Files
swift-mirror/include/swift/SIL/SILModule.h
Erik Eckstein eecb9fa975 SILModule: track opened archetypes per function.
In theory we could map opened archetypes per module because opened archetypes _should_ be unique across the module.
But currently in some rare cases SILGen re-uses the same opened archetype in multiple functions.
The fix is to add the SILFunction to the map's key.
That also requires that we update the map whenever instructions are moved from one function to another.

This fixes a compiler crash.

rdar://76916931
2021-04-23 14:13:26 +02:00

903 lines
35 KiB
C++

//===--- SILModule.h - Defines the SILModule class --------------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines the SILModule class.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_SIL_SILMODULE_H
#define SWIFT_SIL_SILMODULE_H
#include "swift/AST/ASTContext.h"
#include "swift/AST/Builtins.h"
#include "swift/AST/SILLayout.h"
#include "swift/AST/SILOptions.h"
#include "swift/Basic/IndexTrie.h"
#include "swift/Basic/LangOptions.h"
#include "swift/Basic/ProfileCounter.h"
#include "swift/Basic/Range.h"
#include "swift/SIL/Notifications.h"
#include "swift/SIL/SILCoverageMap.h"
#include "swift/SIL/SILDeclRef.h"
#include "swift/SIL/SILDefaultWitnessTable.h"
#include "swift/SIL/SILDifferentiabilityWitness.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILGlobalVariable.h"
#include "swift/SIL/SILPrintContext.h"
#include "swift/SIL/SILProperty.h"
#include "swift/SIL/SILType.h"
#include "swift/SIL/SILVTable.h"
#include "swift/SIL/SILWitnessTable.h"
#include "swift/SIL/TypeLowering.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/ilist.h"
#include "llvm/ProfileData/InstrProfReader.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/raw_ostream.h"
#include <functional>
namespace llvm {
namespace yaml {
class Output;
} // end namespace yaml
} // end namespace llvm
namespace swift {
/// A fixed size slab of memory, which can be allocated and freed by the
/// SILModule at (basically) zero cost.
class FixedSizeSlab : public llvm::ilist_node<FixedSizeSlab>,
public SILAllocated<FixedSizeSlab> {
public:
/// The capacity of the payload.
static constexpr size_t capacity = 64 * sizeof(uintptr_t);
private:
friend class SILModule;
/// The magic number which is stored in overflowGuard.
static constexpr uintptr_t magicNumber = (uintptr_t)0xdeadbeafdeadbeafull;
/// The payload.
char data[capacity];
/// Used for a cheap buffer overflow check - in the spirit of libgmalloc.
uintptr_t overflowGuard = magicNumber;
public:
void operator=(const FixedSizeSlab &) = delete;
void operator delete(void *Ptr, size_t) = delete;
/// Returns the payload pointing to \p T.
template<typename T> T *dataFor() { return (T *)(&data[0]); }
/// Returns the payload pointing to const \p T
template<typename T> const T *dataFor() const { return (const T *)(&data[0]); }
};
class AnyFunctionType;
class ASTContext;
class FileUnit;
class FuncDecl;
class KeyPathPattern;
class ModuleDecl;
class SILUndef;
class SourceFile;
class SerializedSILLoader;
class SILFunctionBuilder;
class SILRemarkStreamer;
namespace Lowering {
class SILGenModule;
} // namespace Lowering
/// A stage of SIL processing.
enum class SILStage {
/// "Raw" SIL, emitted by SILGen, but not yet run through guaranteed
/// optimization and diagnostic passes.
///
/// Raw SIL does not have fully-constructed SSA and may contain undiagnosed
/// dataflow errors.
Raw,
/// Canonical SIL, which has been run through at least the guaranteed
/// optimization and diagnostic passes.
///
/// Canonical SIL has stricter invariants than raw SIL. It must not contain
/// dataflow errors, and some instructions must be canonicalized to simpler
/// forms.
Canonical,
/// Lowered SIL, which has been prepared for IRGen and will no longer
/// be passed to canonical SIL transform passes.
///
/// In lowered SIL, the SILType of all SILValues is its SIL storage
/// type. Explicit storage is required for all address-only and resilient
/// types.
///
/// Generating the initial Raw SIL is typically referred to as lowering (from
/// the AST). To disambiguate, refer to the process of generating the lowered
/// stage of SIL as "address lowering".
