Files
swift-mirror/lib/SIL/IR/SILDeclRef.cpp
Doug Gregor ed93b46fa6 [Embedded] Introduce DeferredCodeGen feature.
Introduce an experimental feature DeferredCodeGen, that defers the
generation of LLVM IR (and therefore object code) for all entities
within an Embedded Swift module unless they have explicitly requested
to not be emitted into the client (e.g., with
`@_neverEmitIntoClient`).

This feature is meant to generalize and subsume
-emit-empty-object-file, relying on lazy emission of entities rather
than abruptly ending the compilation pipeline before emitting any IR.

Part of rdar://158363967.
2025-09-03 15:55:47 -07:00

1916 lines
65 KiB
C++

//===--- SILDeclRef.cpp - Implements SILDeclRef ---------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SIL/SILDeclRef.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTMangler.h"
#include "swift/AST/AnyFunctionRef.h"
#include "swift/AST/Initializer.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/PropertyWrappers.h"
#include "swift/AST/SourceFile.h"
#include "swift/Basic/Assertions.h"
#include "swift/ClangImporter/ClangImporter.h"
#include "swift/ClangImporter/ClangModule.h"
#include "swift/SIL/SILLinkage.h"
#include "swift/SIL/SILLocation.h"
#include "swift/SILOptimizer/Utils/SpecializationMangler.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Mangle.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/raw_ostream.h"
using namespace swift;
/// Get the method dispatch mechanism for a method.
MethodDispatch
swift::getMethodDispatch(AbstractFunctionDecl *method) {
// Some methods are forced to be statically dispatched.
if (method->hasForcedStaticDispatch())
return MethodDispatch::Static;
if (method->getAttrs().hasAttribute<DistributedActorAttr>())
return MethodDispatch::Static;
// Import-as-member declarations are always statically referenced.
if (method->isImportAsMember())
return MethodDispatch::Static;
auto dc = method->getDeclContext();
if (dc->getSelfClassDecl()) {
if (method->shouldUseObjCDispatch()) {
return MethodDispatch::Class;
}
// Final methods can be statically referenced.
if (method->isFinal())
return MethodDispatch::Static;
// Imported class methods are dynamically dispatched.
if (method->isObjC() && method->hasClangNode())
return MethodDispatch::Class;
// Members defined directly inside a class are dynamically dispatched.
if (isa<ClassDecl>(dc)) {
// Native convenience initializers are not dynamically dispatched unless
// required.
if (auto ctor = dyn_cast<ConstructorDecl>(method)) {
if (!ctor->isRequired() && !ctor->isDesignatedInit()
&& !requiresForeignEntryPoint(ctor))
return MethodDispatch::Static;
}
return MethodDispatch::Class;
}
}
// Otherwise, it can be referenced statically.
return MethodDispatch::Static;
}
bool swift::requiresForeignToNativeThunk(ValueDecl *vd) {
// Functions imported from C, Objective-C methods imported from Objective-C,
// as well as methods in @objc protocols (even protocols defined in Swift)
// require a foreign to native thunk.
auto dc = vd->getDeclContext();
if (auto proto = dyn_cast<ProtocolDecl>(dc))
if (proto->isObjC())
return true;
if (auto fd = dyn_cast<FuncDecl>(vd))
return fd->hasClangNode();
return false;
}
bool swift::requiresForeignEntryPoint(ValueDecl *vd) {
assert(!isa<AbstractStorageDecl>(vd));
if (vd->shouldUseObjCDispatch()) {
return true;
}
if (vd->isObjC() && isa<ProtocolDecl>(vd->getDeclContext()))
return true;
if (vd->isImportAsMember())
return true;
if (vd->hasClangNode())
return true;
if (auto *accessor = dyn_cast<AccessorDecl>(vd)) {
// Property accessors should be generated alongside the property.
if (accessor->isGetterOrSetter()) {
auto *asd = accessor->getStorage();
if (asd->isObjC() && asd->hasClangNode())
return true;
}
}
return false;
}
SILDeclRef::SILDeclRef(ValueDecl *vd, SILDeclRef::Kind kind, bool isForeign,
bool isDistributedThunk, bool isKnownToBeLocal,
bool isRuntimeAccessible,
SILDeclRef::BackDeploymentKind backDeploymentKind,
AutoDiffDerivativeFunctionIdentifier *derivativeId)
: loc(vd), kind(kind), isForeign(isForeign), distributedThunk(isDistributedThunk),
isKnownToBeLocal(isKnownToBeLocal),
isRuntimeAccessible(isRuntimeAccessible),
backDeploymentKind(backDeploymentKind), defaultArgIndex(0),
isAsyncLetClosure(0), pointer(derivativeId) {}
SILDeclRef::SILDeclRef(SILDeclRef::Loc baseLoc, bool asForeign,
bool asDistributed, bool asDistributedKnownToBeLocal)
: isRuntimeAccessible(false),
backDeploymentKind(SILDeclRef::BackDeploymentKind::None),
defaultArgIndex(0), isAsyncLetClosure(0),
pointer((AutoDiffDerivativeFunctionIdentifier *)nullptr) {
if (auto *vd = baseLoc.dyn_cast<ValueDecl*>()) {
if (auto *fd = dyn_cast<FuncDecl>(vd)) {
// Map FuncDecls directly to Func SILDeclRefs.
loc = fd;
kind = Kind::Func;
}
// Map ConstructorDecls to the Allocator SILDeclRef of the constructor.
else if (auto *cd = dyn_cast<ConstructorDecl>(vd)) {
loc = cd;
kind = Kind::Allocator;
}
// Map EnumElementDecls to the EnumElement SILDeclRef of the element.
else if (auto *ed = dyn_cast<EnumElementDecl>(vd)) {
loc = ed;
kind = Kind::EnumElement;
}
// VarDecl constants require an explicit kind.
else if (isa<VarDecl>(vd)) {
llvm_unreachable("must create SILDeclRef for VarDecl with explicit kind");
}
// Map DestructorDecls to the Deallocator of the destructor.
else if (auto dtor = dyn_cast<DestructorDecl>(vd)) {
loc = dtor;
kind = Kind::Deallocator;
}
else {
llvm_unreachable("invalid loc decl for SILDeclRef!");
}
} else if (auto *ACE = baseLoc.dyn_cast<AbstractClosureExpr *>()) {
loc = ACE;
kind = Kind::Func;
if (ACE->getASTContext().LangOpts.hasFeature(
Feature::RegionBasedIsolation)) {
assert(ACE->getASTContext().LangOpts.hasFeature(
Feature::SendingArgsAndResults) &&
"Sending args and results should always be enabled");
if (auto *autoClosure = dyn_cast<AutoClosureExpr>(ACE)) {
isAsyncLetClosure =
autoClosure->getThunkKind() == AutoClosureExpr::Kind::AsyncLet;
}
}
} else {
llvm_unreachable("impossible SILDeclRef loc");
}
isForeign = asForeign;
distributedThunk = asDistributed;
isKnownToBeLocal = asDistributedKnownToBeLocal;
}
SILDeclRef::SILDeclRef(SILDeclRef::Loc baseLoc,
GenericSignature prespecializedSig)
: SILDeclRef(baseLoc, false, false) {
pointer = prespecializedSig.getPointer();
}
std::optional<AnyFunctionRef> SILDeclRef::getAnyFunctionRef() const {
switch (getLocKind()) {
case LocKind::Decl:
if (auto *afd = getAbstractFunctionDecl())
return AnyFunctionRef(afd);
return std::nullopt;
case LocKind::Closure:
return AnyFunctionRef(getAbstractClosureExpr());
case LocKind::File:
return std::nullopt;
}
llvm_unreachable("Unhandled case in switch");
}
DeclContext *SILDeclRef::getInnermostDeclContext() const {
if (!loc)
return nullptr;
switch (getLocKind()) {
case LocKind::Decl:
return getDecl()->getInnermostDeclContext();
case LocKind::Closure:
return getAbstractClosureExpr();
case LocKind::File:
return getFileUnit();
}
llvm_unreachable("Unhandled case in switch");
}
ASTContext &SILDeclRef::getASTContext() const {
auto *DC = getInnermostDeclContext();
assert(DC && "Must have a decl context");
return DC->getASTContext();
}
std::optional<AvailabilityRange> SILDeclRef::getAvailabilityForLinkage() const {
// Back deployment thunks and fallbacks don't have availability since they
// are non-ABI.
