mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
* Enforce using headers from Swift's LLVMSupport fork and not llvm-project when building stdlib * [LLVMSupport] Re-import LLVMSupport .cpp and .h files from 9ff3a9759b7c2f146e7f46e4aebc60453c577c5a from apple/llvm-project Done via the following commands, while having llvm-project checked out at 9ff3a9759b7c2f146e7f46e4aebc60453c577c5a, a commit on the stable/20210726 branch of apple/llvm-project, <9ff3a9759b>: for i in swift/stdlib/public/LLVMSupport/*.cpp ; do cp llvm-project/llvm/lib/Support/$(basename $i) $i ; done for i in swift/stdlib/include/llvm/ADT/*.h; do cp llvm-project/llvm/include/llvm/ADT/$(basename $i) $i ; done for i in swift/stdlib/include/llvm/Support/*.h; do cp llvm-project/llvm/include/llvm/Support/$(basename $i) $i ; done cp llvm-project/llvm/include/llvm/ADT/ScopeExit.h swift/stdlib/include/llvm/ADT/ScopeExit.h cp llvm-project/llvm/include/llvm/ADT/Twine.h swift/stdlib/include/llvm/ADT/Twine.h cp llvm-project/llvm/include/llvm/Support/raw_ostream.h swift/stdlib/include/llvm/Support/raw_ostream.h * [LLVMSupport] Re-namespace the LLVMSupport fork after re-forking by re-applyingb72788c27aMore precisely: 1) git cherry-pickb72788c27a2) manually resolve the conflict in AlignOf.h by keeping the HEAD's version of the chunk and discarding the cherry-pick's change 3) git add AlignOf.h 4) git status | grep "deleted by us" | awk '{print($4)}' | xargs git rm 5) git cherry-pick --continue Original namespacing commit message: > This adds the `__swift::__runtime` inline namespace to the LLVMSupport > interfaces. This avoids an ODR violation when LLVM and Swift are in the > same address space. It also will aid in the process of pruning the > LLVMSupport library by ensuring that accidental leakage of the llvm > namespace does not allow us to remove symbols which we rely on. * [LLVMSupport] Re-apply "pruning" on re-forked LLVMSupport frombb102707edThis re-applies the "pruning" commit frombb102707ed, which did the following: - Remove many whole files, - Remove "epoch tracking" and "reverse iteration" support from ADT containers - Remove "ABI break checking" support from STLExtras - Remove float parsing functions from StringExtras.h - Remove APInt/APSInt dependencies from StringRef.h + StringRef.cpp (edit distance, int parsing) - Remove some variants of error handling and dependency of dbgs() from ErrorHandling.h and ErrorHandling.cpp We don't need to do the whole-file-removal step, because that's already done, but the rest is re-applied by doing: 1) git cherry-pickbb102707ed2) manually resolving conflict in ADT/DenseMap.h by keeping HEAD's version of the chunk and removing epoch tracking from it 3) manually resolving conflict in ADT/STLExtras.h by keeping HEAD's version of the chunk and removing ABI check checking from it 4) manually resolving conflict in ADT/StringExtras.h by deleting the whole chunk (removing APInt/APSInt dependent functions) 5) manually resolving conflict in ErrorHandling.cpp by force-applying the cherry-pick's version (removing write() calls and OOM callback) 6) manually resolving the three conflicts in CMakeLists.txt files by keeping HEAD's version completely 7) git add stdlib/include/llvm/{ADT/StringSwitch.h,ADT/Twine.h,Support/raw_ostream.h} Original commit description: > Reduce LLVMSupport to the subset required for the runtime. This reduces > the TCB and the overheads of the runtime. The inline namespace's > preservation ensures that ODR violations do not occur. * [LLVMSupport] Re-apply all post-import modifications on LLVMSupport that the Swift's fork has Since the previous commits re-imported "vanilla" versions of LLVMSupport, we need to re-apply all modifications that the Swift's fork has made since the last import. More precisely: 1) git diff 7b70120440cd39d67a595a7d0ea4e828ecc6ee44..origin/main -- stdlib/include/llvm stdlib/public/LLVMSupport | git apply -3 --exclude "stdlib/include/llvm/Support/DataTypes.h" --exclude "stdlib/include/llvm/Config/llvm-config.h.cmake" 2) manually resolve conflict in STLExtras.h by applying the "__swift::__runtime" prefix to HEAD's version 3) manually resolve conflicts in StringSwitch.h by keeping HEAD's version (removing the Unicode BOM marker at the beginning of the file, keeping LLVM's version of the string functions) 4) manually resolve conflict in SwapByteOrder.h by adding the `defined(__wasi__)` part into the #if * [LLVMSupport] Drop remaining dependencies on APSInt.h, Error.h, DataTypes.h and STLForwardCompat.h Most cases can drop the #includes without any changes, in some cases there are straighforward replacements (climits, cstdint). For STLForwardCompat.h, we need to bring in parts of STLForwardCompat.h from llvm-project. * [LLVMSupport] Remove raw_ostream.h and drop dependencies to it from the runtime * [LLVMSupport] Simplify error reporting in SmallVector and avoid using std::string when producing fatal errors messages Co-authored-by: Saleem Abdulrasool <compnerd@compnerd.org>
1226 lines
39 KiB
C++
1226 lines
39 KiB
C++
//===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the DenseMap class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ADT_DENSEMAP_H
|
|
#define LLVM_ADT_DENSEMAP_H
|
|
|
|
#include "llvm/ADT/DenseMapInfo.h"
|
|
#include "llvm/Support/AlignOf.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/MemAlloc.h"
|
|
#include "llvm/Support/type_traits.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <cstring>
|
|
#include <initializer_list>
|
|
#include <iterator>
|
|
#include <new>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
|
|
inline namespace __swift { inline namespace __runtime {
|
|
namespace llvm {
|
|
|
|
namespace detail {
|
|
|
|
// We extend a pair to allow users to override the bucket type with their own
|
|
// implementation without requiring two members.
|
|
template <typename KeyT, typename ValueT>
|
|
struct DenseMapPair : public std::pair<KeyT, ValueT> {
|
|
using std::pair<KeyT, ValueT>::pair;
|
|
|
|
KeyT &getFirst() { return std::pair<KeyT, ValueT>::first; }
|
|
const KeyT &getFirst() const { return std::pair<KeyT, ValueT>::first; }
|
|
ValueT &getSecond() { return std::pair<KeyT, ValueT>::second; }
|
|
const ValueT &getSecond() const { return std::pair<KeyT, ValueT>::second; }
|
|
};
|
|
|
|
} // end namespace detail
|
|
|
|
template <typename KeyT, typename ValueT,
|
|
typename KeyInfoT = DenseMapInfo<KeyT>,
|
|
typename Bucket = llvm::detail::DenseMapPair<KeyT, ValueT>,
|
|
bool IsConst = false>
|
|
class DenseMapIterator;
|
|
|
|
template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
|
|
typename BucketT>
|
|
class DenseMapBase {
|
|
template <typename T>
|
|
using const_arg_type_t = typename const_pointer_or_const_ref<T>::type;
|
|
|
|
public:
|
|
using size_type = unsigned;
|
|
using key_type = KeyT;
|
|
using mapped_type = ValueT;
|
|
using value_type = BucketT;
|
|
|
|
using iterator = DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT>;
|
|
using const_iterator =
|
|
DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT, true>;
|
|
|
|
inline iterator begin() {
|
|
// When the map is empty, avoid the overhead of advancing/retreating past
|
|
// empty buckets.