Lowered,
};
/// A SIL module. The SIL module owns all of the SILFunctions generated
/// when a Swift compilation context is lowered to SIL.
class SILModule {
friend class SILFunctionBuilder;
public:
using FunctionListType = llvm::ilist<SILFunction>;
using GlobalListType = llvm::ilist<SILGlobalVariable>;
using VTableListType = llvm::ArrayRef<SILVTable*>;
using PropertyListType = llvm::ilist<SILProperty>;
using WitnessTableListType = llvm::ilist<SILWitnessTable>;
using DefaultWitnessTableListType = llvm::ilist<SILDefaultWitnessTable>;
using DifferentiabilityWitnessListType =
llvm::ilist<SILDifferentiabilityWitness>;
using CoverageMapCollectionType =
llvm::MapVector<StringRef, SILCoverageMap *>;
enum class LinkingMode : uint8_t {
/// Link functions with non-public linkage. Used by the mandatory pipeline.
LinkNormal,
/// Link all functions. Used by the performance pipeine.
LinkAll
};
using ActionCallback = std::function<void()>;
using SlabList = llvm::simple_ilist<FixedSizeSlab>;
private:
friend KeyPathPattern;
friend SILBasicBlock;
friend SILCoverageMap;
friend SILDefaultWitnessTable;
friend SILDifferentiabilityWitness;
friend SILFunction;
friend SILGlobalVariable;
friend SILLayout;
friend SILType;
friend SILVTable;
friend SILProperty;
friend SILUndef;
friend SILWitnessTable;
friend Lowering::SILGenModule;
friend Lowering::TypeConverter;
class SerializationCallback;
/// Allocator that manages the memory of all the pieces of the SILModule.
mutable llvm::BumpPtrAllocator BPA;
/// The list of freed slabs, which can be reused.
SlabList freeSlabs;
/// For consistency checking.
size_t numAllocatedSlabs = 0;
/// The swift Module associated with this SILModule.
ModuleDecl *TheSwiftModule;
/// A specific context for AST-level declarations associated with this SIL
/// module.
///
/// \sa getAssociatedContext
const DeclContext *AssociatedDeclContext;
/// Lookup table for SIL functions. This needs to be declared before \p
/// functions so that the destructor of \p functions is called first.
llvm::StringMap<SILFunction *> FunctionTable;
llvm::StringMap<SILFunction *> ZombieFunctionTable;
/// The list of SILFunctions in the module.
FunctionListType functions;
/// Functions, which are dead (and not in the functions list anymore),
/// but kept alive for debug info generation.
FunctionListType zombieFunctions;
/// Lookup table for SIL vtables from class decls.
llvm::DenseMap<const ClassDecl *, SILVTable *> VTableMap;
/// The list of SILVTables in the module.
std::vector<SILVTable*> vtables;
/// This is a cache of vtable entries for quick look-up
llvm::DenseMap<std::pair<const SILVTable *, SILDeclRef>, SILVTable::Entry>
VTableEntryCache;
/// Lookup table for SIL witness tables from conformances.
llvm::DenseMap<const RootProtocolConformance *, SILWitnessTable *>
WitnessTableMap;
/// The list of SILWitnessTables in the module.
WitnessTableListType witnessTables;
/// Lookup table for SIL default witness tables from protocols.
llvm::DenseMap<const ProtocolDecl *, SILDefaultWitnessTable *>
DefaultWitnessTableMap;
/// The list of SILDefaultWitnessTables in the module.
DefaultWitnessTableListType defaultWitnessTables;
/// Lookup table for SIL differentiability witnesses, keyed by mangled name.
llvm::StringMap<SILDifferentiabilityWitness *> DifferentiabilityWitnessMap;
/// Lookup table for SILDifferentiabilityWitnesses, keyed by original
/// function name.
llvm::StringMap<llvm::SmallVector<SILDifferentiabilityWitness *, 1>>
DifferentiabilityWitnessesByFunction;
/// The list of SILDifferentiabilityWitnesses in the module.
DifferentiabilityWitnessListType differentiabilityWitnesses;
/// Declarations which are externally visible.
///
/// These are method declarations which are referenced from inlinable
/// functions due to cross-module-optimzation. Those declarations don't have
/// any attributes or linkage which mark them as externally visible by
/// default.