// FIXME: Generalize this check to all kinds of non-ABI functions.
if (backDeploymentKind != SILDeclRef::BackDeploymentKind::None)
return std::nullopt;
return getDecl()->getAvailabilityForLinkage();
}
bool SILDeclRef::isThunk() const {
return isForeignToNativeThunk() || isNativeToForeignThunk() ||
isDistributedThunk() || isBackDeploymentThunk();
}
bool SILDeclRef::isClangImported() const {
if (!hasDecl())
return false;
ValueDecl *d = getDecl();
DeclContext *moduleContext = d->getDeclContext()->getModuleScopeContext();
if (isa<ClangModuleUnit>(moduleContext)) {
if (isClangGenerated())
return true;
if (isa<ConstructorDecl>(d) || isa<EnumElementDecl>(d))
return !isForeign;
if (auto *FD = dyn_cast<FuncDecl>(d))
if (isa<AccessorDecl>(FD) ||
isa<NominalTypeDecl>(d->getDeclContext()))
return !isForeign;
}
return false;
}
bool SILDeclRef::isClangGenerated() const {
if (!hasDecl())
return false;
return isClangGenerated(getDecl()->getClangNode());
}
// FIXME: this is a weird predicate.
bool SILDeclRef::isClangGenerated(ClangNode node) {
if (auto nd = dyn_cast_or_null<clang::NamedDecl>(node.getAsDecl())) {
// ie, 'static inline' functions for which we must ask Clang to emit a body
// for explicitly
if (!nd->isExternallyVisible())
return true;
}
return false;
}
bool SILDeclRef::isImplicit() const {
switch (getLocKind()) {
case LocKind::Decl:
return getDecl()->isImplicit();
case LocKind::Closure:
return getAbstractClosureExpr()->isImplicit();
case LocKind::File:
// Files are currently never considered implicit.
return false;
}
llvm_unreachable("Unhandled case in switch");
}
bool SILDeclRef::hasUserWrittenCode() const {
// Non-implicit decls generally have user-written code.
if (!isImplicit()) {
switch (kind) {
case Kind::PropertyWrapperBackingInitializer: {
// Only has user-written code if any of the property wrappers have
// arguments to apply. Otherwise, it's just a forwarding initializer for
// the wrappedValue.
auto *var = cast<VarDecl>(getDecl());
return llvm::any_of(var->getAttachedPropertyWrappers(), [&](auto *attr) {
return attr->hasArgs();
});
}
case Kind::PropertyWrapperInitFromProjectedValue:
// Never has user-written code, is just a forwarding initializer.
return false;
default:
if (auto decl = getDecl()) {
// Declarations synthesized by ClangImporter by definition don't have
// user written code, but despite that they aren't always marked
// implicit.
auto moduleContext = decl->getDeclContext()->getModuleScopeContext();
if (isa<ClangModuleUnit>(moduleContext))
return false;
}
// TODO: This checking is currently conservative, we ought to
// exhaustively handle all the cases here, and use emitOrDelayFunction
// in more cases to take advantage of it.
return true;
}
llvm_unreachable("Unhandled case in switch!");
}
// Implicit decls generally don't have user-written code, but some splice
// user code into their body.
switch (kind) {
case Kind::Func: {
if (getAbstractClosureExpr()) {
// Auto-closures have user-written code.
if (auto *ACE = getAutoClosureExpr()) {
// Currently all types of auto-closures can contain user code. Note this
// logic does not affect delayed emission, as we eagerly emit all
// closure definitions. This does however affect profiling.
switch (ACE->getThunkKind()) {
case AutoClosureExpr::Kind::None:
case AutoClosureExpr::Kind::SingleCurryThunk:
case AutoClosureExpr::Kind::DoubleCurryThunk:
case AutoClosureExpr::Kind::AsyncLet:
return true;
}
llvm_unreachable("Unhandled case in switch!");
}
// Otherwise, assume an implicit closure doesn't have user code.
return false;
}
// Lazy getters splice in the user-written initializer expr.
if (auto *accessor = dyn_cast<AccessorDecl>(getFuncDecl())) {
auto *storage = accessor->getStorage();
if (accessor->isGetter() && !storage->isImplicit() &&
storage->getAttrs().hasAttribute<LazyAttr>()) {
return true;
}
}
return false;
}
case Kind::StoredPropertyInitializer: {
// Property wrapper initializers for the implicit backing storage can splice
// in the user-written initializer on the original property.
auto *var = cast<VarDecl>(getDecl());
if (auto *originalProperty = var->getOriginalWrappedProperty()) {
if (originalProperty->isPropertyMemberwiseInitializedWithWrappedType())
return true;
}
return false;
}
case Kind::Allocator:
case Kind::Initializer:
case Kind::EnumElement:
case Kind::Destroyer:
case Kind::Deallocator:
case Kind::IsolatedDeallocator:
case Kind::GlobalAccessor:
case Kind::DefaultArgGenerator:
case Kind::IVarInitializer:
case Kind::IVarDestroyer:
case Kind::PropertyWrapperBackingInitializer:
case Kind::PropertyWrapperInitFromProjectedValue:
case Kind::EntryPoint:
case Kind::AsyncEntryPoint:
// Implicit decls for these don't splice in user-written code.
return false;
}
llvm_unreachable("Unhandled case in switch!");
}
bool SILDeclRef::shouldBeEmittedForDebugger() const {
if (!isFunc())
return false;
if (getASTContext().SILOpts.OptMode != OptimizationMode::NoOptimization)
return false;;
if (!getASTContext().SILOpts.ShouldFunctionsBePreservedToDebugger)
return false;
if (getASTContext().LangOpts.hasFeature(Feature::Embedded))
return false;
ValueDecl *decl = getDecl();
DeclAttributes &attrs = decl->getAttrs();
if (attrs.hasSemanticsAttr("no.preserve.debugger"))
return false;
if (getLinkage(ForDefinition) == SILLinkage::Shared)
return false;
if (auto decl = getDecl())
if (!decl->isImplicit())
return true;
// Synthesized getters are still callable in the debugger.
if (auto *accessor = dyn_cast_or_null<AccessorDecl>(getFuncDecl())) {
return accessor->isSynthesized() && accessor->isGetterOrSetter();
};
return false;
}
namespace {
enum class LinkageLimit {
/// No limit.
None,
/// The linkage should behave as if the decl is private.
Private,
/// The declaration is emitted on-demand; it should end up with internal
/// or shared linkage.
OnDemand,
/// The declaration should never be made public.
NeverPublic,
/// The declaration should always be emitted into the client,
AlwaysEmitIntoClient,
};
} // end anonymous namespace
/// Compute the linkage limit for a given SILDeclRef. This augments the
/// mapping of access level to linkage to provide a maximum or minimum linkage.
static LinkageLimit getLinkageLimit(SILDeclRef constant) {
using Limit = LinkageLimit;
using Kind = SILDeclRef::Kind;
auto *d = constant.getDecl();
ASSERT(ABIRoleInfo(d).providesAPI() && "getLinkageLimit() for ABI decl?");
// Back deployment thunks and fallbacks are emitted into the client.
if (constant.backDeploymentKind != SILDeclRef::BackDeploymentKind::None)
return Limit::AlwaysEmitIntoClient;
if (auto *fn = dyn_cast<AbstractFunctionDecl>(d)) {
// Native-to-foreign thunks for top-level decls are created on-demand,
// unless they are marked @_cdecl, in which case they expose a dedicated
// entry-point with the visibility of the function.