|
|
if (empty())
|
|
return end();
|
|
return makeIterator(getBuckets(), getBucketsEnd());
|
|
}
|
|
inline iterator end() {
|
|
return makeIterator(getBucketsEnd(), getBucketsEnd(), true);
|
|
}
|
|
inline const_iterator begin() const {
|
|
if (empty())
|
|
return end();
|
|
return makeConstIterator(getBuckets(), getBucketsEnd());
|
|
}
|
|
inline const_iterator end() const {
|
|
return makeConstIterator(getBucketsEnd(), getBucketsEnd(), true);
|
|
}
|
|
|
|
LLVM_NODISCARD bool empty() const {
|
|
return getNumEntries() == 0;
|
|
}
|
|
unsigned size() const { return getNumEntries(); }
|
|
|
|
/// Grow the densemap so that it can contain at least \p NumEntries items
|
|
/// before resizing again.
|
|
void reserve(size_type NumEntries) {
|
|
auto NumBuckets = getMinBucketToReserveForEntries(NumEntries);
|
|
if (NumBuckets > getNumBuckets())
|
|
grow(NumBuckets);
|
|
}
|
|
|
|
void clear() {
|
|
if (getNumEntries() == 0 && getNumTombstones() == 0) return;
|
|
|
|
// If the capacity of the array is huge, and the # elements used is small,
|
|
// shrink the array.
|
|
if (getNumEntries() * 4 < getNumBuckets() && getNumBuckets() > 64) {
|
|
shrink_and_clear();
|
|
return;
|
|
}
|
|
|
|
const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
|
|
if (std::is_trivially_destructible<ValueT>::value) {
|
|
// Use a simpler loop when values don't need destruction.
|
|
for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P)
|
|
P->getFirst() = EmptyKey;
|
|
} else {
|
|
unsigned NumEntries = getNumEntries();
|
|
for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
|
|
if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey)) {
|
|
if (!KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) {
|
|
P->getSecond().~ValueT();
|
|
--NumEntries;
|
|
}
|
|
P->getFirst() = EmptyKey;
|
|
}
|
|
}
|
|
assert(NumEntries == 0 && "Node count imbalance!");
|
|
}
|
|
setNumEntries(0);
|
|
setNumTombstones(0);
|
|
}
|
|
|
|
/// Return 1 if the specified key is in the map, 0 otherwise.
|
|
size_type count(const_arg_type_t<KeyT> Val) const {
|
|
const BucketT *TheBucket;
|
|
return LookupBucketFor(Val, TheBucket) ? 1 : 0;
|
|
}
|
|
|
|
iterator find(const_arg_type_t<KeyT> Val) {
|
|
BucketT *TheBucket;
|
|
if (LookupBucketFor(Val, TheBucket))
|
|
return makeIterator(TheBucket, getBucketsEnd(), true);
|
|
return end();
|
|
}
|
|
const_iterator find(const_arg_type_t<KeyT> Val) const {
|
|
const BucketT *TheBucket;
|
|
if (LookupBucketFor(Val, TheBucket))
|
|
return makeConstIterator(TheBucket, getBucketsEnd(), true);
|
|
return end();
|
|
}
|
|
|
|
/// Alternate version of find() which allows a different, and possibly
|
|
/// less expensive, key type.
|
|
/// The DenseMapInfo is responsible for supplying methods
|
|
/// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
|
|
/// type used.
|
|
template<class LookupKeyT>
|
|
iterator find_as(const LookupKeyT &Val) {
|
|
BucketT *TheBucket;
|
|
if (LookupBucketFor(Val, TheBucket))
|
|
return makeIterator(TheBucket, getBucketsEnd(), true);
|
|
return end();
|
|
}
|
|
template<class LookupKeyT>
|
|
const_iterator find_as(const LookupKeyT &Val) const {
|
|
const BucketT *TheBucket;
|
|
if (LookupBucketFor(Val, TheBucket))
|
|
return makeConstIterator(TheBucket, getBucketsEnd(), true);
|
|
return end();
|
|
}
|
|
|
|
/// lookup - Return the entry for the specified key, or a default
|
|
/// constructed value if no such entry exists.
|
|
ValueT lookup(const_arg_type_t<KeyT> Val) const {
|
|
const BucketT *TheBucket;
|
|
if (LookupBucketFor(Val, TheBucket))
|
|
return TheBucket->getSecond();
|
|
return ValueT();
|
|
}
|
|
|
|
// Inserts key,value pair into the map if the key isn't already in the map.
|
|
// If the key is already in the map, it returns false and doesn't update the
|
|
// value.
|
|
std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
|
|
return try_emplace(KV.first, KV.second);
|
|
}
|
|
|
|
// Inserts key,value pair into the map if the key isn't already in the map.
|
|
// If the key is already in the map, it returns false and doesn't update the
|
|
// value.
|
|
std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) {
|
|
return try_emplace(std::move(KV.first), std::move(KV.second));
|
|
}
|
|
|
|
// Inserts key,value pair into the map if the key isn't already in the map.
|
|
// The value is constructed in-place if the key is not in the map, otherwise
|
|
// it is not moved.
|
|
template <typename... Ts>
|
|
std::pair<iterator, bool> try_emplace(KeyT &&Key, Ts &&... Args) {
|
|
BucketT *TheBucket;
|
|
if (LookupBucketFor(Key, TheBucket))
|
|
return std::make_pair(makeIterator(TheBucket, getBucketsEnd(), true),
|
|
false); // Already in map.
|
|
|
|
// Otherwise, insert the new element.
|
|
TheBucket =
|
|
InsertIntoBucket(TheBucket, std::move(Key), std::forward<Ts>(Args)...);
|
|
return std::make_pair(makeIterator(TheBucket, getBucketsEnd(), true), true);
|
|
}
|
|
|
|
// Inserts key,value pair into the map if the key isn't already in the map.
|
|
// The value is constructed in-place if the key is not in the map, otherwise
|
|
// it is not moved.
|
|
template <typename... Ts>
|
|
std::pair<iterator, bool> try_emplace(const KeyT &Key, Ts &&... Args) {
|
|
BucketT *TheBucket;
|
|
if (LookupBucketFor(Key, TheBucket))
|
|
return std::make_pair(makeIterator(TheBucket, getBucketsEnd(), true),
|
|
false); // Already in map.
|
|
|
|
// Otherwise, insert the new element.
|
|
TheBucket = InsertIntoBucket(TheBucket, Key, std::forward<Ts>(Args)...);
|
|
return std::make_pair(makeIterator(TheBucket, getBucketsEnd(), true), true);
|
|
}
|
|
|
|
/// Alternate version of insert() which allows a different, and possibly
|
|
/// less expensive, key type.