/// Currently this table is not serialized.
llvm::SetVector<ValueDecl *> externallyVisible;
/// Lookup table for SIL Global Variables.
llvm::StringMap<SILGlobalVariable *> GlobalVariableMap;
/// The list of SILGlobalVariables in the module.
GlobalListType silGlobals;
// The map of SILCoverageMaps in the module.
CoverageMapCollectionType coverageMaps;
// The list of SILProperties in the module.
PropertyListType properties;
/// The remark streamer used to serialize SIL remarks to a file.
std::unique_ptr<swift::SILRemarkStreamer> silRemarkStreamer;
/// This is a cache of intrinsic Function declarations to numeric ID mappings.
llvm::DenseMap<Identifier, IntrinsicInfo> IntrinsicIDCache;
/// This is a cache of builtin Function declarations to numeric ID mappings.
llvm::DenseMap<Identifier, BuiltinInfo> BuiltinIDCache;
/// This is the set of undef values we've created, for uniquing purposes.
llvm::DenseMap<SILType, SILUndef *> UndefValues;
/// The stage of processing this module is at.
SILStage Stage;
/// The set of deserialization notification handlers.
DeserializationNotificationHandlerSet deserializationNotificationHandlers;
/// The SILLoader used when linking functions into this module.
///
/// This is lazily initialized the first time we attempt to
/// deserialize. Previously this was created when the SILModule was
/// constructed. In certain cases this was before all Modules had been loaded
/// causing us to not
std::unique_ptr<SerializedSILLoader> SILLoader;
/// The indexed profile data to be used for PGO, or nullptr.
std::unique_ptr<llvm::IndexedInstrProfReader> PGOReader;
/// A trie of integer indices that gives pointer identity to a path of
/// projections, shared between all functions in the module.
std::unique_ptr<IndexTrieNode> indexTrieRoot;
/// A mapping from opened archetypes to the instructions which define them.
///
/// The value is either a SingleValueInstrution or a PlaceholderValue, in case
/// an opened-archetype definition is lookedup during parsing or deserializing
/// SIL, where opened archetypes can be forward referenced.
///
/// In theory we wouldn't need to have the SILFunction in the key, because
/// opened archetypes _should_ be unique across the module. But currently
/// in some rare cases SILGen re-uses the same opened archetype for multiple
/// functions.
using OpenedArchetypeKey = std::pair<ArchetypeType*, SILFunction*>;
llvm::DenseMap<OpenedArchetypeKey, SILValue> openedArchetypeDefs;
/// The number of PlaceholderValues in openedArchetypeDefs.
int numUnresolvedOpenedArchetypes = 0;
/// The options passed into this SILModule.
const SILOptions &Options;
/// Set if the SILModule was serialized already. It is used
/// to ensure that the module is serialized only once.
bool serialized;
/// Set if we have registered a deserialization notification handler for
/// lowering ownership in non transparent functions.
/// This gets set in NonTransparent OwnershipModelEliminator pass.
bool regDeserializationNotificationHandlerForNonTransparentFuncOME;
/// Set if we have registered a deserialization notification handler for
/// lowering ownership in transparent functions.
/// This gets set in OwnershipModelEliminator pass.
bool regDeserializationNotificationHandlerForAllFuncOME;
/// Action to be executed for serializing the SILModule.
ActionCallback SerializeSILAction;
/// A list of clients that need to be notified when an instruction
/// invalidation message is sent.
llvm::SetVector<DeleteNotificationHandler*> NotificationHandlers;
SILModule(llvm::PointerUnion<FileUnit *, ModuleDecl *> context,
Lowering::TypeConverter &TC, const SILOptions &Options);
SILModule(const SILModule&) = delete;
void operator=(const SILModule&) = delete;
/// Folding set for key path patterns.
llvm::FoldingSet<KeyPathPattern> KeyPathPatterns;
public:
~SILModule();
/// Method which returns the SerializedSILLoader, creating the loader if it
/// has not been created yet.
SerializedSILLoader *getSILLoader();
/// Add a callback for each newly deserialized SIL function body.
void registerDeserializationNotificationHandler(
std::unique_ptr<DeserializationNotificationHandler> &&handler);
/// Return the set of registered deserialization callbacks.
