformanceStatePointer =
|
|
&Conformances;
|
|
|
|
static void
|
|
_registerProtocolConformances(ConformanceState &C,
|
|
const ProtocolConformanceRecord *begin,
|
|
const ProtocolConformanceRecord *end) {
|
|
C.SectionsToScan.push_back(ConformanceSection{begin, end});
|
|
|
|
// Blow away the conformances cache to get rid of any negative entries that
|
|
// may now be obsolete.
|
|
C.Cache.clear();
|
|
}
|
|
|
|
void swift::addImageProtocolConformanceBlockCallbackUnsafe(
|
|
const void *conformances, uintptr_t conformancesSize) {
|
|
assert(conformancesSize % sizeof(ProtocolConformanceRecord) == 0 &&
|
|
"conformances section not a multiple of ProtocolConformanceRecord");
|
|
|
|
// If we have a section, enqueue the conformances for lookup.
|
|
auto conformanceBytes = reinterpret_cast<const char *>(conformances);
|
|
auto recordsBegin
|
|
= reinterpret_cast<const ProtocolConformanceRecord*>(conformances);
|
|
auto recordsEnd
|
|
= reinterpret_cast<const ProtocolConformanceRecord*>
|
|
(conformanceBytes + conformancesSize);
|
|
|
|
// Conformance cache should always be sufficiently initialized by this point.
|
|
_registerProtocolConformances(Conformances.unsafeGetAlreadyInitialized(),
|
|
recordsBegin, recordsEnd);
|
|
}
|
|
|
|
void swift::addImageProtocolConformanceBlockCallback(
|
|
const void *conformances, uintptr_t conformancesSize) {
|
|
Conformances.get();
|
|
addImageProtocolConformanceBlockCallbackUnsafe(conformances,
|
|
conformancesSize);
|
|
}
|
|
|
|
void
|
|
swift::swift_registerProtocolConformances(const ProtocolConformanceRecord *begin,
|
|
const ProtocolConformanceRecord *end){
|
|
auto &C = Conformances.get();
|
|
_registerProtocolConformances(C, begin, end);
|
|
}
|
|
|
|
/// Search for a conformance descriptor in the ConformanceCache.
|
|
/// First element of the return value is `true` if the result is authoritative
|
|
/// i.e. the result is for the type itself and not a superclass. If `false`
|
|
/// then we cached a conformance on a superclass, but that may be overridden.
|
|
/// A return value of `{ false, nullptr }` indicates nothing was cached.
|
|
static std::pair<bool, const WitnessTable *>
|
|
searchInConformanceCache(const Metadata *type,
|
|
const ProtocolDescriptor *protocol) {
|
|
auto &C = Conformances.get();
|
|
auto origType = type;
|
|
auto snapshot = C.Cache.snapshot();
|
|
|
|
while (type) {
|
|
if (auto *Value = snapshot.find(ConformanceCacheKey(type, protocol))) {
|
|
return {type == origType, Value->getWitnessTable()};
|
|
}
|
|
|
|
// If there is a superclass, look there.
|
|
type = _swift_class_getSuperclass(type);
|
|
}
|
|
|
|
// We did not find a cache entry.
|
|
return {false, nullptr};
|
|
}
|
|
|
|
namespace {
|
|
/// Describes a protocol conformance "candidate" that can be checked
|
|
/// against a type metadata.
|
|
class ConformanceCandidate {
|
|
const void *candidate;
|
|
bool candidateIsMetadata;
|
|
|
|
public:
|
|
ConformanceCandidate() : candidate(0), candidateIsMetadata(false) { }
|
|
|
|
ConformanceCandidate(const ProtocolConformanceDescriptor &conformance)
|
|
: ConformanceCandidate()
|
|
{
|
|
if (auto description = conformance.getTypeDescriptor()) {
|
|
candidate = description;
|
|
candidateIsMetadata = false;
|
|
return;
|
|
}
|
|
|
|
if (auto metadata = conformance.getCanonicalTypeMetadata()) {
|
|
candidate = metadata;
|
|
candidateIsMetadata = true;
|
|
return;
|
|
}
|
|
}
|
|
|
|
const ContextDescriptor *
|
|
getContextDescriptor(const Metadata *conformingType) const {
|
|
const auto *description = conformingType->getTypeContextDescriptor();
|
|
if (description)
|
|
return description;
|
|
|
|
// Handle single-protocol existential types for self-conformance.