|
|
/// The DenseMapInfo is responsible for supplying methods
|
|
/// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
|
|
/// type used.
|
|
template <typename LookupKeyT>
|
|
std::pair<iterator, bool> insert_as(std::pair<KeyT, ValueT> &&KV,
|
|
const LookupKeyT &Val) {
|
|
BucketT *TheBucket;
|
|
if (LookupBucketFor(Val, TheBucket))
|
|
return std::make_pair(makeIterator(TheBucket, getBucketsEnd(), *this, true),
|
|
false); // Already in map.
|
|
|
|
// Otherwise, insert the new element.
|
|
TheBucket = InsertIntoBucketWithLookup(TheBucket, std::move(KV.first),
|
|
std::move(KV.second), Val);
|
|
return std::make_pair(makeIterator(TheBucket, getBucketsEnd(), *this, true),
|
|
true);
|
|
}
|
|
|
|
/// insert - Range insertion of pairs.
|
|
template<typename InputIt>
|
|
void insert(InputIt I, InputIt E) {
|
|
for (; I != E; ++I)
|
|
insert(*I);
|
|
}
|
|
|
|
bool erase(const KeyT &Val) {
|
|
BucketT *TheBucket;
|
|
if (!LookupBucketFor(Val, TheBucket))
|
|
return false; // not in map.
|
|
|
|
TheBucket->getSecond().~ValueT();
|
|
TheBucket->getFirst() = getTombstoneKey();
|
|
decrementNumEntries();
|
|
incrementNumTombstones();
|
|
return true;
|
|
}
|
|
void erase(iterator I) {
|
|
BucketT *TheBucket = &*I;
|
|
TheBucket->getSecond().~ValueT();
|
|
TheBucket->getFirst() = getTombstoneKey();
|
|
decrementNumEntries();
|
|
incrementNumTombstones();
|
|
}
|
|
|
|
value_type& FindAndConstruct(const KeyT &Key) {
|
|
BucketT *TheBucket;
|
|
if (LookupBucketFor(Key, TheBucket))
|
|
return *TheBucket;
|
|
|
|
return *InsertIntoBucket(TheBucket, Key);
|
|
}
|
|
|
|
ValueT &operator[](const KeyT &Key) {
|
|
return FindAndConstruct(Key).second;
|
|
}
|
|
|
|
value_type& FindAndConstruct(KeyT &&Key) {
|
|
BucketT *TheBucket;
|
|
if (LookupBucketFor(Key, TheBucket))
|
|
return *TheBucket;
|
|
|
|
return *InsertIntoBucket(TheBucket, std::move(Key));
|
|
}
|
|
|
|
ValueT &operator[](KeyT &&Key) {
|
|
return FindAndConstruct(std::move(Key)).second;
|
|
}
|
|
|
|
/// isPointerIntoBucketsArray - Return true if the specified pointer points
|
|
/// somewhere into the DenseMap's array of buckets (i.e. either to a key or
|
|
/// value in the DenseMap).
|
|
bool isPointerIntoBucketsArray(const void *Ptr) const {
|
|
return Ptr >= getBuckets() && Ptr < getBucketsEnd();
|
|
}
|
|
|
|
/// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
|
|
/// array. In conjunction with the previous method, this can be used to
|
|
/// determine whether an insertion caused the DenseMap to reallocate.
|
|
const void *getPointerIntoBucketsArray() const { return getBuckets(); }
|
|
|
|
protected:
|
|
DenseMapBase() = default;
|
|
|
|
void destroyAll() {
|
|
if (getNumBuckets() == 0) // Nothing to do.
|
|
return;
|
|
|
|
const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
|
|
for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
|
|
if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) &&
|
|
!KeyInfoT::isEqual(P->getFirst(), TombstoneKey))
|
|
P->getSecond().~ValueT();
|
|
P->getFirst().~KeyT();
|
|
}
|
|
}
|
|
|
|
void initEmpty() {
|
|
setNumEntries(0);
|
|
setNumTombstones(0);
|
|
|
|
assert((getNumBuckets() & (getNumBuckets()-1)) == 0 &&
|
|
"# initial buckets must be a power of two!");
|
|
const KeyT EmptyKey = getEmptyKey();
|
|
for (BucketT *B = getBuckets(), *E = getBucketsEnd(); B != E; ++B)
|
|
::new (&B->getFirst()) KeyT(EmptyKey);
|
|
}
|
|
|
|
/// Returns the number of buckets to allocate to ensure that the DenseMap can
|
|
/// accommodate \p NumEntries without need to grow().
|
|
unsigned getMinBucketToReserveForEntries(unsigned NumEntries) {
|
|
// Ensure that "NumEntries * 4 < NumBuckets * 3"
|
|
if (NumEntries == 0)
|
|
return 0;
|
|
// +1 is required because of the strict equality.
|
|
// For example if NumEntries is 48, we need to return 401.
|
|
return NextPowerOf2(NumEntries * 4 / 3 + 1);
|
|
}
|
|
|
|
void moveFromOldBuckets(BucketT *OldBucketsBegin, BucketT *OldBucketsEnd) {
|
|
initEmpty();
|
|
|
|
// Insert all the old elements.
|
|
const KeyT EmptyKey = getEmptyKey();
|
|
const KeyT TombstoneKey = getTombstoneKey();
|
|
for (BucketT *B = OldBucketsBegin, *E = OldBucketsEnd; B != E; ++B) {
|
|
if (!KeyInfoT::isEqual(B->getFirst(), EmptyKey) &&
|
|
!KeyInfoT::isEqual(B->getFirst(), TombstoneKey)) {
|
|
// Insert the key/value into the new table.
|
|
BucketT *DestBucket;
|
|
bool FoundVal = LookupBucketFor(B->getFirst(), DestBucket);
|
|
(void)FoundVal; // silence warning.
|
|
assert(!FoundVal && "Key already in new map?");
|
|
DestBucket->getFirst() = std::move(B->getFirst());
|
|
::new (&DestBucket->getSecond()) ValueT(std::move(B->getSecond()));
|
|
incrementNumEntries();
|
|
|
|
// Free the value.