DeserializationNotificationHandlerSet::range
getDeserializationHandlers() const {
return deserializationNotificationHandlers.getRange();
}
void removeDeserializationNotificationHandler(
DeserializationNotificationHandler *handler) {
deserializationNotificationHandlers.erase(handler);
}
bool hasRegisteredDeserializationNotificationHandlerForNonTransparentFuncOME() {
return regDeserializationNotificationHandlerForNonTransparentFuncOME;
}
bool hasRegisteredDeserializationNotificationHandlerForAllFuncOME() {
return regDeserializationNotificationHandlerForAllFuncOME;
}
void setRegisteredDeserializationNotificationHandlerForNonTransparentFuncOME() {
regDeserializationNotificationHandlerForNonTransparentFuncOME = true;
}
void setRegisteredDeserializationNotificationHandlerForAllFuncOME() {
regDeserializationNotificationHandlerForAllFuncOME = true;
}
/// Returns the instruction which defines an opened archetype, e.g. an
/// open_existential_addr.
///
/// In case the opened archetype is not defined yet (e.g. during parsing or
/// deserilization), a PlaceholderValue is returned. This should not be the
/// case outside of parsing or deserialization.
SILValue getOpenedArchetypeDef(CanArchetypeType archetype,
SILFunction *inFunction);
/// Returns the instruction which defines an opened archetype, e.g. an
/// open_existential_addr.
///
/// In contrast to getOpenedArchetypeDef, it is required that all opened
/// archetypes are resolved.
SingleValueInstruction *getOpenedArchetypeInst(CanArchetypeType archetype,
SILFunction *inFunction) {
return cast<SingleValueInstruction>(getOpenedArchetypeDef(archetype,
inFunction));
}
/// Returns true if there are unresolved opened archetypes in the module.
///
/// This should only be the case during parsing or deserialization.
bool hasUnresolvedOpenedArchetypeDefinitions();
/// Called by SILBuilder whenever a new instruction is created and inserted.
void notifyAddedInstruction(SILInstruction *inst);
/// Called after an instruction is moved from one function to another.
void notifyMovedInstruction(SILInstruction *inst, SILFunction *fromFunction);
/// Add a delete notification handler \p Handler to the module context.
void registerDeleteNotificationHandler(DeleteNotificationHandler* Handler);
/// Remove the delete notification handler \p Handler from the module context.
void removeDeleteNotificationHandler(DeleteNotificationHandler* Handler);
/// Send the invalidation message that \p V is being deleted to all
/// registered handlers. The order of handlers is deterministic but arbitrary.
void notifyDeleteHandlers(SILNode *node);
/// Set a serialization action.
void setSerializeSILAction(ActionCallback SerializeSILAction);
ActionCallback getSerializeSILAction() const;
/// Set a flag indicating that this module is serialized already.
void setSerialized() { serialized = true; }
bool isSerialized() const { return serialized; }
/// Serialize a SIL module using the configured SerializeSILAction.
void serialize();
/// This converts Swift types to SILTypes.
Lowering::TypeConverter &Types;
/// Invalidate cached entries in SIL Loader.
void invalidateSILLoaderCaches();
/// Erase a function from the module.
void eraseFunction(SILFunction *F);
/// Invalidate a function in SILLoader cache.
void invalidateFunctionInSILCache(SILFunction *F);
/// Specialization can cause a function that was erased before by dead function
/// elimination to become alive again. If this happens we need to remove it
/// from the list of zombies.
SILFunction *removeFromZombieList(StringRef Name);
/// Erase a global SIL variable from the module.
void eraseGlobalVariable(SILGlobalVariable *G);
/// Create and return an empty SIL module suitable for generating or parsing
/// SIL into.
///
/// \param context The associated decl context. This should be a FileUnit in
/// single-file mode, and a ModuleDecl in whole-module mode.
static std::unique_ptr<SILModule>
createEmptyModule(llvm::PointerUnion<FileUnit *, ModuleDecl *> context,
Lowering::TypeConverter &TC, const SILOptions &Options);
/// Get the Swift module associated with this SIL module.
ModuleDecl *getSwiftModule() const { return TheSwiftModule; }
/// Get the AST context used for type uniquing etc. by this SIL module.
ASTContext &getASTContext() const;
SourceManager &getSourceManager() const { return getASTContext().SourceMgr; }
/// Get the Swift DeclContext associated with this SIL module. This is never
/// null.