|
|
auto *existentialType = dyn_cast<ExistentialTypeMetadata>(conformingType);
|
|
if (existentialType == nullptr ||
|
|
existentialType->getProtocols().size() != 1 ||
|
|
existentialType->getSuperclassConstraint() != nullptr)
|
|
return nullptr;
|
|
|
|
auto proto = existentialType->getProtocols()[0];
|
|
|
|
#if SWIFT_OBJC_INTEROP
|
|
if (proto.isObjC())
|
|
return nullptr;
|
|
#endif
|
|
|
|
return proto.getSwiftProtocol();
|
|
}
|
|
|
|
/// Whether the conforming type exactly matches the conformance candidate.
|
|
bool matches(const Metadata *conformingType) const {
|
|
// Check whether the types match.
|
|
if (candidateIsMetadata && conformingType == candidate)
|
|
return true;
|
|
|
|
// Check whether the nominal type descriptors match.
|
|
if (!candidateIsMetadata) {
|
|
const auto *description = getContextDescriptor(conformingType);
|
|
auto candidateDescription =
|
|
static_cast<const ContextDescriptor *>(candidate);
|
|
if (description && equalContexts(description, candidateDescription))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Retrieve the type that matches the conformance candidate, which may
|
|
/// be a superclass of the given type. Returns null if this type does not
|
|
/// match this conformance.
|
|
const Metadata *getMatchingType(const Metadata *conformingType) const {
|
|
while (conformingType) {
|
|
// Check for a match.
|
|
if (matches(conformingType))
|
|
return conformingType;
|
|
|
|
// Look for a superclass.
|
|
conformingType = _swift_class_getSuperclass(conformingType);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
};
|
|
}
|
|
|
|
static const WitnessTable *
|
|
swift_conformsToProtocolImpl(const Metadata *const type,
|
|
const ProtocolDescriptor *protocol) {
|
|
auto &C = Conformances.get();
|
|
|
|
// See if we have an authoritative cached conformance. The
|
|
// ConcurrentReadableHashMap data structure allows us to search the map
|
|
// concurrently without locking.
|
|
auto found = searchInConformanceCache(type, protocol);
|
|
if (found.first)
|
|
return found.second;
|
|
|
|
// Scan conformance records.
|
|
auto snapshot = C.SectionsToScan.snapshot();
|
|
for (auto §ion : snapshot) {
|
|
// Eagerly pull records for nondependent witnesses into our cache.
|
|
for (const auto &record : section) {
|
|
auto &descriptor = *record.get();
|
|
|
|
// We only care about conformances for this protocol.
|
|
if (descriptor.getProtocol() != protocol)
|
|
continue;
|
|
|
|
// If there's a matching type, record the positive result and return it.
|
|
// The matching type is exact, so they can't go stale, and we should
|
|
// always cache them.
|
|
ConformanceCandidate candidate(descriptor);
|
|
if (auto *matchingType = candidate.getMatchingType(type)) {
|
|
auto witness = descriptor.getWitnessTable(matchingType);
|
|
C.cacheResult(matchingType, protocol, witness, /*always cache*/ 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Try the search again to look for the most specific cached conformance.
|
|
found = searchInConformanceCache(type, protocol);
|
|
|
|
// If it's not authoritative, then add an authoritative entry for this type.
|
|
if (!found.first)
|
|
C.cacheResult(type, protocol, found.second, snapshot.count());
|
|
|
|
return found.second;
|
|
}
|
|
|
|
const ContextDescriptor *
|
|
swift::_searchConformancesByMangledTypeName(Demangle::NodePointer node) {
|
|
auto &C = Conformances.get();
|
|
|
|
for (auto §ion : C.SectionsToScan.snapshot()) {
|
|
for (const auto &record : section) {
|
|
if (auto ntd = record->getTypeDescriptor()) {
|
|
if (_contextDescriptorMatchesMangling(ntd, node))
|
|
return ntd;
|
|
}
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
static MetadataState
|
|
tryGetCompleteMetadataNonblocking(const Metadata *metadata) {
|
|
return swift_checkMetadataState(
|
|
MetadataRequest(MetadataState::Complete, /*isNonBlocking*/ true),
|
|
metadata)
|
|
.State;
|
|
}
|
|
|
|
template <typename HandleObjc>
|
|
bool isSwiftClassMetadataSubclass(const ClassMetadata *subclass,
|
|
const ClassMetadata *superclass,
|
|
HandleObjc handleObjc) {
|
|
assert(subclass);
|
|
assert(superclass);
|
|
|
|
MetadataState subclassState = tryGetCompleteMetadataNonblocking(subclass);
|
|
|
|
do {
|
|
if (subclassState == MetadataState::Complete) {
|
|
// The subclass metadata is complete. That means not just that its
|
|
// Superclass field is valid, but that the Superclass field of the
|
|
// referenced class metadata is valid, and the Superclass field of the
|
|
// class metadata referenced there, and so on transitively.