|
|
B->getSecond().~ValueT();
|
|
}
|
|
B->getFirst().~KeyT();
|
|
}
|
|
}
|
|
|
|
template <typename OtherBaseT>
|
|
void copyFrom(
|
|
const DenseMapBase<OtherBaseT, KeyT, ValueT, KeyInfoT, BucketT> &other) {
|
|
assert(&other != this);
|
|
assert(getNumBuckets() == other.getNumBuckets());
|
|
|
|
setNumEntries(other.getNumEntries());
|
|
setNumTombstones(other.getNumTombstones());
|
|
|
|
if (std::is_trivially_copyable<KeyT>::value &&
|
|
std::is_trivially_copyable<ValueT>::value)
|
|
memcpy(reinterpret_cast<void *>(getBuckets()), other.getBuckets(),
|
|
getNumBuckets() * sizeof(BucketT));
|
|
else
|
|
for (size_t i = 0; i < getNumBuckets(); ++i) {
|
|
::new (&getBuckets()[i].getFirst())
|
|
KeyT(other.getBuckets()[i].getFirst());
|
|
if (!KeyInfoT::isEqual(getBuckets()[i].getFirst(), getEmptyKey()) &&
|
|
!KeyInfoT::isEqual(getBuckets()[i].getFirst(), getTombstoneKey()))
|
|
::new (&getBuckets()[i].getSecond())
|
|
ValueT(other.getBuckets()[i].getSecond());
|
|
}
|
|
}
|
|
|
|
static unsigned getHashValue(const KeyT &Val) {
|
|
return KeyInfoT::getHashValue(Val);
|
|
}
|
|
|
|
template<typename LookupKeyT>
|
|
static unsigned getHashValue(const LookupKeyT &Val) {
|
|
return KeyInfoT::getHashValue(Val);
|
|
}
|
|
|
|
static const KeyT getEmptyKey() {
|
|
static_assert(std::is_base_of<DenseMapBase, DerivedT>::value,
|
|
"Must pass the derived type to this template!");
|
|
return KeyInfoT::getEmptyKey();
|
|
}
|
|
|
|
static const KeyT getTombstoneKey() {
|
|
return KeyInfoT::getTombstoneKey();
|
|
}
|
|
|
|
private:
|
|
iterator makeIterator(BucketT *P, BucketT *E, bool NoAdvance=false) {
|
|
return iterator(P, E, NoAdvance);
|
|
}
|
|
|
|
const_iterator makeConstIterator(const BucketT *P, const BucketT *E,
|
|
const bool NoAdvance=false) const {
|
|
return const_iterator(P, E, NoAdvance);
|
|
}
|
|
|
|
unsigned getNumEntries() const {
|
|
return static_cast<const DerivedT *>(this)->getNumEntries();
|
|
}
|
|
|
|
void setNumEntries(unsigned Num) {
|
|
static_cast<DerivedT *>(this)->setNumEntries(Num);
|
|
}
|
|
|
|
void incrementNumEntries() {
|
|
setNumEntries(getNumEntries() + 1);
|
|
}
|
|
|
|
void decrementNumEntries() {
|
|
setNumEntries(getNumEntries() - 1);
|
|
}
|
|
|
|
unsigned getNumTombstones() const {
|
|
return static_cast<const DerivedT *>(this)->getNumTombstones();
|
|
}
|
|
|
|
void setNumTombstones(unsigned Num) {
|
|
static_cast<DerivedT *>(this)->setNumTombstones(Num);
|
|
}
|
|
|
|
void incrementNumTombstones() {
|
|
setNumTombstones(getNumTombstones() + 1);
|
|
}
|
|
|
|
void decrementNumTombstones() {
|
|
setNumTombstones(getNumTombstones() - 1);
|
|
}
|
|
|
|
const BucketT *getBuckets() const {
|
|
return static_cast<const DerivedT *>(this)->getBuckets();
|
|
}
|
|
|
|
BucketT *getBuckets() {
|
|
return static_cast<DerivedT *>(this)->getBuckets();
|
|
}
|
|
|
|
unsigned getNumBuckets() const {
|
|
return static_cast<const DerivedT *>(this)->getNumBuckets();
|
|
}
|
|
|
|
BucketT *getBucketsEnd() {
|
|
return getBuckets() + getNumBuckets();
|
|
}
|
|
|
|
const BucketT *getBucketsEnd() const {
|
|
return getBuckets() + getNumBuckets();
|
|
}
|
|
|
|
void grow(unsigned AtLeast) {
|
|
static_cast<DerivedT *>(this)->grow(AtLeast);
|
|
}
|
|
|
|
void shrink_and_clear() {
|
|
static_cast<DerivedT *>(this)->shrink_and_clear();
|
|
}
|
|
|
|
template <typename KeyArg, typename... ValueArgs>
|
|
BucketT *InsertIntoBucket(BucketT *TheBucket, KeyArg &&Key,
|
|
ValueArgs &&... Values) {
|
|
TheBucket = InsertIntoBucketImpl(Key, Key, TheBucket);
|
|
|
|
TheBucket->getFirst() = std::forward<KeyArg>(Key);
|
|
::new (&TheBucket->getSecond()) ValueT(std::forward<ValueArgs>(Values)...);
|
|
return TheBucket;
|
|
}
|
|
|
|
template <typename LookupKeyT>
|
|
BucketT *InsertIntoBucketWithLookup(BucketT *TheBucket, KeyT &&Key,
|
|
ValueT &&Value, LookupKeyT &Lookup) {
|
|
TheBucket = InsertIntoBucketImpl(Key, Lookup, TheBucket);
|
|
|
|
TheBucket->getFirst() = std::move(Key);
|
|
::new (&TheBucket->getSecond()) ValueT(std::move(Value));
|
|
return TheBucket;
|
|
}
|
|
|
|
template <typename LookupKeyT>
|
|
BucketT *InsertIntoBucketImpl(const KeyT &Key, const LookupKeyT &Lookup,
|
|
BucketT *TheBucket) {
|
|
// If the load of the hash table is more than 3/4, or if fewer than 1/8 of
|
|
// the buckets are empty (meaning that many are filled with tombstones),
|
|
// grow the table.
|
|
//
|
|
// The later case is tricky. For example, if we had one empty bucket with
|
|
// tons of tombstones, failing lookups (e.g. for insertion) would have to
|
|
// probe almost the entire table until it found the empty bucket. If the
|
|
// table completely filled with tombstones, no lookup would ever succeed,
|
|
// causing infinite loops in lookup.
|
|
unsigned NewNumEntries = getNumEntries() + 1;
|
|
unsigned NumBuckets = getNumBuckets();
|
|
if (LLVM_UNLIKELY(NewNumEntries * 4 >= NumBuckets * 3)) {
|
|
this->grow(NumBuckets * 2);
|
|
LookupBucketFor(Lookup, TheBucket);
|
|
NumBuckets = getNumBuckets();
|
|
} else if (LLVM_UNLIKELY(NumBuckets-(NewNumEntries+getNumTombstones()) <=
|
|
NumBuckets/8)) {
|
|
this->grow(NumBuckets);
|
|
LookupBucketFor(Lookup, TheBucket);
|
|
}
|
|
assert(TheBucket);
|
|
|
|
// Only update the state after we've grown our bucket space appropriately
|
|
// so that when growing buckets we have self-consistent entry count.
|
|
incrementNumEntries();
|
|
|
|
// If we are writing over a tombstone, remember this.
|
|
const KeyT EmptyKey = getEmptyKey();
|
|
if (!KeyInfoT::isEqual(TheBucket->getFirst(), EmptyKey))
|
|
decrementNumTombstones();
|
|
|
|
return TheBucket;
|
|
}
|
|
|
|
/// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in
|
|
/// FoundBucket. If the bucket contains the key and a value, this returns
|
|
/// true, otherwise it returns a bucket with an empty marker or tombstone and
|
|
/// returns false.