///
/// All AST declarations within this context are assumed to have been fully
/// processed as part of generating this module. This allows certain passes
/// to make additional assumptions about these declarations.
///
/// If this is the same as TheSwiftModule, the entire module is being
/// compiled as a single unit.
const DeclContext *getAssociatedContext() const {
return AssociatedDeclContext;
}
/// Returns true if this SILModule really contains the whole module, i.e.
/// optimizations can assume that they see the whole module.
bool isWholeModule() const {
return isa<ModuleDecl>(AssociatedDeclContext);
}
bool isStdlibModule() const;
/// Returns true if it is the optimized OnoneSupport module.
bool isOptimizedOnoneSupportModule() const;
const SILOptions &getOptions() const { return Options; }
using iterator = FunctionListType::iterator;
using const_iterator = FunctionListType::const_iterator;
FunctionListType &getFunctionList() { return functions; }
const FunctionListType &getFunctionList() const { return functions; }
iterator begin() { return functions.begin(); }
iterator end() { return functions.end(); }
const_iterator begin() const { return functions.begin(); }
const_iterator end() const { return functions.end(); }
iterator_range<iterator> getFunctions() {
return {functions.begin(), functions.end()};
}
iterator_range<const_iterator> getFunctions() const {
return {functions.begin(), functions.end()};
}
const_iterator zombies_begin() const { return zombieFunctions.begin(); }
const_iterator zombies_end() const { return zombieFunctions.end(); }
llvm::ArrayRef<SILVTable*> getVTables() const {
return llvm::ArrayRef<SILVTable*>(vtables);
}
using vtable_iterator = VTableListType::iterator;
using vtable_const_iterator = VTableListType::const_iterator;
vtable_iterator vtable_begin() { return getVTables().begin(); }
vtable_iterator vtable_end() { return getVTables().end(); }
vtable_const_iterator vtable_begin() const { return getVTables().begin(); }
vtable_const_iterator vtable_end() const { return getVTables().end(); }
using witness_table_iterator = WitnessTableListType::iterator;
using witness_table_const_iterator = WitnessTableListType::const_iterator;
WitnessTableListType &getWitnessTableList() { return witnessTables; }
const WitnessTableListType &getWitnessTableList() const { return witnessTables; }
witness_table_iterator witness_table_begin() { return witnessTables.begin(); }
witness_table_iterator witness_table_end() { return witnessTables.end(); }
witness_table_const_iterator witness_table_begin() const { return witnessTables.begin(); }
witness_table_const_iterator witness_table_end() const { return witnessTables.end(); }
iterator_range<witness_table_iterator> getWitnessTables() {
return {witnessTables.begin(), witnessTables.end()};
}
iterator_range<witness_table_const_iterator> getWitnessTables() const {
return {witnessTables.begin(), witnessTables.end()};
}
using default_witness_table_iterator = DefaultWitnessTableListType::iterator;
using default_witness_table_const_iterator = DefaultWitnessTableListType::const_iterator;
DefaultWitnessTableListType &getDefaultWitnessTableList() { return defaultWitnessTables; }
const DefaultWitnessTableListType &getDefaultWitnessTableList() const { return defaultWitnessTables; }
default_witness_table_iterator default_witness_table_begin() { return defaultWitnessTables.begin(); }
default_witness_table_iterator default_witness_table_end() { return defaultWitnessTables.end(); }
default_witness_table_const_iterator default_witness_table_begin() const { return defaultWitnessTables.begin(); }
default_witness_table_const_iterator default_witness_table_end() const { return defaultWitnessTables.end(); }
iterator_range<default_witness_table_iterator> getDefaultWitnessTables() {
return {defaultWitnessTables.begin(), defaultWitnessTables.end()};
}
iterator_range<default_witness_table_const_iterator> getDefaultWitnessTables() const {
return {defaultWitnessTables.begin(), defaultWitnessTables.end()};
}
using differentiability_witness_iterator = DifferentiabilityWitnessListType::iterator;
using differentiability_witness_const_iterator = DifferentiabilityWitnessListType::const_iterator;
DifferentiabilityWitnessListType &getDifferentiabilityWitnessList() { return differentiabilityWitnesses; }
const DifferentiabilityWitnessListType &getDifferentiabilityWitnessList() const { return differentiabilityWitnesses; }