//
// Native-to-foreign thunks for methods are always just private, since
// they're anchored by Objective-C metadata.
auto &attrs = fn->getAttrs();
if (constant.isNativeToForeignThunk() && !attrs.hasAttribute<CDeclAttr>()) {
auto isTopLevel = fn->getDeclContext()->isModuleScopeContext();
return isTopLevel ? Limit::OnDemand : Limit::Private;
}
}
if (auto fn = constant.getFuncDecl()) {
// Forced-static-dispatch functions are created on-demand and have
// at best shared linkage.
if (fn->hasForcedStaticDispatch())
return Limit::OnDemand;
}
if (isa<DestructorDecl>(d)) {
// The destructor of a class implemented with @_objcImplementation is only
// ever called by its ObjC thunk, so it should not be public.
if (d->getDeclContext()->getSelfNominalTypeDecl()->hasClangNode())
return Limit::OnDemand;
}
switch (constant.kind) {
case Kind::Func:
case Kind::Allocator:
case Kind::Initializer:
case Kind::Deallocator:
case Kind::IsolatedDeallocator:
case Kind::Destroyer: {
// @_alwaysEmitIntoClient declarations are like the default arguments of
// public functions; they are roots for dead code elimination and have
// serialized bodies, but no public symbol in the generated binary.
if (d->getAttrs().hasAttribute<AlwaysEmitIntoClientAttr>())
return Limit::AlwaysEmitIntoClient;
if (auto accessor = dyn_cast<AccessorDecl>(d)) {
auto *storage = accessor->getStorage();
if (storage->getAttrs().hasAttribute<AlwaysEmitIntoClientAttr>())
return Limit::AlwaysEmitIntoClient;
}
break;
}
case Kind::EnumElement:
return Limit::OnDemand;
case Kind::GlobalAccessor:
// global unsafeMutableAddressor should be kept hidden if its decl
// is resilient.
return cast<VarDecl>(d)->isResilient() ? Limit::NeverPublic : Limit::None;
case Kind::DefaultArgGenerator:
// If the default argument is to be serialized, only use non-ABI public
// linkage. If the argument is not to be serialized, don't use a limit.
// This actually means that default arguments *can be ABI public* if
// `isSerialized()` returns false and the effective access level is public,
// which happens under `-enable-testing` with an internal decl.
return constant.isSerialized() ? Limit::AlwaysEmitIntoClient : Limit::None;
case Kind::PropertyWrapperBackingInitializer:
case Kind::PropertyWrapperInitFromProjectedValue: {
if (!d->getDeclContext()->isTypeContext()) {
// If the backing initializer is to be serialized, only use non-ABI public
// linkage. If the initializer is not to be serialized, don't use a limit.
// This actually means that it *can be ABI public* if `isSerialized()`
// returns false and the effective access level is public, which happens
// under `-enable-testing` with an internal decl.
return constant.isSerialized() ? Limit::AlwaysEmitIntoClient
: Limit::None;
}
// Otherwise, regular property wrapper backing initializers (for properties)
// are treated just like stored property initializers.
LLVM_FALLTHROUGH;
}
case Kind::StoredPropertyInitializer: {
// Stored property initializers get the linkage of their containing type.
// There are three cases:
//
// 1) Type is formally @_fixed_layout/@frozen. Root initializers can be
// declared @inlinable. The property initializer must only reference
// public symbols, and is serialized, so we give it PublicNonABI linkage.
//
// 2) Type is not formally @_fixed_layout/@frozen and the module is not
// resilient. Root initializers can be declared @inlinable. This is the
// annoying case. We give the initializer public linkage if the type is
// public.
//
// 3) Type is resilient. The property initializer is never public because
// root initializers cannot be @inlinable.
//
// FIXME: Get rid of case 2 somehow.
if (constant.isSerialized())
return Limit::AlwaysEmitIntoClient;
// FIXME: This should always be true.
if (d->getModuleContext()->isStrictlyResilient())
return Limit::NeverPublic;
break;
}
case Kind::IVarInitializer:
case Kind::IVarDestroyer:
// ivar initializers and destroyers are completely contained within the
// class from which they come, and never get seen externally.
return Limit::NeverPublic;
case Kind::EntryPoint:
case Kind::AsyncEntryPoint:
llvm_unreachable("Already handled");
}
return Limit::None;
}
SILLinkage SILDeclRef::getDefinitionLinkage() const {
using Limit = LinkageLimit;
auto privateLinkage = [&]() {
// Private decls may still be serialized if they are e.g in an inlinable
// function. In such a case, they receive shared linkage.
return isNotSerialized() ? SILLinkage::Private : SILLinkage::Shared;
};
// Prespecializations are public.
if (getSpecializedSignature())
return SILLinkage::Public;
// Closures can only be referenced from the same file.
if (getAbstractClosureExpr())
return privateLinkage();
// The main entry-point is public.
if (kind == Kind::EntryPoint)
return SILLinkage::Public;
if (kind == Kind::AsyncEntryPoint) {
// async main entrypoint is referenced only from @main and
// they are in the same SIL module. Hiding this entrypoint
// from other object file makes it possible to link multiple
// executable targets for SwiftPM testing with -entry-point-function-name
return SILLinkage::Private;
}
// Calling convention thunks have shared linkage.
if (isForeignToNativeThunk())
return SILLinkage::Shared;
// Declarations imported from Clang modules have shared linkage.
if (isClangImported())
return SILLinkage::Shared;
const auto limit = getLinkageLimit(*this);
if (limit == Limit::Private)
return privateLinkage();
auto *decl = getDecl();
if (isPropertyWrapperBackingInitializer()) {
auto *dc = decl->getDeclContext();
// External property wrapper backing initializers have linkage based
// on the access level of their function.
if (isa<ParamDecl>(decl)) {
if (isa<AbstractClosureExpr>(dc))
return privateLinkage();
decl = cast<ValueDecl>(dc->getAsDecl());
}
// Property wrappers in types have linkage based on the access level of
// their nominal.
if (dc->isTypeContext())
decl = cast<NominalTypeDecl>(dc);
}
// Stored property initializers have linkage based on the access level of
// their nominal.
if (isStoredPropertyInitializer())
decl = cast<NominalTypeDecl>(
decl->getDeclContext()->getImplementedObjCContext());
// Compute the effective access level, taking e.g testable into consideration.
auto effectiveAccess = decl->getEffectiveAccess();
// Private setter implementations for an internal storage declaration should
// be at least internal as well, so that a dynamically-writable
// keypath can be formed from other files in the same module.
if (auto *accessor = dyn_cast<AccessorDecl>(decl)) {
auto storageAccess = accessor->getStorage()->getEffectiveAccess();
if (accessor->isSetter() && storageAccess >= AccessLevel::Internal)
effectiveAccess = std::max(effectiveAccess, AccessLevel::Internal);
}
switch (effectiveAccess) {
case AccessLevel::Private:
case AccessLevel::FilePrivate:
return privateLinkage();
case AccessLevel::Internal:
assert(!isSerialized() &&
"Serialized decls should either be private (for decls in inlinable "
"code), or they should be public");
if (limit == Limit::OnDemand)
return SILLinkage::Shared;
return SILLinkage::Hidden;
case AccessLevel::Package:
switch (limit) {
case Limit::None:
return SILLinkage::Package;
case Limit::AlwaysEmitIntoClient:
// Drop the AEIC if the enclosing decl is not effectively public.
// This matches what we do in the `internal` case.
if (isSerialized())
return SILLinkage::PackageNonABI;
else return SILLinkage::Package;
case Limit::OnDemand:
return SILLinkage::Shared;
case Limit::NeverPublic:
return SILLinkage::Hidden;
case Limit::Private:
llvm_unreachable("Already handled");
}
case AccessLevel::Public:
case AccessLevel::Open:
switch (limit) {
case Limit::None:
return SILLinkage::Public;
case Limit::AlwaysEmitIntoClient:
return SILLinkage::PublicNonABI;
case Limit::OnDemand:
return SILLinkage::Shared;
case Limit::NeverPublic:
return SILLinkage::Hidden;
case Limit::Private:
llvm_unreachable("Already handled");
}
}
llvm_unreachable("unhandled access");
}
SILLinkage SILDeclRef::getLinkage(ForDefinition_t forDefinition) const {
// Add external to the linkage of the definition
// (e.g. Public -> PublicExternal) if this is a declaration.