|
|
template<typename LookupKeyT>
|
|
bool LookupBucketFor(const LookupKeyT &Val,
|
|
const BucketT *&FoundBucket) const {
|
|
const BucketT *BucketsPtr = getBuckets();
|
|
const unsigned NumBuckets = getNumBuckets();
|
|
|
|
if (NumBuckets == 0) {
|
|
FoundBucket = nullptr;
|
|
return false;
|
|
}
|
|
|
|
// FoundTombstone - Keep track of whether we find a tombstone while probing.
|
|
const BucketT *FoundTombstone = nullptr;
|
|
const KeyT EmptyKey = getEmptyKey();
|
|
const KeyT TombstoneKey = getTombstoneKey();
|
|
assert(!KeyInfoT::isEqual(Val, EmptyKey) &&
|
|
!KeyInfoT::isEqual(Val, TombstoneKey) &&
|
|
"Empty/Tombstone value shouldn't be inserted into map!");
|
|
|
|
unsigned BucketNo = getHashValue(Val) & (NumBuckets-1);
|
|
unsigned ProbeAmt = 1;
|
|
while (true) {
|
|
const BucketT *ThisBucket = BucketsPtr + BucketNo;
|
|
// Found Val's bucket? If so, return it.
|
|
if (LLVM_LIKELY(KeyInfoT::isEqual(Val, ThisBucket->getFirst()))) {
|
|
FoundBucket = ThisBucket;
|
|
return true;
|
|
}
|
|
|
|
// If we found an empty bucket, the key doesn't exist in the set.
|
|
// Insert it and return the default value.
|
|
if (LLVM_LIKELY(KeyInfoT::isEqual(ThisBucket->getFirst(), EmptyKey))) {
|
|
// If we've already seen a tombstone while probing, fill it in instead
|
|
// of the empty bucket we eventually probed to.
|
|
FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket;
|
|
return false;
|
|
}
|
|
|
|
// If this is a tombstone, remember it. If Val ends up not in the map, we
|
|
// prefer to return it than something that would require more probing.
|
|
if (KeyInfoT::isEqual(ThisBucket->getFirst(), TombstoneKey) &&
|
|
!FoundTombstone)
|
|
FoundTombstone = ThisBucket; // Remember the first tombstone found.
|
|
|
|
// Otherwise, it's a hash collision or a tombstone, continue quadratic
|
|
// probing.
|
|
BucketNo += ProbeAmt++;
|
|
BucketNo &= (NumBuckets-1);
|
|
}
|
|
}
|
|
|
|
template <typename LookupKeyT>
|
|
bool LookupBucketFor(const LookupKeyT &Val, BucketT *&FoundBucket) {
|
|
const BucketT *ConstFoundBucket;
|
|
bool Result = const_cast<const DenseMapBase *>(this)
|
|
->LookupBucketFor(Val, ConstFoundBucket);
|
|
FoundBucket = const_cast<BucketT *>(ConstFoundBucket);
|
|
return Result;
|
|
}
|
|
|
|
public:
|
|
/// Return the approximate size (in bytes) of the actual map.
|
|
/// This is just the raw memory used by DenseMap.
|
|
/// If entries are pointers to objects, the size of the referenced objects
|
|
/// are not included.
|
|
size_t getMemorySize() const {
|
|
return getNumBuckets() * sizeof(BucketT);
|
|
}
|
|
};
|
|
|
|
/// Equality comparison for DenseMap.
|
|
///
|
|
/// Iterates over elements of LHS confirming that each (key, value) pair in LHS
|
|
/// is also in RHS, and that no additional pairs are in RHS.
|
|
/// Equivalent to N calls to RHS.find and N value comparisons. Amortized
|
|
/// complexity is linear, worst case is O(N^2) (if every hash collides).
|
|
template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
|
|
typename BucketT>
|
|
bool operator==(
|
|
const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &LHS,
|
|
const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &RHS) {
|
|
if (LHS.size() != RHS.size())
|
|
return false;
|
|
|
|
for (auto &KV : LHS) {
|
|
auto I = RHS.find(KV.first);
|
|
if (I == RHS.end() || I->second != KV.second)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Inequality comparison for DenseMap.
|
|
///
|
|
/// Equivalent to !(LHS == RHS). See operator== for performance notes.
|
|
template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
|
|
typename BucketT>
|
|
bool operator!=(
|
|
const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &LHS,
|
|
const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &RHS) {
|
|
return !(LHS == RHS);
|
|
}
|
|
|
|
template <typename KeyT, typename ValueT,
|
|
typename KeyInfoT = DenseMapInfo<KeyT>,
|
|
typename BucketT = llvm::detail::DenseMapPair<KeyT, ValueT>>
|
|
class DenseMap : public DenseMapBase<DenseMap<KeyT, ValueT, KeyInfoT, BucketT>,
|
|
KeyT, ValueT, KeyInfoT, BucketT> {
|
|
friend class DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
|
|
|
|
// Lift some types from the dependent base class into this class for
|
|
// simplicity of referring to them.
|
|
using BaseT = DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
|
|
|
|
BucketT *Buckets;
|
|
unsigned NumEntries;
|
|
unsigned NumTombstones;
|
|
unsigned NumBuckets;
|
|
|
|
public:
|
|
/// Create a DenseMap with an optional \p InitialReserve that guarantee that
|
|
/// this number of elements can be inserted in the map without grow()
|
|
explicit DenseMap(unsigned InitialReserve = 0) { init(InitialReserve); }
|
|
|
|
DenseMap(const DenseMap &other) : BaseT() {
|
|
init(0);
|
|
copyFrom(other);
|
|
}
|
|
|
|
DenseMap(DenseMap &&other) : BaseT() {
|
|
init(0);
|
|
swap(other);
|
|
}
|
|
|
|
template<typename InputIt>
|
|
DenseMap(const InputIt &I, const InputIt &E) {
|
|
init(std::distance(I, E));
|
|
this->insert(I, E);
|
|
}
|
|
|
|
DenseMap(std::initializer_list<typename BaseT::value_type> Vals) {
|
|
init(Vals.size());
|
|
this->insert(Vals.begin(), Vals.end());
|
|
}
|
|
|
|
~DenseMap() {
|
|
this->destroyAll();
|
|
deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets, alignof(BucketT));
|
|
}
|
|
|
|
void swap(DenseMap& RHS) {
|
|
std::swap(Buckets, RHS.Buckets);
|
|
std::swap(NumEntries, RHS.NumEntries);
|
|
std::swap(NumTombstones, RHS.NumTombstones);
|
|
std::swap(NumBuckets, RHS.NumBuckets);
|
|
}
|
|
|
|
DenseMap& operator=(const DenseMap& other) {
|
|
if (&other != this)
|
|
copyFrom(other);
|
|
return *this;
|
|
}
|
|
|
|
DenseMap& operator=(DenseMap &&other) {
|
|
this->destroyAll();
|
|
deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets, alignof(BucketT));
|
|
init(0);
|
|
swap(other);
|
|
return *this;
|
|
}
|
|
|
|
void copyFrom(const DenseMap& other) {
|
|
this->destroyAll();
|
|
deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets, alignof(BucketT));
|
|
if (allocateBuckets(other.NumBuckets)) {
|
|
this->BaseT::copyFrom(other);
|
|
} else {
|
|
NumEntries = 0;
|
|
NumTombstones = 0;
|
|
}
|
|
}
|
|
|
|
void init(unsigned InitNumEntries) {
|
|
auto InitBuckets = BaseT::getMinBucketToReserveForEntries(InitNumEntries);
|
|
if (allocateBuckets(InitBuckets)) {
|
|
this->BaseT::initEmpty();
|
|
} else {
|
|
NumEntries = 0;
|
|
NumTombstones = 0;
|
|
}
|
|
}
|
|
|
|
void grow(unsigned AtLeast) {
|
|
unsigned OldNumBuckets = NumBuckets;
|
|
BucketT *OldBuckets = Buckets;
|
|
|
|
allocateBuckets(std::max<unsigned>(64, static_cast<unsigned>(NextPowerOf2(AtLeast-1))));
|
|
assert(Buckets);
|
|
if (!OldBuckets) {
|
|
this->BaseT::initEmpty();
|
|
return;
|
|
}
|
|
|
|
this->moveFromOldBuckets(OldBuckets, OldBuckets+OldNumBuckets);
|
|
|
|
// Free the old table.