differentiability_witness_iterator differentiability_witness_begin() { return differentiabilityWitnesses.begin(); }
differentiability_witness_iterator differentiability_witness_end() { return differentiabilityWitnesses.end(); }
differentiability_witness_const_iterator differentiability_witness_begin() const { return differentiabilityWitnesses.begin(); }
differentiability_witness_const_iterator differentiability_witness_end() const { return differentiabilityWitnesses.end(); }
iterator_range<differentiability_witness_iterator>
getDifferentiabilityWitnesses() {
return {differentiabilityWitnesses.begin(),
differentiabilityWitnesses.end()};
}
iterator_range<differentiability_witness_const_iterator>
getDifferentiabilityWitnesses() const {
return {differentiabilityWitnesses.begin(),
differentiabilityWitnesses.end()};
}
void addExternallyVisibleDecl(ValueDecl *decl) {
externallyVisible.insert(decl);
}
bool isExternallyVisibleDecl(ValueDecl *decl) {
return externallyVisible.count(decl) != 0;
}
using sil_global_iterator = GlobalListType::iterator;
using sil_global_const_iterator = GlobalListType::const_iterator;
GlobalListType &getSILGlobalList() { return silGlobals; }
const GlobalListType &getSILGlobalList() const { return silGlobals; }
sil_global_iterator sil_global_begin() { return silGlobals.begin(); }
sil_global_iterator sil_global_end() { return silGlobals.end(); }
sil_global_const_iterator sil_global_begin() const {
return silGlobals.begin();
}
sil_global_const_iterator sil_global_end() const {
return silGlobals.end();
}
iterator_range<sil_global_iterator> getSILGlobals() {
return {silGlobals.begin(), silGlobals.end()};
}
iterator_range<sil_global_const_iterator> getSILGlobals() const {
return {silGlobals.begin(), silGlobals.end()};
}
using coverage_map_iterator = CoverageMapCollectionType::iterator;
using coverage_map_const_iterator = CoverageMapCollectionType::const_iterator;
CoverageMapCollectionType &getCoverageMaps() { return coverageMaps; }
const CoverageMapCollectionType &getCoverageMaps() const {
return coverageMaps;
}
swift::SILRemarkStreamer *getSILRemarkStreamer() {
return silRemarkStreamer.get();
}
void installSILRemarkStreamer();
// This is currently limited to VarDecl because the visibility of global
// variables and class properties is straightforward, while the visibility of
// class methods (ValueDecls) depends on the subclass scope. "Visiblity" has
// a different meaning when vtable layout is at stake.
bool isVisibleExternally(const VarDecl *decl) {
return isPossiblyUsedExternally(getDeclSILLinkage(decl), isWholeModule());
}
PropertyListType &getPropertyList() { return properties; }
const PropertyListType &getPropertyList() const { return properties; }
/// Look for a global variable by name.
///
/// \return null if this module has no such global variable
SILGlobalVariable *lookUpGlobalVariable(StringRef name) const {
return GlobalVariableMap.lookup(name);
}
/// Look for a function by name.
///
/// \return null if this module has no such function
SILFunction *lookUpFunction(StringRef name) const {
return FunctionTable.lookup(name);
}
/// Look for a function by declaration.
///
/// \return null if this module has no such function
SILFunction *lookUpFunction(SILDeclRef fnRef);
/// Attempt to deserialize the SILFunction. Returns true if deserialization
/// succeeded, false otherwise.
bool loadFunction(SILFunction *F);
/// Update the linkage of the SILFunction with the linkage of the serialized
/// function.
///
/// The serialized SILLinkage can differ from the linkage derived from the
/// AST, e.g. cross-module-optimization can change the SIL linkages.
void updateFunctionLinkage(SILFunction *F);
/// Attempt to link the SILFunction. Returns true if linking succeeded, false
/// otherwise.
///
/// \return false if the linking failed.
bool linkFunction(SILFunction *F,
LinkingMode LinkMode = LinkingMode::LinkNormal);
/// Check if a given function exists in any of the modules with a
/// required linkage, i.e. it can be linked by linkFunction.
///
/// \return null if this module has no such function. Otherwise
/// the declaration of a function.
SILFunction *findFunction(StringRef Name, SILLinkage Linkage);
/// Check if a given function exists in any of the modules.
/// i.e. it can be linked by linkFunction.
bool hasFunction(StringRef Name);
/// Look up the SILWitnessTable representing the lowering of a protocol
/// conformance, and collect the substitutions to apply to the referenced
/// witnesses, if any.