auto linkage = getDefinitionLinkage();
return forDefinition ? linkage : addExternalToLinkage(linkage);
}
SILDeclRef SILDeclRef::getDefaultArgGenerator(Loc loc,
unsigned defaultArgIndex) {
SILDeclRef result;
result.loc = loc;
result.kind = Kind::DefaultArgGenerator;
result.defaultArgIndex = defaultArgIndex;
return result;
}
SILDeclRef SILDeclRef::getMainDeclEntryPoint(ValueDecl *decl) {
auto *file = cast<FileUnit>(decl->getDeclContext()->getModuleScopeContext());
assert(file->getMainDecl() == decl);
SILDeclRef result;
result.loc = decl;
result.kind = Kind::EntryPoint;
return result;
}
SILDeclRef SILDeclRef::getAsyncMainDeclEntryPoint(ValueDecl *decl) {
auto *file = cast<FileUnit>(decl->getDeclContext()->getModuleScopeContext());
assert(file->getMainDecl() == decl);
SILDeclRef result;
result.loc = decl;
result.kind = Kind::AsyncEntryPoint;
return result;
}
SILDeclRef SILDeclRef::getAsyncMainFileEntryPoint(FileUnit *file) {
assert(file->hasEntryPoint() && !file->getMainDecl());
SILDeclRef result;
result.loc = file;
result.kind = Kind::AsyncEntryPoint;
return result;
}
SILDeclRef SILDeclRef::getMainFileEntryPoint(FileUnit *file) {
assert(file->hasEntryPoint() && !file->getMainDecl());
SILDeclRef result;
result.loc = file;
result.kind = Kind::EntryPoint;
return result;
}
bool SILDeclRef::hasClosureExpr() const {
return isa<AbstractClosureExpr *>(loc) &&
isa<ClosureExpr>(getAbstractClosureExpr());
}
bool SILDeclRef::hasAutoClosureExpr() const {
return isa<AbstractClosureExpr *>(loc) &&
isa<AutoClosureExpr>(getAbstractClosureExpr());
}
bool SILDeclRef::hasFuncDecl() const {
return isa<ValueDecl *>(loc) && isa<FuncDecl>(getDecl());
}
ClosureExpr *SILDeclRef::getClosureExpr() const {
return dyn_cast_or_null<ClosureExpr>(getAbstractClosureExpr());
}
AutoClosureExpr *SILDeclRef::getAutoClosureExpr() const {
return dyn_cast_or_null<AutoClosureExpr>(getAbstractClosureExpr());
}
FuncDecl *SILDeclRef::getFuncDecl() const {
return dyn_cast_or_null<FuncDecl>(getDecl());
}
ModuleDecl *SILDeclRef::getModuleContext() const {
if (hasDecl()) {
return getDecl()->getModuleContext();
} else if (hasFileUnit()) {
return getFileUnit()->getParentModule();
} else if (hasClosureExpr()) {
return getClosureExpr()->getParentModule();
} else if (hasAutoClosureExpr()) {
return getAutoClosureExpr()->getParentModule();
}
llvm_unreachable("Unknown declaration reference");
}
bool SILDeclRef::isSetter() const {
if (!hasDecl())
return false;
if (auto accessor = dyn_cast<AccessorDecl>(getDecl()))
return accessor->isSetter();
return false;
}
AbstractFunctionDecl *SILDeclRef::getAbstractFunctionDecl() const {
return dyn_cast_or_null<AbstractFunctionDecl>(getDecl());
}
bool SILDeclRef::isInitAccessor() const {
if (kind != Kind::Func || !hasDecl())
return false;
if (auto accessor = dyn_cast<AccessorDecl>(getDecl()))
return accessor->getAccessorKind() == AccessorKind::Init;
return false;
}
/// True if the function should be treated as transparent.
bool SILDeclRef::isTransparent() const {
if (isEnumElement())
return true;
if (isStoredPropertyInitializer())
return true;
if (hasAutoClosureExpr()) {
auto *ace = getAutoClosureExpr();
switch (ace->getThunkKind()) {
case AutoClosureExpr::Kind::None:
return true;
case AutoClosureExpr::Kind::AsyncLet:
case AutoClosureExpr::Kind::DoubleCurryThunk:
case AutoClosureExpr::Kind::SingleCurryThunk:
break;
}
}
// To support using metatypes as type hints in Embedded Swift. A default
// argument generator might be returning a metatype, which we normally don't
// support in Embedded Swift, but to still allow metatypes as type hints, we
// make the generator always inline to the callee by marking it transparent.
if (getASTContext().LangOpts.hasFeature(Feature::Embedded)) {
if (isDefaultArgGenerator() && hasDecl()) {
auto *decl = getDecl();
auto *param = getParameterAt(decl, defaultArgIndex);
Type paramType = param->getTypeOfDefaultExpr();
if (paramType && paramType->is<MetatypeType>())
return true;
}
}
if (hasDecl()) {
if (auto *AFD = dyn_cast<AbstractFunctionDecl>(getDecl()))
return AFD->isTransparent();
if (auto *ASD = dyn_cast<AbstractStorageDecl>(getDecl()))
return ASD->isTransparent();
}
return false;
}
bool SILDeclRef::isSerialized() const {
return getSerializedKind() == IsSerialized;
}
bool SILDeclRef::isNotSerialized() const {
return getSerializedKind() == IsNotSerialized;
}
/// True if the function should have its body serialized.
SerializedKind_t SILDeclRef::getSerializedKind() const {
if (auto closure = getAbstractClosureExpr()) {
// Ask the AST if we're inside an @inlinable context.
if (closure->getResilienceExpansion() == ResilienceExpansion::Minimal) {
return IsSerialized;
}
return IsNotSerialized;
}
if (kind == Kind::EntryPoint || kind == Kind::AsyncEntryPoint)
return IsNotSerialized;
if (isIVarInitializerOrDestroyer())
return IsNotSerialized;
auto *d = getDecl();
ASSERT(ABIRoleInfo(d).providesAPI()
&& "should not get serialization info from ABI-only decl");
// A declaration marked as "never emitted into client" will not have its SIL
// serialized, ever.
if (d->isNeverEmittedIntoClient())
return IsNotSerialized;
// Default and property wrapper argument generators are serialized if the
// containing declaration is public.
if (isDefaultArgGenerator() || (isPropertyWrapperBackingInitializer() &&
isa<ParamDecl>(d))) {
if (isPropertyWrapperBackingInitializer()) {
if (auto *func = dyn_cast_or_null<ValueDecl>(d->getDeclContext()->getAsDecl())) {
d = func;
}
}
// Ask the AST if we're inside an @inlinable context.
if (d->getDeclContext()->getResilienceExpansion()
== ResilienceExpansion::Minimal) {
return IsSerialized;
}
// Otherwise, check if the owning declaration is public.
auto scope =
d->getFormalAccessScope(/*useDC=*/nullptr,
/*treatUsableFromInlineAsPublic=*/true);
if (scope.isPublic())
return IsSerialized;
return IsNotSerialized;
}
// Stored property initializers are inlinable if the type is explicitly
// marked as @frozen.
if (isStoredPropertyInitializer() || (isPropertyWrapperBackingInitializer() &&
d->getDeclContext()->isTypeContext())) {
auto *nominal = dyn_cast<NominalTypeDecl>(d->getDeclContext());
// If this isn't in a nominal, it must be in an @objc @implementation
// extension. We don't serialize those since clients outside the module
// don't think of these as Swift classes.
if (!nominal) {
ASSERT(isa<ExtensionDecl>(d->getDeclContext()) &&
cast<ExtensionDecl>(d->getDeclContext())->isObjCImplementation());
return IsNotSerialized;
}
auto scope =
nominal->getFormalAccessScope(/*useDC=*/nullptr,
/*treatUsableFromInlineAsPublic=*/true);
if (!scope.isPublic())
return IsNotSerialized;
if (nominal->isFormallyResilient())
return IsNotSerialized;
return IsSerialized;
}
// Note: if 'd' is a function, then 'dc' is the function itself, not
// its parent context.
auto *dc = d->getInnermostDeclContext();
// Local functions are serializable if their parent function is
// serializable.
if (d->getDeclContext()->isLocalContext()) {
if (dc->getResilienceExpansion() == ResilienceExpansion::Minimal)
return IsSerialized;
return IsNotSerialized;
}
// Anything else that is not public is not serializable.
if (d->getEffectiveAccess() < AccessLevel::Public)
return IsNotSerialized;
// Enum element constructors are serializable if the enum is
// @usableFromInline or public.
if (isEnumElement())
return IsSerialized;
// 'read' and 'modify' accessors synthesized on-demand are serialized if
// visible outside the module.