|
|
deallocate_buffer(OldBuckets, sizeof(BucketT) * OldNumBuckets,
|
|
alignof(BucketT));
|
|
}
|
|
|
|
void shrink_and_clear() {
|
|
unsigned OldNumBuckets = NumBuckets;
|
|
unsigned OldNumEntries = NumEntries;
|
|
this->destroyAll();
|
|
|
|
// Reduce the number of buckets.
|
|
unsigned NewNumBuckets = 0;
|
|
if (OldNumEntries)
|
|
NewNumBuckets = std::max(64, 1 << (Log2_32_Ceil(OldNumEntries) + 1));
|
|
if (NewNumBuckets == NumBuckets) {
|
|
this->BaseT::initEmpty();
|
|
return;
|
|
}
|
|
|
|
deallocate_buffer(Buckets, sizeof(BucketT) * OldNumBuckets,
|
|
alignof(BucketT));
|
|
init(NewNumBuckets);
|
|
}
|
|
|
|
private:
|
|
unsigned getNumEntries() const {
|
|
return NumEntries;
|
|
}
|
|
|
|
void setNumEntries(unsigned Num) {
|
|
NumEntries = Num;
|
|
}
|
|
|
|
unsigned getNumTombstones() const {
|
|
return NumTombstones;
|
|
}
|
|
|
|
void setNumTombstones(unsigned Num) {
|
|
NumTombstones = Num;
|
|
}
|
|
|
|
BucketT *getBuckets() const {
|
|
return Buckets;
|
|
}
|
|
|
|
unsigned getNumBuckets() const {
|
|
return NumBuckets;
|
|
}
|
|
|
|
bool allocateBuckets(unsigned Num) {
|
|
NumBuckets = Num;
|
|
if (NumBuckets == 0) {
|
|
Buckets = nullptr;
|
|
return false;
|
|
}
|
|
|
|
Buckets = static_cast<BucketT *>(
|
|
allocate_buffer(sizeof(BucketT) * NumBuckets, alignof(BucketT)));
|
|
return true;
|
|
}
|
|
};
|
|
|
|
template <typename KeyT, typename ValueT, unsigned InlineBuckets = 4,
|
|
typename KeyInfoT = DenseMapInfo<KeyT>,
|
|
typename BucketT = llvm::detail::DenseMapPair<KeyT, ValueT>>
|
|
class SmallDenseMap
|
|
: public DenseMapBase<
|
|
SmallDenseMap<KeyT, ValueT, InlineBuckets, KeyInfoT, BucketT>, KeyT,
|
|
ValueT, KeyInfoT, BucketT> {
|
|
friend class DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
|
|
|
|
// Lift some types from the dependent base class into this class for
|
|
// simplicity of referring to them.
|
|
using BaseT = DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
|
|
|
|
static_assert(isPowerOf2_64(InlineBuckets),
|
|
"InlineBuckets must be a power of 2.");
|
|
|
|
unsigned Small : 1;
|
|
unsigned NumEntries : 31;
|
|
unsigned NumTombstones;
|
|
|
|
struct LargeRep {
|
|
BucketT *Buckets;
|
|
unsigned NumBuckets;
|
|
};
|
|
|
|
/// A "union" of an inline bucket array and the struct representing
|
|
/// a large bucket. This union will be discriminated by the 'Small' bit.
|
|
AlignedCharArrayUnion<BucketT[InlineBuckets], LargeRep> storage;
|
|
|
|
public:
|
|
explicit SmallDenseMap(unsigned NumInitBuckets = 0) {
|
|
init(NumInitBuckets);
|
|
}
|
|
|
|
SmallDenseMap(const SmallDenseMap &other) : BaseT() {
|
|
init(0);
|
|
copyFrom(other);
|
|
}
|
|
|
|
SmallDenseMap(SmallDenseMap &&other) : BaseT() {
|
|
init(0);
|
|
swap(other);
|
|
}
|
|
|
|
template<typename InputIt>
|
|
SmallDenseMap(const InputIt &I, const InputIt &E) {
|
|
init(NextPowerOf2(std::distance(I, E)));
|
|
this->insert(I, E);
|
|
}
|
|
|
|
SmallDenseMap(std::initializer_list<typename BaseT::value_type> Vals)
|
|
: SmallDenseMap(Vals.begin(), Vals.end()) {}
|
|
|
|
~SmallDenseMap() {
|
|
this->destroyAll();
|
|
deallocateBuckets();
|
|
}
|
|
|
|
void swap(SmallDenseMap& RHS) {
|
|
unsigned TmpNumEntries = RHS.NumEntries;
|
|
RHS.NumEntries = NumEntries;
|
|
NumEntries = TmpNumEntries;
|
|
std::swap(NumTombstones, RHS.NumTombstones);
|
|
|
|
const KeyT EmptyKey = this->getEmptyKey();
|
|
const KeyT TombstoneKey = this->getTombstoneKey();
|
|
if (Small && RHS.Small) {
|
|
// If we're swapping inline bucket arrays, we have to cope with some of
|
|
// the tricky bits of DenseMap's storage system: the buckets are not
|
|
// fully initialized. Thus we swap every key, but we may have
|
|
// a one-directional move of the value.
|
|
for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
|
|
BucketT *LHSB = &getInlineBuckets()[i],
|
|
*RHSB = &RHS.getInlineBuckets()[i];
|
|
bool hasLHSValue = (!KeyInfoT::isEqual(LHSB->getFirst(), EmptyKey) &&
|
|
!KeyInfoT::isEqual(LHSB->getFirst(), TombstoneKey));
|
|
bool hasRHSValue = (!KeyInfoT::isEqual(RHSB->getFirst(), EmptyKey) &&
|
|
!KeyInfoT::isEqual(RHSB->getFirst(), TombstoneKey));
|
|
if (hasLHSValue && hasRHSValue) {
|
|
// Swap together if we can...