///
/// \arg C The protocol conformance mapped key to use to lookup the witness
/// table.
/// \arg deserializeLazily If we cannot find the witness table should we
/// attempt to lazily deserialize it.
SILWitnessTable *
lookUpWitnessTable(ProtocolConformanceRef C, bool deserializeLazily=true);
SILWitnessTable *
lookUpWitnessTable(const ProtocolConformance *C, bool deserializeLazily=true);
/// Attempt to lookup \p Member in the witness table for \p C.
std::pair<SILFunction *, SILWitnessTable *>
lookUpFunctionInWitnessTable(ProtocolConformanceRef C,
SILDeclRef Requirement);
/// Look up the SILDefaultWitnessTable representing the default witnesses
/// of a resilient protocol, if any.
SILDefaultWitnessTable *lookUpDefaultWitnessTable(const ProtocolDecl *Protocol,
bool deserializeLazily=true);
/// Attempt to lookup \p Member in the default witness table for \p Protocol.
std::pair<SILFunction *, SILDefaultWitnessTable *>
lookUpFunctionInDefaultWitnessTable(const ProtocolDecl *Protocol,
SILDeclRef Requirement,
bool deserializeLazily=true);
/// Look up the VTable mapped to the given ClassDecl. Returns null on failure.
SILVTable *lookUpVTable(const ClassDecl *C, bool deserializeLazily = true);
/// Attempt to lookup the function corresponding to \p Member in the class
/// hierarchy of \p Class.
SILFunction *lookUpFunctionInVTable(ClassDecl *Class, SILDeclRef Member);
/// Look up the differentiability witness with the given name.
SILDifferentiabilityWitness *lookUpDifferentiabilityWitness(StringRef name);
/// Look up the differentiability witness corresponding to the given key.
SILDifferentiabilityWitness *
lookUpDifferentiabilityWitness(SILDifferentiabilityWitnessKey key);
/// Look up the differentiability witness corresponding to the given function.
llvm::ArrayRef<SILDifferentiabilityWitness *>
lookUpDifferentiabilityWitnessesForFunction(StringRef name);
/// Attempt to deserialize the SILDifferentiabilityWitness. Returns true if
/// deserialization succeeded, false otherwise.
bool loadDifferentiabilityWitness(SILDifferentiabilityWitness *dw);
// Given a protocol, attempt to create a default witness table declaration
// for it.
SILDefaultWitnessTable *
createDefaultWitnessTableDeclaration(const ProtocolDecl *Protocol,
SILLinkage Linkage);
/// Deletes a dead witness table.
void deleteWitnessTable(SILWitnessTable *Wt);
/// Return the stage of processing this module is at.
SILStage getStage() const { return Stage; }
/// Advance the module to a further stage of processing.
void setStage(SILStage s) {
assert(s >= Stage && "regressing stage?!");
Stage = s;
}
llvm::IndexedInstrProfReader *getPGOReader() const { return PGOReader.get(); }
void setPGOReader(std::unique_ptr<llvm::IndexedInstrProfReader> IPR) {
PGOReader = std::move(IPR);
}
IndexTrieNode *getIndexTrieRoot() { return indexTrieRoot.get(); }
/// Can value operations (copies and destroys) on the given lowered type
/// be performed in this module?
bool isTypeABIAccessible(SILType type,
TypeExpansionContext forExpansion);
/// Can type metadata for the given formal type be fetched in
/// the given module?
bool isTypeMetadataAccessible(CanType type);
/// Can type metadata necessary for value operations for the given sil type be
/// fetched in the given module?
bool isTypeMetadataForLayoutAccessible(SILType type);
/// Run the SIL verifier to make sure that all Functions follow
/// invariants.
void verify() const;
/// Check if there are any leaking instructions.
///
/// Aborts with an error if more instructions are allocated than contained in
/// the module.
void checkForLeaks() const;
/// Check if there are any leaking instructions after the SILModule is
/// destructed.
///
/// The SILModule destructor already calls checkForLeaks(). This function is
/// useful to check if the destructor itself destroys all data structures.
static void checkForLeaksAfterDestruction();
/// Pretty-print the module.
void dump(bool Verbose = false) const;
/// Pretty-print the module to a file.