if (auto fn = dyn_cast<FuncDecl>(d))
if (!isClangImported() &&
fn->hasForcedStaticDispatch())
return IsSerialized;
if (isForeignToNativeThunk())
return IsSerialized;
// The allocating entry point for designated initializers are serialized
// if the class is @usableFromInline or public. Actors are excluded because
// whether the init is designated is not clearly reflected in the source code.
if (kind == SILDeclRef::Kind::Allocator) {
auto *ctor = cast<ConstructorDecl>(d);
if (auto classDecl = ctor->getDeclContext()->getSelfClassDecl()) {
if (!classDecl->isAnyActor() && ctor->isDesignatedInit())
if (!ctor->hasClangNode())
return IsSerialized;
}
}
if (isForeign) {
// @objc thunks for methods are not serializable since they're only
// referenced from the method table.
if (d->getDeclContext()->isTypeContext())
return IsNotSerialized;
// @objc thunks for top-level functions are serializable since they're
// referenced from @convention(c) conversions inside inlinable
// functions.
return IsSerialized;
}
// Declarations imported from Clang modules are serialized if
// referenced from an inlinable context.
if (isClangImported())
return IsSerialized;
// Handle back deployed functions. The original back deployed function
// should not be serialized, but the thunk and fallback should be since they
// need to be emitted into the client.
if (isBackDeployed()) {
switch (backDeploymentKind) {
case BackDeploymentKind::None:
return IsNotSerialized;
case BackDeploymentKind::Fallback:
case BackDeploymentKind::Thunk:
return IsSerialized;
}
}
// Otherwise, ask the AST if we're inside an @inlinable context.
if (dc->getResilienceExpansion() == ResilienceExpansion::Minimal)
return IsSerialized;
return IsNotSerialized;
}
/// True if the function has an @inline(never) attribute.
bool SILDeclRef::isNoinline() const {
if (!hasDecl())
return false;
auto *decl = getDecl();
ASSERT(ABIRoleInfo(decl).providesAPI()
&& "should not get inline attr from ABI-only decl");
if (auto *attr = decl->getAttrs().getAttribute<InlineAttr>())
if (attr->getKind() == InlineKind::Never)
return true;
if (auto *accessorDecl = dyn_cast<AccessorDecl>(decl)) {
auto *storage = accessorDecl->getStorage();
if (auto *attr = storage->getAttrs().getAttribute<InlineAttr>())
if (attr->getKind() == InlineKind::Never)
return true;
}
return false;
}
/// True if the function has the @inline(__always) attribute.
bool SILDeclRef::isAlwaysInline() const {
swift::Decl *decl = nullptr;
if (hasDecl()) {
decl = getDecl();
} else if (auto *ce = getAbstractClosureExpr()) {
// Closures within @inline(__always) functions should be always inlined, too.
// Note that this is different from @inline(never), because closures inside
// @inline(never) _can_ be inlined within the inline-never function.
decl = ce->getParent()->getInnermostDeclarationDeclContext();
if (!decl)
return false;
} else {
return false;
}
ASSERT(ABIRoleInfo(decl).providesAPI()
&& "should not get inline attr from ABI-only decl");
if (auto attr = decl->getAttrs().getAttribute<InlineAttr>())
if (attr->getKind() == InlineKind::Always)
return true;
if (auto *accessorDecl = dyn_cast<AccessorDecl>(decl)) {
auto *storage = accessorDecl->getStorage();
if (auto *attr = storage->getAttrs().getAttribute<InlineAttr>())
if (attr->getKind() == InlineKind::Always)
return true;
}
return false;
}
bool SILDeclRef::isBackDeployed() const {
if (!hasDecl())
return false;
auto *decl = getDecl();
ASSERT(ABIRoleInfo(decl).providesAPI()
&& "should not get backDeployed from ABI-only decl");
if (auto afd = dyn_cast<AbstractFunctionDecl>(decl))
return afd->isBackDeployed();
return false;
}
bool SILDeclRef::hasNonUniqueDefinition() const {
if (auto decl = getDecl())
return declHasNonUniqueDefinition(decl);
return false;
}
bool SILDeclRef::declHasNonUniqueDefinition(const ValueDecl *decl) {
// This function only forces the issue in embedded.
if (!decl->getASTContext().LangOpts.hasFeature(Feature::Embedded))
return false;
// If the declaration is marked as @_neverEmitIntoClient, it has a unique
// definition.
if (decl->isNeverEmittedIntoClient())
return false;
/// @_alwaysEmitIntoClient means that we have a non-unique definition.
if (decl->getAttrs().hasAttribute<AlwaysEmitIntoClientAttr>())
return true;
auto module = decl->getModuleContext();
auto &ctx = module->getASTContext();
/// With deferred code generation, declarations are emitted as late as
/// possible, so they must have non-unique definitions.
if (module->deferredCodeGen())
return true;
// If the declaration is not from the main module, treat its definition as
// non-unique.
return module != ctx.MainModule && ctx.MainModule;
}
bool SILDeclRef::isForeignToNativeThunk() const {
// If this isn't a native entry-point, it's not a foreign-to-native thunk.
if (isForeign)
return false;
// Non-decl entry points are never natively foreign, so they would never
// have a foreign-to-native thunk.
if (!hasDecl())
return false;
// A default argument generator for a C++ function is a Swift function, so no
// thunk needed.
if (isDefaultArgGenerator())
return false;
if (requiresForeignToNativeThunk(getDecl()))
return true;
// ObjC initializing constructors and factories are foreign.
// We emit a special native allocating constructor though.
if (isa<ConstructorDecl>(getDecl())
&& (kind == Kind::Initializer
|| cast<ConstructorDecl>(getDecl())->isFactoryInit())
&& getDecl()->hasClangNode())
return true;
return false;
}
bool SILDeclRef::isNativeToForeignThunk() const {
// If this isn't a foreign entry-point, it's not a native-to-foreign thunk.
if (!isForeign)
return false;
switch (getLocKind()) {
case LocKind::Decl:
// A decl with a clang node doesn't have a native entry-point to forward
// onto.
if (getDecl()->hasClangNode())
return false;
// No thunk is required if the decl directly references an external decl.
if (getDecl()->getAttrs().hasAttribute<ExternAttr>())
return false;
// Only certain kinds of SILDeclRef can expose native-to-foreign thunks.
return kind == Kind::Func || kind == Kind::Initializer ||
kind == Kind::Deallocator;
case LocKind::Closure:
// We can have native-to-foreign thunks over closures.
return true;
case LocKind::File:
return false;
}
llvm_unreachable("Unhandled case in switch");
}
bool SILDeclRef::isDistributedThunk() const {
if (!distributedThunk)
return false;
return kind == Kind::Func;
}
bool SILDeclRef::isDistributed() const {
if (!hasFuncDecl())
return false;
if (auto decl = getFuncDecl()) {
return decl->isDistributed();
}
return false;
}
bool SILDeclRef::isBackDeploymentFallback() const {
if (backDeploymentKind != BackDeploymentKind::Fallback)
return false;
return kind == Kind::Func || kind == Kind::Initializer ||
kind == Kind::Allocator;
}
bool SILDeclRef::isBackDeploymentThunk() const {
if (backDeploymentKind != BackDeploymentKind::Thunk)
return false;
return kind == Kind::Func || kind == Kind::Initializer ||
kind == Kind::Allocator;
}
/// Use the Clang importer to mangle a Clang declaration.