|
|
std::swap(*LHSB, *RHSB);
|
|
continue;
|
|
}
|
|
// Swap separately and handle any asymmetry.
|
|
std::swap(LHSB->getFirst(), RHSB->getFirst());
|
|
if (hasLHSValue) {
|
|
::new (&RHSB->getSecond()) ValueT(std::move(LHSB->getSecond()));
|
|
LHSB->getSecond().~ValueT();
|
|
} else if (hasRHSValue) {
|
|
::new (&LHSB->getSecond()) ValueT(std::move(RHSB->getSecond()));
|
|
RHSB->getSecond().~ValueT();
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
if (!Small && !RHS.Small) {
|
|
std::swap(getLargeRep()->Buckets, RHS.getLargeRep()->Buckets);
|
|
std::swap(getLargeRep()->NumBuckets, RHS.getLargeRep()->NumBuckets);
|
|
return;
|
|
}
|
|
|
|
SmallDenseMap &SmallSide = Small ? *this : RHS;
|
|
SmallDenseMap &LargeSide = Small ? RHS : *this;
|
|
|
|
// First stash the large side's rep and move the small side across.
|
|
LargeRep TmpRep = std::move(*LargeSide.getLargeRep());
|
|
LargeSide.getLargeRep()->~LargeRep();
|
|
LargeSide.Small = true;
|
|
// This is similar to the standard move-from-old-buckets, but the bucket
|
|
// count hasn't actually rotated in this case. So we have to carefully
|
|
// move construct the keys and values into their new locations, but there
|
|
// is no need to re-hash things.
|
|
for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
|
|
BucketT *NewB = &LargeSide.getInlineBuckets()[i],
|
|
*OldB = &SmallSide.getInlineBuckets()[i];
|
|
::new (&NewB->getFirst()) KeyT(std::move(OldB->getFirst()));
|
|
OldB->getFirst().~KeyT();
|
|
if (!KeyInfoT::isEqual(NewB->getFirst(), EmptyKey) &&
|
|
!KeyInfoT::isEqual(NewB->getFirst(), TombstoneKey)) {
|
|
::new (&NewB->getSecond()) ValueT(std::move(OldB->getSecond()));
|
|
OldB->getSecond().~ValueT();
|
|
}
|
|
}
|
|
|
|
// The hard part of moving the small buckets across is done, just move
|
|
// the TmpRep into its new home.
|
|
SmallSide.Small = false;
|
|
new (SmallSide.getLargeRep()) LargeRep(std::move(TmpRep));
|
|
}
|
|
|
|
SmallDenseMap& operator=(const SmallDenseMap& other) {
|
|
if (&other != this)
|
|
copyFrom(other);
|
|
return *this;
|
|
}
|
|
|
|
SmallDenseMap& operator=(SmallDenseMap &&other) {
|
|
this->destroyAll();
|
|
deallocateBuckets();
|
|
init(0);
|
|
swap(other);
|
|
return *this;
|
|
}
|
|
|
|
void copyFrom(const SmallDenseMap& other) {
|
|
this->destroyAll();
|
|
deallocateBuckets();
|
|
Small = true;
|
|
if (other.getNumBuckets() > InlineBuckets) {
|
|
Small = false;
|
|
new (getLargeRep()) LargeRep(allocateBuckets(other.getNumBuckets()));
|
|
}
|
|
this->BaseT::copyFrom(other);
|
|
}
|
|
|
|
void init(unsigned InitBuckets) {
|
|
Small = true;
|
|
if (InitBuckets > InlineBuckets) {
|
|
Small = false;
|
|
new (getLargeRep()) LargeRep(allocateBuckets(InitBuckets));
|
|
}
|
|
this->BaseT::initEmpty();
|
|
}
|
|
|
|
void grow(unsigned AtLeast) {
|
|
if (AtLeast > InlineBuckets)
|
|
AtLeast = std::max<unsigned>(64, NextPowerOf2(AtLeast-1));
|
|
|
|
if (Small) {
|
|
// First move the inline buckets into a temporary storage.
|
|
AlignedCharArrayUnion<BucketT[InlineBuckets]> TmpStorage;
|
|
BucketT *TmpBegin = reinterpret_cast<BucketT *>(&TmpStorage);
|
|
BucketT *TmpEnd = TmpBegin;
|
|
|
|
// Loop over the buckets, moving non-empty, non-tombstones into the
|
|
// temporary storage. Have the loop move the TmpEnd forward as it goes.
|
|
const KeyT EmptyKey = this->getEmptyKey();
|
|
const KeyT TombstoneKey = this->getTombstoneKey();
|
|
for (BucketT *P = getBuckets(), *E = P + InlineBuckets; P != E; ++P) {
|
|
if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) &&
|
|
!KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) {
|
|
assert(size_t(TmpEnd - TmpBegin) < InlineBuckets &&
|
|
"Too many inline buckets!");
|
|
::new (&TmpEnd->getFirst()) KeyT(std::move(P->getFirst()));
|
|
::new (&TmpEnd->getSecond()) ValueT(std::move(P->getSecond()));
|
|
++TmpEnd;
|
|
P->getSecond().~ValueT();
|
|
}
|
|
P->getFirst().~KeyT();
|
|
}
|
|
|
|
// AtLeast == InlineBuckets can happen if there are many tombstones,
|
|
// and grow() is used to remove them. Usually we always switch to the
|
|
// large rep here.
|
|
if (AtLeast > InlineBuckets) {
|
|
Small = false;
|
|
new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
|
|
}
|
|
this->moveFromOldBuckets(TmpBegin, TmpEnd);
|
|
return;
|
|
}
|
|
|
|
LargeRep OldRep = std::move(*getLargeRep());
|
|
getLargeRep()->~LargeRep();
|
|
if (AtLeast <= InlineBuckets) {
|
|
Small = true;
|
|
} else {
|
|
new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
|
|
}
|
|
|
|
this->moveFromOldBuckets(OldRep.Buckets, OldRep.Buckets+OldRep.NumBuckets);
|
|
|
|
// Free the old table.
|
|
deallocate_buffer(OldRep.Buckets, sizeof(BucketT) * OldRep.NumBuckets,
|
|
alignof(BucketT));
|
|
}
|
|
|
|
void shrink_and_clear() {
|
|
unsigned OldSize = this->size();
|
|
this->destroyAll();
|
|
|
|
// Reduce the number of buckets.
|
|
unsigned NewNumBuckets = 0;
|
|
if (OldSize) {
|
|
NewNumBuckets = 1 << (Log2_32_Ceil(OldSize) + 1);
|
|
if (NewNumBuckets > InlineBuckets && NewNumBuckets < 64u)
|
|
NewNumBuckets = 64;
|
|
}
|
|
if ((Small && NewNumBuckets <= InlineBuckets) ||
|
|
(!Small && NewNumBuckets == getLargeRep()->NumBuckets)) {
|
|
this->BaseT::initEmpty();
|
|
return;
|
|
}
|
|
|
|
deallocateBuckets();
|
|
init(NewNumBuckets);
|
|
}
|
|
|
|
private:
|
|
unsigned getNumEntries() const {
|
|
return NumEntries;
|
|
}
|
|
|
|
void setNumEntries(unsigned Num) {
|
|
// NumEntries is hardcoded to be 31 bits wide.
