Files
swift-mirror/stdlib/public/Concurrency/Task.cpp
John McCall ef80a315f8 When waiting on a task, escalate it before enqueuing the waiting task.
As soon as the waiting task is successfully enqueued on the blocking
task, both tasks have to be considered invalidated because the
blocking task can concurrently complete and resume its waiters:

- The waiting task ensures that the blocking task is valid while
  it's waiting.  However, that's measured from the perspective of
  the waiting task, not from the perspective of the thread that was
  previously executing it.  As soon as the waiting task is resumed,
  the wait call completes and the validity guarantee on the blocking
  task disappears, so the blocking task must be treated as
  invalidated.

- The waiting task ensures that it is valid as long as it isn't
  complete.  Since it's trying to wait, it must not be complete.
  However, as soon we resume it, it can complete, so the waiting
  task must also be treated as invalidated.

This is one of those things that's not really easy to test, and the
need for a fix is pretty urgent, so I'm submitting this patch without
a test.  I'll try to land a race test that demonstrates the bug in
the next few days.

@kavon deserves all the credit here for some truly heroic debugging
and finally recognizing the flaw in the code; I'm just popping in
at the last minute to sheepishly patch the bug.

Fixes rdar://92666987
2022-06-10 23:39:59 -04:00

1351 lines
48 KiB
C++

//===--- Task.cpp - Task object and management ----------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Object management routines for asynchronous task objects.
//
//===----------------------------------------------------------------------===//
#ifdef _WIN32
#define WIN32_LEAN_AND_MEAN
#define NOMINMAX
#include <windows.h>
#endif
#include "../CompatibilityOverride/CompatibilityOverride.h"
#include "Debug.h"
#include "Error.h"
#include "TaskGroupPrivate.h"
#include "TaskPrivate.h"
#include "Tracing.h"
#include "swift/ABI/Metadata.h"
#include "swift/ABI/Task.h"
#include "swift/ABI/TaskLocal.h"
#include "swift/ABI/TaskOptions.h"
#include "swift/Runtime/Concurrency.h"
#include "swift/Runtime/HeapObject.h"
#include "swift/Threading/Mutex.h"
#include <atomic>
#include <new>
#if SWIFT_CONCURRENCY_ENABLE_DISPATCH
#include <dispatch/dispatch.h>
#endif
#if !defined(_WIN32) && !defined(__wasi__) && __has_include(<dlfcn.h>)
#include <dlfcn.h>
#endif
#if defined(SWIFT_CONCURRENCY_BACK_DEPLOYMENT)
#include <Availability.h>
#include <TargetConditionals.h>
#if TARGET_OS_WATCH
// Bitcode compilation for the watch device precludes defining the following asm
// symbols, so we don't use them... but simulators are okay.
#if TARGET_OS_SIMULATOR
asm("\n .globl _swift_async_extendedFramePointerFlags" \
"\n _swift_async_extendedFramePointerFlags = 0x0");
#endif
#else
asm("\n .globl _swift_async_extendedFramePointerFlags" \
"\n _swift_async_extendedFramePointerFlags = 0x0");
#endif
#else
#ifdef __APPLE__
#if __POINTER_WIDTH__ == 64
asm("\n .globl _swift_async_extendedFramePointerFlags" \
"\n _swift_async_extendedFramePointerFlags = 0x1000000000000000");
#elif __ARM64_ARCH_8_32__
asm("\n .globl _swift_async_extendedFramePointerFlags" \
"\n _swift_async_extendedFramePointerFlags = 0x10000000");
#else
asm("\n .globl _swift_async_extendedFramePointerFlags" \
"\n _swift_async_extendedFramePointerFlags = 0x0");
#endif
#endif // __APPLE__
#endif // !defined(SWIFT_CONCURRENCY_BACK_DEPLOYMENT)
using namespace swift;
using FutureFragment = AsyncTask::FutureFragment;
using TaskGroup = swift::TaskGroup;
Metadata swift::TaskAllocatorSlabMetadata;
const void *const swift::_swift_concurrency_debug_asyncTaskSlabMetadata =
&TaskAllocatorSlabMetadata;
bool swift::_swift_concurrency_debug_supportsPriorityEscalation =
SWIFT_CONCURRENCY_ENABLE_PRIORITY_ESCALATION;
void FutureFragment::destroy() {
auto queueHead = waitQueue.load(std::memory_order_acquire);
switch (queueHead.getStatus()) {
case Status::Executing:
assert(false && "destroying a task that never completed");
case Status::Success:
resultType->vw_destroy(getStoragePtr());
break;
case Status::Error:
swift_errorRelease(getError());
break;
}
}
FutureFragment::Status AsyncTask::waitFuture(AsyncTask *waitingTask,
AsyncContext *waitingTaskContext,
TaskContinuationFunction *resumeFn,
AsyncContext *callerContext,
OpaqueValue *result) {
using Status = FutureFragment::Status;