static void mangleClangDeclViaImporter(raw_ostream &buffer,
const clang::NamedDecl *clangDecl,
ASTContext &ctx) {
auto *importer = static_cast<ClangImporter *>(ctx.getClangModuleLoader());
importer->getMangledName(buffer, clangDecl);
}
static std::string mangleClangDecl(Decl *decl, bool isForeign) {
auto clangDecl = decl->getClangDecl();
if (auto namedClangDecl = dyn_cast<clang::DeclaratorDecl>(clangDecl)) {
if (auto asmLabel = namedClangDecl->getAttr<clang::AsmLabelAttr>()) {
std::string s(1, '\01');
s += asmLabel->getLabel();
return s;
} else if (namedClangDecl->hasAttr<clang::OverloadableAttr>() ||
decl->getASTContext().LangOpts.EnableCXXInterop) {
std::string storage;
llvm::raw_string_ostream SS(storage);
mangleClangDeclViaImporter(SS, namedClangDecl, decl->getASTContext());
return SS.str();
}
return namedClangDecl->getName().str();
} else if (auto objcDecl = dyn_cast<clang::ObjCMethodDecl>(clangDecl)) {
if (objcDecl->isDirectMethod() && isForeign) {
std::string storage;
llvm::raw_string_ostream SS(storage);
clang::ASTContext &ctx = clangDecl->getASTContext();
std::unique_ptr<clang::MangleContext> mangler(ctx.createMangleContext());
mangler->mangleObjCMethodName(objcDecl, SS, /*includePrefixByte=*/true,
/*includeCategoryNamespace=*/false);
return SS.str();
}
}
return "";
}
std::string SILDeclRef::mangle(ManglingKind MKind) const {
ASSERT(!hasDecl() || ABIRoleInfo(getDecl()).providesAPI()
&& "SILDeclRef mangling ABI decl directly?");
using namespace Mangle;
ASTMangler mangler(getASTContext());
if (auto *derivativeFunctionIdentifier = getDerivativeFunctionIdentifier()) {
std::string originalMangled = asAutoDiffOriginalFunction().mangle(MKind);
auto *silParameterIndices = autodiff::getLoweredParameterIndices(
derivativeFunctionIdentifier->getParameterIndices(),
getDecl()->getInterfaceType()->castTo<AnyFunctionType>());
// FIXME: is this correct in the presence of curried types?
auto *resultIndices = autodiff::getFunctionSemanticResultIndices(
asAutoDiffOriginalFunction().getAbstractFunctionDecl(),
derivativeFunctionIdentifier->getParameterIndices());
AutoDiffConfig silConfig(
silParameterIndices, resultIndices,
derivativeFunctionIdentifier->getDerivativeGenericSignature());
return mangler.mangleAutoDiffDerivativeFunction(
asAutoDiffOriginalFunction().getAbstractFunctionDecl(),
derivativeFunctionIdentifier->getKind(),
silConfig);
}
// As a special case, Clang functions and globals don't get mangled at all
// - except \c objc_direct decls.
if (hasDecl() && !isDefaultArgGenerator()) {
if (getDecl()->getClangDecl()) {
if (!isForeignToNativeThunk() && !isNativeToForeignThunk()) {
auto clangMangling = mangleClangDecl(getDecl(), isForeign);
if (!clangMangling.empty())
return clangMangling;
}
}
}
// Mangle prespecializations.
if (getSpecializedSignature()) {
SILDeclRef nonSpecializedDeclRef = *this;
nonSpecializedDeclRef.pointer =
(AutoDiffDerivativeFunctionIdentifier *)nullptr;
auto mangledNonSpecializedString = nonSpecializedDeclRef.mangle();
auto *funcDecl = cast<AbstractFunctionDecl>(getDecl());
auto genericSig = funcDecl->getGenericSignature();
return GenericSpecializationMangler::manglePrespecialization(
getASTContext(), mangledNonSpecializedString, genericSig, getSpecializedSignature());
}
ASTMangler::SymbolKind SKind = ASTMangler::SymbolKind::Default;
switch (MKind) {
case SILDeclRef::ManglingKind::Default:
if (isForeign) {
SKind = ASTMangler::SymbolKind::SwiftAsObjCThunk;
} else if (isForeignToNativeThunk()) {
SKind = ASTMangler::SymbolKind::ObjCAsSwiftThunk;
} else if (isDistributedThunk()) {
SKind = ASTMangler::SymbolKind::DistributedThunk;
} else if (isBackDeploymentThunk()) {
SKind = ASTMangler::SymbolKind::BackDeploymentThunk;
} else if (isBackDeploymentFallback()) {
SKind = ASTMangler::SymbolKind::BackDeploymentFallback;
}
break;
case SILDeclRef::ManglingKind::DynamicThunk:
SKind = ASTMangler::SymbolKind::DynamicThunk;
break;
}
switch (kind) {
case SILDeclRef::Kind::Func:
if (auto *ACE = getAbstractClosureExpr())
return mangler.mangleClosureEntity(ACE, SKind);
// As a special case, functions can have manually mangled names.
// Use the SILGen name only for the original non-thunked, non-curried entry
// point.
if (auto NameA = getDecl()->getAttrs().getAttribute<SILGenNameAttr>())
if (!NameA->Name.empty() && !isThunk()) {
return NameA->Name.str();
}
if (auto *ExternA = ExternAttr::find(getDecl()->getAttrs(), ExternKind::C)) {
assert(isa<FuncDecl>(getDecl()) && "non-FuncDecl with @_extern should be rejected by typechecker");
return ExternA->getCName(cast<FuncDecl>(getDecl())).str();
}
// Use a given cdecl name for native-to-foreign thunks.
if (getDecl()->getAttrs().hasAttribute<CDeclAttr>())
if (isNativeToForeignThunk()) {
// If this is an @implementation @_cdecl, mangle it like the clang
// function it implements.
if (auto objcInterface = getDecl()->getImplementedObjCDecl()) {
auto clangMangling = mangleClangDecl(objcInterface, isForeign);
if (!clangMangling.empty())
return clangMangling;
}
return getDecl()->getCDeclName().str();
}
if (SKind == ASTMangler::SymbolKind::DistributedThunk) {
return mangler.mangleDistributedThunk(cast<FuncDecl>(getDecl()));
}
// Otherwise, fall through into the 'other decl' case.
LLVM_FALLTHROUGH;
case SILDeclRef::Kind::EnumElement:
return mangler.mangleEntity(getDecl(), SKind);
case SILDeclRef::Kind::Deallocator:
return mangler.mangleDestructorEntity(cast<DestructorDecl>(getDecl()),
DestructorKind::Deallocating, SKind);
case SILDeclRef::Kind::Destroyer:
return mangler.mangleDestructorEntity(cast<DestructorDecl>(getDecl()),
DestructorKind::NonDeallocating,
SKind);
case SILDeclRef::Kind::IsolatedDeallocator:
return mangler.mangleDestructorEntity(cast<DestructorDecl>(getDecl()),
DestructorKind::IsolatedDeallocating,
SKind);
case SILDeclRef::Kind::Allocator:
// As a special case, initializers can have manually mangled names.
// Use the SILGen name only for the original non-thunked, non-curried entry
// point.
if (auto NameA = getDecl()->getAttrs().getAttribute<SILGenNameAttr>()) {
if (!NameA->Name.empty() && !isThunk()) {
return NameA->Name.str();
}
}
return mangler.mangleConstructorEntity(cast<ConstructorDecl>(getDecl()),
/*allocating*/ true,
SKind);
case SILDeclRef::Kind::Initializer:
return mangler.mangleConstructorEntity(cast<ConstructorDecl>(getDecl()),
/*allocating*/ false,
SKind);
case SILDeclRef::Kind::IVarInitializer:
case SILDeclRef::Kind::IVarDestroyer:
return mangler.mangleIVarInitDestroyEntity(cast<ClassDecl>(getDecl()),
kind == SILDeclRef::Kind::IVarDestroyer,
SKind);
case SILDeclRef::Kind::GlobalAccessor:
return mangler.mangleAccessorEntity(AccessorKind::MutableAddress,
cast<AbstractStorageDecl>(getDecl()),
/*isStatic*/ false,
SKind);
case SILDeclRef::Kind::DefaultArgGenerator:
return mangler.mangleDefaultArgumentEntity(
cast<DeclContext>(getDecl()),
defaultArgIndex,
SKind);
case SILDeclRef::Kind::StoredPropertyInitializer:
return mangler.mangleInitializerEntity(cast<VarDecl>(getDecl()), SKind);
case SILDeclRef::Kind::PropertyWrapperBackingInitializer:
return mangler.mangleBackingInitializerEntity(cast<VarDecl>(getDecl()),
SKind);
case SILDeclRef::Kind::PropertyWrapperInitFromProjectedValue:
return mangler.mangleInitFromProjectedValueEntity(cast<VarDecl>(getDecl()),
SKind);
case SILDeclRef::Kind::AsyncEntryPoint: {
return "async_Main";
}
case SILDeclRef::Kind::EntryPoint: {
return getASTContext().getEntryPointFunctionName();
}
}
llvm_unreachable("bad entity kind!");
}
// Returns true if the given JVP/VJP SILDeclRef requires a new vtable entry.