|
|
assert(Num < (1U << 31) && "Cannot support more than 1<<31 entries");
|
|
NumEntries = Num;
|
|
}
|
|
|
|
unsigned getNumTombstones() const {
|
|
return NumTombstones;
|
|
}
|
|
|
|
void setNumTombstones(unsigned Num) {
|
|
NumTombstones = Num;
|
|
}
|
|
|
|
const BucketT *getInlineBuckets() const {
|
|
assert(Small);
|
|
// Note that this cast does not violate aliasing rules as we assert that
|
|
// the memory's dynamic type is the small, inline bucket buffer, and the
|
|
// 'storage' is a POD containing a char buffer.
|
|
return reinterpret_cast<const BucketT *>(&storage);
|
|
}
|
|
|
|
BucketT *getInlineBuckets() {
|
|
return const_cast<BucketT *>(
|
|
const_cast<const SmallDenseMap *>(this)->getInlineBuckets());
|
|
}
|
|
|
|
const LargeRep *getLargeRep() const {
|
|
assert(!Small);
|
|
// Note, same rule about aliasing as with getInlineBuckets.
|
|
return reinterpret_cast<const LargeRep *>(&storage);
|
|
}
|
|
|
|
LargeRep *getLargeRep() {
|
|
return const_cast<LargeRep *>(
|
|
const_cast<const SmallDenseMap *>(this)->getLargeRep());
|
|
}
|
|
|
|
const BucketT *getBuckets() const {
|
|
return Small ? getInlineBuckets() : getLargeRep()->Buckets;
|
|
}
|
|
|
|
BucketT *getBuckets() {
|
|
return const_cast<BucketT *>(
|
|
const_cast<const SmallDenseMap *>(this)->getBuckets());
|
|
}
|
|
|
|
unsigned getNumBuckets() const {
|
|
return Small ? InlineBuckets : getLargeRep()->NumBuckets;
|
|
}
|
|
|
|
void deallocateBuckets() {
|
|
if (Small)
|
|
return;
|
|
|
|
deallocate_buffer(getLargeRep()->Buckets,
|
|
sizeof(BucketT) * getLargeRep()->NumBuckets,
|
|
alignof(BucketT));
|
|
getLargeRep()->~LargeRep();
|
|
}
|
|
|
|
LargeRep allocateBuckets(unsigned Num) {
|
|
assert(Num > InlineBuckets && "Must allocate more buckets than are inline");
|
|
LargeRep Rep = {static_cast<BucketT *>(allocate_buffer(
|
|
sizeof(BucketT) * Num, alignof(BucketT))),
|
|
Num};
|
|
return Rep;
|
|
}
|
|
};
|
|
|
|
template <typename KeyT, typename ValueT, typename KeyInfoT, typename Bucket,
|
|
bool IsConst>
|
|
class DenseMapIterator {
|
|
friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, true>;
|
|
friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, false>;
|
|
|
|
public:
|
|
using difference_type = ptrdiff_t;
|
|
using value_type =
|
|
typename std::conditional<IsConst, const Bucket, Bucket>::type;
|
|
using pointer = value_type *;
|
|
using reference = value_type &;
|
|
using iterator_category = std::forward_iterator_tag;
|
|
|
|
private:
|
|
pointer Ptr = nullptr;
|
|
pointer End = nullptr;
|
|
|
|
public:
|
|
DenseMapIterator() = default;
|
|
|
|
DenseMapIterator(pointer Pos, pointer E, bool NoAdvance = false)
|
|
: Ptr(Pos), End(E) {
|
|
if (NoAdvance) return;
|
|
AdvancePastEmptyBuckets();
|
|
}
|
|
|
|
// Converting ctor from non-const iterators to const iterators. SFINAE'd out
|
|
// for const iterator destinations so it doesn't end up as a user defined copy
|
|
// constructor.
|
|
template <bool IsConstSrc,
|
|
typename = std::enable_if_t<!IsConstSrc && IsConst>>
|
|
DenseMapIterator(
|
|
const DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, IsConstSrc> &I)
|
|
: Ptr(I.Ptr), End(I.End) {}
|
|
|
|
reference operator*() const {
|
|
assert(Ptr != End && "dereferencing end() iterator");
|
|
return *Ptr;
|
|
}
|
|
pointer operator->() const {
|
|
assert(Ptr != End && "dereferencing end() iterator");
|
|
return Ptr;
|
|
}
|
|
|
|
friend bool operator==(const DenseMapIterator &LHS,
|
|
const DenseMapIterator &RHS) {
|
|
return LHS.Ptr == RHS.Ptr;
|
|
}
|
|
|
|
friend bool operator!=(const DenseMapIterator &LHS,
|
|
const DenseMapIterator &RHS) {
|
|
return !(LHS == RHS);
|
|
}
|
|
|
|
inline DenseMapIterator& operator++() { // Preincrement
|
|
assert(Ptr != End && "incrementing end() iterator");
|
|
++Ptr;
|
|
AdvancePastEmptyBuckets();
|
|
return *this;
|
|
}
|
|
DenseMapIterator operator++(int) { // Postincrement
|
|
DenseMapIterator tmp = *this; ++*this; return tmp;
|
|
}
|
|
|
|
private:
|
|
void AdvancePastEmptyBuckets() {
|
|
assert(Ptr <= End);
|
|
const KeyT Empty = KeyInfoT::getEmptyKey();
|
|
const KeyT Tombstone = KeyInfoT::getTombstoneKey();
|
|
|
|
while (Ptr != End && (KeyInfoT::isEqual(Ptr->getFirst(), Empty) ||
|
|
KeyInfoT::isEqual(Ptr->getFirst(), Tombstone)))
|
|
++Ptr;
|
|
}
|
|
|
|
void RetreatPastEmptyBuckets() {
|
|
assert(Ptr >= End);
|
|
const KeyT Empty = KeyInfoT::getEmptyKey();
|
|
const KeyT Tombstone = KeyInfoT::getTombstoneKey();
|
|
|
|
while (Ptr != End && (KeyInfoT::isEqual(Ptr[-1].getFirst(), Empty) ||
|
|
KeyInfoT::isEqual(Ptr[-1].getFirst(), Tombstone)))
|
|
--Ptr;
|
|
}
|
|
};
|
|
|
|
template <typename KeyT, typename ValueT, typename KeyInfoT>
|
|
inline size_t capacity_in_bytes(const DenseMap<KeyT, ValueT, KeyInfoT> &X) {
|
|
return X.getMemorySize();
|
|
}
|
|
|
|
} // end namespace llvm
|
|
}} // namespace swift::runtime
|
|
|
|
#endif // LLVM_ADT_DENSEMAP_H
|