|
|
//
|
|
// Scan the superclass chains in the ClassMetadata looking for a match.
|
|
while ((subclass = subclass->Superclass)) {
|
|
if (subclass == superclass)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
if (subclassState == MetadataState::NonTransitiveComplete) {
|
|
// The subclass metadata is complete, but, unlike above, not transitively.
|
|
// Its Superclass field is valid, so just read that field to get to the
|
|
// superclass to proceed to the next step.
|
|
subclass = subclass->Superclass;
|
|
if (subclass->isPureObjC()) {
|
|
return handleObjc(subclass, superclass);
|
|
}
|
|
subclassState = tryGetCompleteMetadataNonblocking(subclass);
|
|
} else {
|
|
// The subclass metadata is either LayoutComplete or Abstract, so the
|
|
// Superclass field is not valid. To get to the superclass, make the
|
|
// expensive call to getSuperclassMetadata which demangles the superclass
|
|
// name from the nominal type descriptor to get the metadata for the
|
|
// superclass.
|
|
MetadataRequest request(MetadataState::Complete,
|
|
/*non-blocking*/ true);
|
|
auto response = getSuperclassMetadata(request, subclass);
|
|
auto newMetadata = response.Value;
|
|
if (auto newSubclass = dyn_cast<ClassMetadata>(newMetadata)) {
|
|
subclass = newSubclass;
|
|
subclassState = response.State;
|
|
} else {
|
|
return handleObjc(newMetadata, superclass);
|
|
}
|
|
}
|
|
if (subclass == superclass)
|
|
return true;
|
|
} while (subclass);
|
|
return false;
|
|
}
|
|
|
|
// Whether the provided `subclass` is metadata for a subclass* of the superclass
|
|
// whose metadata is specified.
|
|
//
|
|
// The function is robust against incomplete metadata for both subclass and
|
|
// superclass. In the worst case, each intervening class between subclass and
|
|
// superclass is demangled. Besides that slow path, there are a number of fast
|
|
// paths:
|
|
// - both classes are ObjC: swift_dynamicCastMetatype
|
|
// - Complete subclass metadata: loop over Superclass fields
|
|
// - NonTransitiveComplete: read the Superclass field once
|
|
//
|
|
// * A non-strict subclass; that is, given a class X, isSubclass(X.self, X.self)
|
|
// is true.
|
|
static bool isSubclass(const Metadata *subclass, const Metadata *superclass) {
|
|
assert(subclass);
|
|
assert(superclass);
|
|
assert(subclass->isAnyClass());
|
|
assert(superclass->isAnyClass());
|
|
|
|
if (subclass == superclass)
|
|
return true;
|
|
if (!isa<ClassMetadata>(subclass)) {
|
|
if (!isa<ClassMetadata>(superclass)) {
|
|
// Only ClassMetadata can be incomplete; when the class metadata is not
|
|
// ClassMetadata, just use swift_dynamicCastMetatype.
|
|
return swift_dynamicCastMetatype(subclass, superclass);
|
|
} else {
|
|
// subclass is ObjC, but superclass is not; since it is not possible for
|
|
// any ObjC class to be a subclass of any Swift class, this subclass is
|
|
// not a subclass of this superclass.
|
|
return false;
|
|
}
|
|
}
|
|
const ClassMetadata *swiftSubclass = cast<ClassMetadata>(subclass);
|
|
if (auto *objcSuperclass = dyn_cast<ObjCClassWrapperMetadata>(superclass)) {
|
|
// Walk up swiftSubclass's ancestors until we get to an ObjC class, then
|
|
// kick over to swift_dynamicCastMetatype.
|
|
return isSwiftClassMetadataSubclass(
|
|
swiftSubclass, objcSuperclass->Class,
|
|
[](const Metadata *intermediate, const Metadata *superclass) {
|
|
// Intermediate is an ObjC class, and superclass is an ObjC class;
|
|
// as above, just use swift_dynamicCastMetatype.
|
|
return swift_dynamicCastMetatype(intermediate, superclass);
|
|
});
|
|
return false;
|
|
}
|
|
if (isa<ForeignClassMetadata>(superclass)) {
|
|
// superclass is foreign, but subclass is not (if it were, the above
|
|
// !isa<ClassMetadata> condition would have been entered). Since it is not
|
|
// possible for any Swift class to be a subclass of any foreign superclass,
|
|
// this subclass is not a subclass of this superclass.