using WaitQueueItem = FutureFragment::WaitQueueItem;
assert(isFuture());
auto fragment = futureFragment();
auto queueHead = fragment->waitQueue.load(std::memory_order_acquire);
bool contextInitialized = false;
auto escalatedPriority = JobPriority::Unspecified;
while (true) {
switch (queueHead.getStatus()) {
case Status::Error:
case Status::Success:
SWIFT_TASK_DEBUG_LOG("task %p waiting on task %p, completed immediately",
waitingTask, this);
_swift_tsan_acquire(static_cast<Job *>(this));
if (contextInitialized) waitingTask->flagAsRunning();
// The task is done; we don't need to wait.
return queueHead.getStatus();
case Status::Executing:
SWIFT_TASK_DEBUG_LOG("task %p waiting on task %p, going to sleep",
waitingTask, this);
_swift_tsan_release(static_cast<Job *>(waitingTask));
concurrency::trace::task_wait(
waitingTask, this, static_cast<uintptr_t>(queueHead.getStatus()));
// Task is not complete. We'll need to add ourselves to the queue.
break;
}
if (!contextInitialized) {
contextInitialized = true;
auto context =
reinterpret_cast<TaskFutureWaitAsyncContext *>(waitingTaskContext);
context->errorResult = nullptr;
context->successResultPointer = result;
context->ResumeParent = resumeFn;
context->Parent = callerContext;
waitingTask->flagAsSuspended();
}
// Escalate the blocking task to the priority of the waiting task.
// FIXME: Also record that the waiting task is now waiting on the
// blocking task so that escalators of the waiting task can propagate
// the escalation to the blocking task.
//
// Recording this dependency is tricky because we need escalators
// to be able to escalate without worrying about the blocking task
// concurrently finishing, resuming the escalated task, and being
// invalidated. So we're not doing that yet. In the meantime, we
// do the best-effort alternative of escalating the blocking task
// as a one-time deal to the current priority of the waiting task.
// If the waiting task is escalated after this point, the priority
// will not be escalated, but that's inevitable in the absence of
// propagation during escalation.
//
// We have to do the escalation before we successfully enqueue the
// waiting task on the blocking task's wait queue, because as soon as
// we do, this thread is no longer blocking the resumption of the
// waiting task, and so both the blocking task (which is retained
// during the wait only from the waiting task's perspective) and the
// waiting task (which can simply terminate) must be treat as
// invalidated from this thread's perspective.
//
// When we do fix this bug to record the dependency, we will have to
// do it before this escalation of the blocking task so that there
// isn't a race where an escalation of the waiting task can fail
// to propagate to the blocking task. The correct priority to
// escalate to is the priority we observe when we successfully record
// the dependency; any later escalations will automatically propagate.
//
// If the blocking task finishes while we're doing this escalation,
// the escalation will be innocuous. The wasted effort is acceptable;
// programmers should be encouraged to give tasks that will block
// other tasks the correct priority to begin with.
auto waitingStatus =
waitingTask->_private()._status().load(std::memory_order_relaxed);
if (waitingStatus.getStoredPriority() > escalatedPriority) {
swift_task_escalate(this, waitingStatus.getStoredPriority());
escalatedPriority = waitingStatus.getStoredPriority();
}
// Put the waiting task at the beginning of the wait queue.
waitingTask->getNextWaitingTask() = queueHead.getTask();
auto newQueueHead = WaitQueueItem::get(Status::Executing, waitingTask);
if (fragment->waitQueue.compare_exchange_weak(
queueHead, newQueueHead,
/*success*/ std::memory_order_release,
/*failure*/ std::memory_order_acquire)) {
_swift_task_clearCurrent();
return FutureFragment::Status::Executing;
}
}
}
void NullaryContinuationJob::process(Job *_job) {
auto *job = cast<NullaryContinuationJob>(_job);
auto *task = job->Task;
auto *continuation = job->Continuation;
_swift_task_dealloc_specific(task, job);
auto *context =
static_cast<ContinuationAsyncContext*>(continuation->ResumeContext);
context->setErrorResult(nullptr);
swift_continuation_resume(continuation);
}
void AsyncTask::completeFuture(AsyncContext *context) {
using Status = FutureFragment::Status;
using WaitQueueItem = FutureFragment::WaitQueueItem;
SWIFT_TASK_DEBUG_LOG("complete future = %p", this);