// FIXME(https://github.com/apple/swift/issues/54833): Also consider derived declaration `@derivative` attributes.
static bool derivativeFunctionRequiresNewVTableEntry(SILDeclRef declRef) {
assert(declRef.getDerivativeFunctionIdentifier() &&
"Expected a derivative function SILDeclRef");
auto overridden = declRef.getOverridden();
if (!overridden)
return false;
// Get the derived `@differentiable` attribute.
auto *derivedDiffAttr = *llvm::find_if(
declRef.getDecl()->getAttrs().getAttributes<DifferentiableAttr>(),
[&](const DifferentiableAttr *derivedDiffAttr) {
return derivedDiffAttr->getParameterIndices() ==
declRef.getDerivativeFunctionIdentifier()->getParameterIndices();
});
assert(derivedDiffAttr && "Expected `@differentiable` attribute");
// Otherwise, if the base `@differentiable` attribute specifies a derivative
// function, then the derivative is inherited and no new vtable entry is
// needed. Return false.
auto baseDiffAttrs =
overridden.getDecl()->getAttrs().getAttributes<DifferentiableAttr>();
for (auto *baseDiffAttr : baseDiffAttrs) {
if (baseDiffAttr->getParameterIndices() ==
declRef.getDerivativeFunctionIdentifier()->getParameterIndices())
return false;
}
// Otherwise, if there is no base `@differentiable` attribute exists, then a
// new vtable entry is needed. Return true.
return true;
}
bool SILDeclRef::requiresNewVTableEntry() const {
if (getDerivativeFunctionIdentifier())
if (derivativeFunctionRequiresNewVTableEntry(*this))
return true;
if (!hasDecl())
return false;
if (isBackDeploymentThunk())
return false;
auto fnDecl = dyn_cast<AbstractFunctionDecl>(getDecl());
if (!fnDecl)
return false;
if (fnDecl->needsNewVTableEntry())
return true;
return false;
}
bool SILDeclRef::requiresNewWitnessTableEntry() const {
return cast<AbstractFunctionDecl>(getDecl())->requiresNewWitnessTableEntry();
}
SILDeclRef SILDeclRef::getOverridden() const {
if (!hasDecl())
return SILDeclRef();
auto overridden = getDecl()->getOverriddenDecl();
if (!overridden)
return SILDeclRef();
return withDecl(overridden);
}
SILDeclRef SILDeclRef::getNextOverriddenVTableEntry() const {
if (auto overridden = getOverridden()) {
// Back deployed methods should not be overridden.
assert(backDeploymentKind == SILDeclRef::BackDeploymentKind::None);
// If we overrode a foreign decl or dynamic method, if this is an
// accessor for a property that overrides an ObjC decl, or if it is an
// @NSManaged property, then it won't be in the vtable.
if (overridden.getDecl()->hasClangNode())
return SILDeclRef();
// Distributed thunks are not in the vtable.
if (isDistributedThunk())
return SILDeclRef();
// An @objc convenience initializer can be "overridden" in the sense that
// its selector is reclaimed by a subclass's convenience init with the
// same name. The AST models this as an override for the purposes of
// ObjC selector validation, but it isn't for Swift method dispatch
// purposes.
if (overridden.kind == SILDeclRef::Kind::Allocator) {
auto overriddenCtor = cast<ConstructorDecl>(overridden.getDecl());
if (!overriddenCtor->isDesignatedInit()
&& !overriddenCtor->isRequired())
return SILDeclRef();
}
// Initializing entry points for initializers won't be in the vtable.
// For Swift designated initializers, they're only used in super.init
// chains, which can always be statically resolved. Other native Swift
// initializers only have allocating entry points. ObjC initializers always
// have the initializing entry point (corresponding to the -init method)
// but those are never in the vtable.
if (overridden.kind == SILDeclRef::Kind::Initializer) {
return SILDeclRef();
}
// Overrides of @objc dynamic declarations are not in the vtable.
if (overridden.getDecl()->shouldUseObjCDispatch()) {
return SILDeclRef();
}
if (auto *accessor = dyn_cast<AccessorDecl>(overridden.getDecl())) {
auto *asd = accessor->getStorage();
if (asd->hasClangNode())
return SILDeclRef();
if (asd->shouldUseObjCDispatch()) {
return SILDeclRef();
}
}
// If we overrode a decl from an extension, it won't be in a vtable
// either. This can occur for extensions to ObjC classes.
if (isa<ExtensionDecl>(overridden.getDecl()->getDeclContext()))
return SILDeclRef();
// JVPs/VJPs are overridden only if the base declaration has a
// `@differentiable` attribute with the same parameter indices.
if (getDerivativeFunctionIdentifier()) {
auto overriddenAttrs =
overridden.getDecl()->getAttrs().getAttributes<DifferentiableAttr>();
for (const auto *attr : overriddenAttrs) {
if (attr->getParameterIndices() !=
getDerivativeFunctionIdentifier()->getParameterIndices())
continue;
auto *overriddenDerivativeId =
overridden.getDerivativeFunctionIdentifier();
overridden.pointer =
AutoDiffDerivativeFunctionIdentifier::get(
overriddenDerivativeId->getKind(),
overriddenDerivativeId->getParameterIndices(),
attr->getDerivativeGenericSignature(),
getDecl()->getASTContext());
return overridden;
}
return SILDeclRef();
}
return overridden;
}
return SILDeclRef();
}
SILDeclRef SILDeclRef::getOverriddenWitnessTableEntry() const {
auto bestOverridden =
getOverriddenWitnessTableEntry(cast<AbstractFunctionDecl>(getDecl()));
return withDecl(bestOverridden);
}
AbstractFunctionDecl *SILDeclRef::getOverriddenWitnessTableEntry(
AbstractFunctionDecl *func) {
if (!isa<ProtocolDecl>(func->getDeclContext()))
return func;
AbstractFunctionDecl *bestOverridden = nullptr;
SmallVector<AbstractFunctionDecl *, 4> stack;
SmallPtrSet<AbstractFunctionDecl *, 4> visited;
stack.push_back(func);
visited.insert(func);
while (!stack.empty()) {
auto current = stack.back();
stack.pop_back();
auto overriddenDecls = current->getOverriddenDecls();
if (overriddenDecls.empty()) {
// This entry introduced a witness table entry. Determine whether it is
// better than the best entry we've seen thus far.
if (!bestOverridden ||
ProtocolDecl::compare(
cast<ProtocolDecl>(current->getDeclContext()),
cast<ProtocolDecl>(bestOverridden->getDeclContext()))
< 0) {
bestOverridden = cast<AbstractFunctionDecl>(current);
}
continue;
}
// Add overridden declarations to the stack.
for (auto overridden : overriddenDecls) {
auto overriddenFunc = cast<AbstractFunctionDecl>(overridden);
if (visited.insert(overriddenFunc).second)
stack.push_back(overriddenFunc);
}
}
return bestOverridden;
}
SILDeclRef SILDeclRef::getOverriddenVTableEntry() const {
SILDeclRef cur = *this, next = *this;
do {
cur = next;
if (cur.requiresNewVTableEntry())
return cur;
next = cur.getNextOverriddenVTableEntry();
} while (next);
return cur;
}
SILLocation SILDeclRef::getAsRegularLocation() const {
switch (getLocKind()) {
case LocKind::Decl:
return RegularLocation(getDecl());
case LocKind::Closure:
return RegularLocation(getAbstractClosureExpr());
case LocKind::File:
return RegularLocation::getModuleLocation();
}
llvm_unreachable("Unhandled case in switch");
}
SubclassScope SILDeclRef::getSubclassScope() const {
if (!hasDecl())
return SubclassScope::NotApplicable;
auto *decl = getDecl();
if (!isa<AbstractFunctionDecl>(decl))
return SubclassScope::NotApplicable;
DeclContext *context = decl->getDeclContext();
// Only methods in non-final classes go in the vtable.
auto *classType = dyn_cast<ClassDecl>(context);
if (!classType || classType->isFinal())
return SubclassScope::NotApplicable;
// If a method appears in the vtable of a class, we must give it's symbol
// special consideration when computing visibility because the SIL-level
// linkage does not map to the symbol's visibility in a straightforward
// way.