|
|
return false;
|
|
}
|
|
auto swiftSuperclass = cast<ClassMetadata>(superclass);
|
|
return isSwiftClassMetadataSubclass(swiftSubclass, swiftSuperclass,
|
|
[](const Metadata *, const Metadata *) {
|
|
// Because (1) no ObjC classes inherit
|
|
// from Swift classes and (2)
|
|
// `superclass` is not ObjC, if some
|
|
// ancestor of `subclass` is ObjC, then
|
|
// `subclass` cannot descend from
|
|
// `superclass` (otherwise at some point
|
|
// some ObjC class would have to inherit
|
|
// from a Swift class).
|
|
return false;
|
|
});
|
|
}
|
|
|
|
bool swift::_checkGenericRequirements(
|
|
llvm::ArrayRef<GenericRequirementDescriptor> requirements,
|
|
llvm::SmallVectorImpl<const void *> &extraArguments,
|
|
SubstGenericParameterFn substGenericParam,
|
|
SubstDependentWitnessTableFn substWitnessTable) {
|
|
for (const auto &req : requirements) {
|
|
// Make sure we understand the requirement we're dealing with.
|
|
if (!req.hasKnownKind()) return true;
|
|
|
|
// Resolve the subject generic parameter.
|
|
const Metadata *subjectType =
|
|
swift_getTypeByMangledName(MetadataState::Abstract,
|
|
req.getParam(),
|
|
extraArguments.data(),
|
|
substGenericParam, substWitnessTable).getMetadata();
|
|
if (!subjectType)
|
|
return true;
|
|
|
|
// Check the requirement.
|
|
switch (req.getKind()) {
|
|
case GenericRequirementKind::Protocol: {
|
|
const WitnessTable *witnessTable = nullptr;
|
|
if (!_conformsToProtocol(nullptr, subjectType, req.getProtocol(),
|
|
&witnessTable))
|
|
return true;
|
|
|
|
// If we need a witness table, add it.
|
|
if (req.getProtocol().needsWitnessTable()) {
|
|
assert(witnessTable);
|
|
extraArguments.push_back(witnessTable);
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
case GenericRequirementKind::SameType: {
|
|
// Demangle the second type under the given substitutions.
|
|
auto otherType =
|
|
swift_getTypeByMangledName(MetadataState::Abstract,
|
|
req.getMangledTypeName(),
|
|
extraArguments.data(),
|
|
substGenericParam, substWitnessTable).getMetadata();
|
|
if (!otherType) return true;
|
|
|
|
assert(!req.getFlags().hasExtraArgument());
|
|
|
|
// Check that the types are equivalent.
|
|
if (subjectType != otherType) return true;
|
|
|
|
continue;
|
|
}
|
|
|
|
case GenericRequirementKind::Layout: {
|
|
switch (req.getLayout()) {
|
|
case GenericRequirementLayoutKind::Class:
|
|
if (!subjectType->satisfiesClassConstraint())
|
|
return true;
|
|
continue;
|
|
}
|
|
|
|
// Unknown layout.
|
|
return true;
|
|
}
|
|
|
|
case GenericRequirementKind::BaseClass: {
|
|
// Demangle the base type under the given substitutions.
|
|
auto baseType =
|
|
swift_getTypeByMangledName(MetadataState::Abstract,
|
|
req.getMangledTypeName(),
|
|
extraArguments.data(),
|
|
substGenericParam, substWitnessTable).getMetadata();
|
|
if (!baseType) return true;
|
|
|
|
// If the type which is constrained to a base class is an existential
|
|
// type, and if that existential type includes a superclass constraint,
|
|
// just require that the superclass by which the existential is
|
|
// constrained is a subclass of the base class.
|
|
if (auto *existential = dyn_cast<ExistentialTypeMetadata>(subjectType)) {
|
|
if (auto *superclassConstraint = existential->getSuperclassConstraint())
|
|
subjectType = superclassConstraint;
|
|
}
|
|
|
|
if (!isSubclass(subjectType, baseType))
|
|
return true;
|
|
|
|
continue;
|
|
}
|
|
|
|
case GenericRequirementKind::SameConformance: {
|
|
// FIXME: Implement this check.
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Unknown generic requirement kind.
|
|
return true;
|
|
}
|
|
|
|
// Success!
|
|
return false;
|
|
}
|
|
|
|
const Metadata *swift::findConformingSuperclass(
|
|
const Metadata *type,
|
|
const ProtocolConformanceDescriptor *conformance) {
|
|
// Figure out which type we're looking for.
|
|
ConformanceCandidate candidate(*conformance);
|
|
|
|
const Metadata *conformingType = candidate.getMatchingType(type);
|
|
assert(conformingType);
|
|
return conformingType;
|
|
}
|
|
|
|
#define OVERRIDE_PROTOCOLCONFORMANCE COMPATIBILITY_OVERRIDE
|
|
#include "CompatibilityOverride.def"
|