/// Useful for dumping the module when running in a debugger.
/// Warning: no error handling is done. Fails with an assert if the file
/// cannot be opened.
void dump(const char *FileName, bool Verbose = false,
bool PrintASTDecls = false) const;
/// Pretty-print the module to the designated stream.
///
/// \param M If present, the types and declarations from this module will be
/// printed. The module would usually contain the types and Decls that
/// the SIL module depends on.
/// \param Opts The SIL options, used to determine printing verbosity and
/// and sorting.
/// \param PrintASTDecls If set to true print AST decls.
void print(raw_ostream &OS, ModuleDecl *M = nullptr,
const SILOptions &Opts = SILOptions(),
bool PrintASTDecls = true) const {
SILPrintContext PrintCtx(OS, Opts);
print(PrintCtx, M, PrintASTDecls);
}
/// Pretty-print the module with the context \p PrintCtx.
///
/// \param M If present, the types and declarations from this module will be
/// printed. The module would usually contain the types and Decls that
/// the SIL module depends on.
/// \param PrintASTDecls If set to true print AST decls.
void print(SILPrintContext &PrintCtx, ModuleDecl *M = nullptr,
bool PrintASTDecls = true) const;
/// Allocate memory using the module's internal allocator.
void *allocate(unsigned Size, unsigned Align) const;
template <typename T> T *allocate(unsigned Count) const {
return static_cast<T *>(allocate(sizeof(T) * Count, alignof(T)));
}
/// Allocates a slab of memory.
///
/// This has (almost) zero cost, because for the first time, the allocation is
/// done with the BPA.
/// Subsequent allocations are reusing the already freed slabs.
FixedSizeSlab *allocSlab();
/// Frees a slab.
///
/// This has (almost) zero cost, because the slab is just put into the
/// freeSlabs list.
void freeSlab(FixedSizeSlab *slab);
/// Frees all slabs of a list.
void freeAllSlabs(SlabList &slabs);
template <typename T>
MutableArrayRef<T> allocateCopy(ArrayRef<T> Array) const {
MutableArrayRef<T> result(allocate<T>(Array.size()), Array.size());
std::uninitialized_copy(Array.begin(), Array.end(), result.begin());
return result;
}
StringRef allocateCopy(StringRef Str) const {
auto result = allocateCopy<char>({Str.data(), Str.size()});
return {result.data(), result.size()};
}
/// Allocate memory for an instruction using the module's internal allocator.
void *allocateInst(unsigned Size, unsigned Align) const;
/// Deallocate memory of an instruction.
void deallocateInst(SILInstruction *I);
/// Looks up the llvm intrinsic ID and type for the builtin function.
///
/// \returns Returns llvm::Intrinsic::not_intrinsic if the function is not an
/// intrinsic. The particular intrinsic functions which correspond to the
/// returned value are defined in llvm/Intrinsics.h.
const IntrinsicInfo &getIntrinsicInfo(Identifier ID);
/// Looks up the lazily cached identification for the builtin function.
///
/// \returns Returns builtin info of BuiltinValueKind::None kind if the
/// declaration is not a builtin.
const BuiltinInfo &getBuiltinInfo(Identifier ID);
/// Returns true if the builtin or intrinsic is no-return.
bool isNoReturnBuiltinOrIntrinsic(Identifier Name);
/// Returns true if the default atomicity of the module is Atomic.
bool isDefaultAtomic() const {
return !getOptions().AssumeSingleThreaded;
}
/// Returns true if SIL entities associated with declarations in the given
/// declaration context ought to be serialized as part of this module.
bool
shouldSerializeEntitiesAssociatedWithDeclContext(const DeclContext *DC) const;
};
inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, const SILModule &M){
M.print(OS);
return OS;
}
/// Print a simple description of a SILModule for the request evaluator.
void simple_display(llvm::raw_ostream &out, const SILModule *M);
/// Retrieve a SourceLoc for a SILModule that the request evaluator can use for
/// diagnostics.
SourceLoc extractNearestSourceLoc(const SILModule *SM);
namespace Lowering {
/// Determine whether the given class will be allocated/deallocated using the
/// Objective-C runtime, i.e., +alloc and -dealloc.
LLVM_LIBRARY_VISIBILITY bool usesObjCAllocator(ClassDecl *theClass);
} // namespace Lowering
} // namespace swift
#endif