//
// In particular, the rules are:
// - If the class metadata is not resilient, then all method symbols must
// be visible from any translation unit where a subclass might be defined,
// because the subclass metadata will re-emit all vtable entries.
//
// - For resilient classes, we do the opposite: generally, a method's symbol
// can be hidden from other translation units, because we want to enforce
// that resilient access patterns are used for method calls and overrides.
//
// Constructors and final methods are the exception here, because they can
// be called directly.
// FIXME: This is too narrow. Any class with resilient metadata should
// probably have this, at least for method overrides that don't add new
// vtable entries.
bool isStrictResilientClass = classType->isStrictlyResilient();
if (auto *CD = dyn_cast<ConstructorDecl>(decl)) {
if (isStrictResilientClass)
return SubclassScope::NotApplicable;
// Initializing entry points do not appear in the vtable.
if (kind == SILDeclRef::Kind::Initializer)
return SubclassScope::NotApplicable;
// Non-required convenience inits do not appear in the vtable.
if (!CD->isRequired() && !CD->isDesignatedInit())
return SubclassScope::NotApplicable;
} else if (isa<DestructorDecl>(decl)) {
// Destructors do not appear in the vtable.
return SubclassScope::NotApplicable;
} else {
assert(isa<FuncDecl>(decl));
}
// Various forms of thunks don't go in the vtable.
if (isThunk() || isForeign)
return SubclassScope::NotApplicable;
// Default arg generators don't go in the vtable.
if (isDefaultArgGenerator())
return SubclassScope::NotApplicable;
if (decl->isFinal()) {
// Final methods only go in the vtable if they override something.
if (!decl->getOverriddenDecl())
return SubclassScope::NotApplicable;
// In the resilient case, we're going to be making symbols _less_
// visible, so make sure we stop now; final methods can always be
// called directly.
if (isStrictResilientClass)
return SubclassScope::Internal;
}
assert(decl->getEffectiveAccess() <= classType->getEffectiveAccess() &&
"class must be as visible as its members");
if (isStrictResilientClass) {
// The symbol should _only_ be reached via the vtable, so we're
// going to make it hidden.
return SubclassScope::Resilient;
}
switch (classType->getEffectiveAccess()) {
case AccessLevel::Private:
case AccessLevel::FilePrivate:
// If the class is private, it can only be subclassed from the same
// SILModule, so we don't need to do anything.
return SubclassScope::NotApplicable;
case AccessLevel::Internal:
case AccessLevel::Package:
case AccessLevel::Public:
// If the class is internal or public, it can only be subclassed from
// the same AST Module, but possibly a different SILModule.
return SubclassScope::Internal;
case AccessLevel::Open:
// If the class is open, it can be subclassed from a different
// AST Module. All method symbols are public.
return SubclassScope::External;
}
llvm_unreachable("Unhandled access level in switch.");
}
Expr *SILDeclRef::getInitializationExpr() const {
switch (kind) {
case Kind::StoredPropertyInitializer: {
auto *var = cast<VarDecl>(getDecl());
auto *pbd = var->getParentPatternBinding();
unsigned idx = pbd->getPatternEntryIndexForVarDecl(var);
auto *init = pbd->getInit(idx);
assert(!pbd->isInitializerSubsumed(idx));
// If this is the backing storage for a property with an attached wrapper
// that was initialized with `=`, use that expression as the initializer.
if (auto originalProperty = var->getOriginalWrappedProperty()) {
if (originalProperty->isPropertyMemberwiseInitializedWithWrappedType()) {
auto wrapperInfo =
originalProperty->getPropertyWrapperInitializerInfo();
auto *placeholder = wrapperInfo.getWrappedValuePlaceholder();
init = placeholder->getOriginalWrappedValue();
assert(init);
}
}
return init;
}
case Kind::PropertyWrapperBackingInitializer: {
auto *var = cast<VarDecl>(getDecl());
auto wrapperInfo = var->getPropertyWrapperInitializerInfo();
assert(wrapperInfo.hasInitFromWrappedValue());
return wrapperInfo.getInitFromWrappedValue();
}
case Kind::PropertyWrapperInitFromProjectedValue: {
auto *var = cast<VarDecl>(getDecl());
auto wrapperInfo = var->getPropertyWrapperInitializerInfo();
assert(wrapperInfo.hasInitFromProjectedValue());
return wrapperInfo.getInitFromProjectedValue();
}
default:
return nullptr;
}
}
unsigned SILDeclRef::getParameterListCount() const {
// Only decls can introduce currying.
if (!hasDecl())
return 1;
// Always uncurried even if the underlying function is curried.
if (kind == Kind::DefaultArgGenerator || kind == Kind::EntryPoint ||
kind == Kind::AsyncEntryPoint)
return 1;
auto *vd = getDecl();
if (isa<AbstractFunctionDecl>(vd) || isa<EnumElementDecl>(vd)) {
// For functions and enum elements, the number of parameter lists is the
// same as in their interface type.
return vd->getNumCurryLevels();
} else if (isa<ClassDecl>(vd)) {
return 2;
} else if (isa<VarDecl>(vd)) {
return 1;
} else {
llvm_unreachable("Unhandled ValueDecl for SILDeclRef");
}
}
static bool isDesignatedConstructorForClass(ValueDecl *decl) {
if (auto *ctor = dyn_cast_or_null<ConstructorDecl>(decl))
if (ctor->getDeclContext()->getSelfClassDecl())
return ctor->isDesignatedInit();
return false;
}
bool SILDeclRef::canBeDynamicReplacement() const {
// The foreign entry of a @dynamicReplacement(for:) of @objc method in a
// generic class can't be a dynamic replacement.
if (isForeign && hasDecl() && getDecl()->isNativeMethodReplacement())
return false;
if (isDistributedThunk())
return false;
if (backDeploymentKind != SILDeclRef::BackDeploymentKind::None)
return false;
if (kind == SILDeclRef::Kind::Destroyer ||
kind == SILDeclRef::Kind::DefaultArgGenerator)
return false;
if (kind == SILDeclRef::Kind::Initializer)
return isDesignatedConstructorForClass(getDecl());
if (kind == SILDeclRef::Kind::Allocator)
return !isDesignatedConstructorForClass(getDecl());
return true;
}
bool SILDeclRef::isDynamicallyReplaceable() const {
// The non-foreign entry of a @dynamicReplacement(for:) of @objc method in a
// generic class can't be a dynamically replaced.
if (!isForeign && hasDecl() && getDecl()->isNativeMethodReplacement())
return false;
if (isDistributedThunk())
return false;
if (backDeploymentKind != SILDeclRef::BackDeploymentKind::None)
return false;
if (kind == SILDeclRef::Kind::DefaultArgGenerator)
return false;
if (isStoredPropertyInitializer() || isPropertyWrapperBackingInitializer())
return false;
// Class allocators are not dynamic replaceable.
if (kind == SILDeclRef::Kind::Allocator &&
isDesignatedConstructorForClass(getDecl()))
return false;
if (kind == SILDeclRef::Kind::Destroyer ||
(kind == SILDeclRef::Kind::Initializer &&
!isDesignatedConstructorForClass(getDecl())) ||
kind == SILDeclRef::Kind::GlobalAccessor) {
return false;
}
if (!hasDecl())
return false;
auto decl = getDecl();
if (isForeign)
return false;
// We can't generate categories for generic classes. So the standard mechanism
// for replacing @objc dynamic methods in generic classes does not work.
// Instead we mark the non @objc entry dynamically replaceable and replace
// that.
// For now, we only support this behavior if -enable-implicit-dynamic is
// enabled.
return decl->shouldUseNativeMethodReplacement();
}
bool SILDeclRef::hasAsync() const {
if (isDistributedThunk())
return true;
if (hasDecl()) {
if (auto afd = dyn_cast<AbstractFunctionDecl>(getDecl())) {
return afd->hasAsync();
}
return false;
}
return getAbstractClosureExpr()->isBodyAsync();
}
bool SILDeclRef::isCalleeAllocatedCoroutine() const {
if (!hasDecl())
return false;
auto *accessor = dyn_cast<AccessorDecl>(getDecl());
if (!accessor)
return false;
if (!requiresFeatureCoroutineAccessors(accessor->getAccessorKind()))
return false;
return getASTContext().SILOpts.CoroutineAccessorsUseYieldOnce2;
}