assert(isFuture());
auto fragment = futureFragment();
// If an error was thrown, save it in the future fragment.
auto asyncContextPrefix = reinterpret_cast<FutureAsyncContextPrefix *>(
reinterpret_cast<char *>(context) - sizeof(FutureAsyncContextPrefix));
bool hadErrorResult = false;
auto errorObject = asyncContextPrefix->errorResult;
fragment->getError() = errorObject;
if (errorObject) {
hadErrorResult = true;
}
_swift_tsan_release(static_cast<Job *>(this));
// Update the status to signal completion.
auto newQueueHead = WaitQueueItem::get(
hadErrorResult ? Status::Error : Status::Success,
nullptr
);
auto queueHead = fragment->waitQueue.exchange(
newQueueHead, std::memory_order_acquire);
assert(queueHead.getStatus() == Status::Executing);
// If this is task group child, notify the parent group about the completion.
if (hasGroupChildFragment()) {
// then we must offer into the parent group that we completed,
// so it may `next()` poll completed child tasks in completion order.
auto group = groupChildFragment()->getGroup();
group->offer(this, context);
}
// Schedule every waiting task on the executor.
auto waitingTask = queueHead.getTask();
if (!waitingTask)
SWIFT_TASK_DEBUG_LOG("task %p had no waiting tasks", this);
while (waitingTask) {
// Find the next waiting task before we invalidate it by resuming
// the task.
auto nextWaitingTask = waitingTask->getNextWaitingTask();
SWIFT_TASK_DEBUG_LOG("waking task %p from future of task %p", waitingTask,
this);
// Fill in the return context.
auto waitingContext =
static_cast<TaskFutureWaitAsyncContext *>(waitingTask->ResumeContext);
if (hadErrorResult) {
waitingContext->fillWithError(fragment);
} else {
waitingContext->fillWithSuccess(fragment);
}
_swift_tsan_acquire(static_cast<Job *>(waitingTask));
concurrency::trace::task_resume(waitingTask);
// Enqueue the waiter on the global executor.
// TODO: allow waiters to fill in a suggested executor
waitingTask->flagAsAndEnqueueOnExecutor(ExecutorRef::generic());
// Move to the next task.
waitingTask = nextWaitingTask;
}
}
SWIFT_CC(swift)
static void destroyJob(SWIFT_CONTEXT HeapObject *obj) {
assert(false && "A non-task job should never be destroyed as heap metadata.");
}
AsyncTask::~AsyncTask() {
flagAsCompleted();
// For a future, destroy the result.
if (isFuture()) {
futureFragment()->destroy();
}
Private.destroy();
concurrency::trace::task_destroy(this);
}
void AsyncTask::setTaskId() {
static std::atomic<uint64_t> NextId(1);
// We want the 32-bit Job::Id to be non-zero, so loop if we happen upon zero.
uint64_t Fetched;
do {
Fetched = NextId.fetch_add(1, std::memory_order_relaxed);
Id = Fetched & 0xffffffff;
} while (Id == 0);
_private().Id = (Fetched >> 32) & 0xffffffff;
}
uint64_t AsyncTask::getTaskId() {
// Reconstitute a full 64-bit task ID from the 32-bit job ID and the upper
// 32 bits held in _private().
return (uint64_t)Id << _private().Id;
}
SWIFT_CC(swift)
static void destroyTask(SWIFT_CONTEXT HeapObject *obj) {
auto task = static_cast<AsyncTask*>(obj);
task->~AsyncTask();
// The task execution itself should always hold a reference to it, so
// if we get here, we know the task has finished running, which means
// swift_task_complete should have been run, which will have torn down
// the task-local allocator. There's actually nothing else to clean up
// here.
SWIFT_TASK_DEBUG_LOG("destroy task %p", task);
free(task);
}
static ExecutorRef executorForEnqueuedJob(Job *job) {
#if !SWIFT_CONCURRENCY_ENABLE_DISPATCH
return ExecutorRef::generic();
#else
void *jobQueue = job->SchedulerPrivate[Job::DispatchQueueIndex];
if (jobQueue == DISPATCH_QUEUE_GLOBAL_EXECUTOR)
return ExecutorRef::generic();
else
return ExecutorRef::forOrdinary(reinterpret_cast<HeapObject*>(jobQueue),
_swift_task_getDispatchQueueSerialExecutorWitnessTable());
#endif
}
static void jobInvoke(void *obj, void *unused, uint32_t flags) {
(void)unused;
Job *job = reinterpret_cast<Job *>(obj);
swift_job_run(job, executorForEnqueuedJob(job));
}
// Magic constant to identify Swift Job vtables to Dispatch.
static const unsigned long dispatchSwiftObjectType = 1;
FullMetadata<DispatchClassMetadata> swift::jobHeapMetadata = {
{
{
&destroyJob
},
{
/*value witness table*/ nullptr
}
},
{
MetadataKind::Job,
dispatchSwiftObjectType,
jobInvoke
}
};
/// Heap metadata for an asynchronous task.
static FullMetadata<DispatchClassMetadata> taskHeapMetadata = {
{
{
&destroyTask
},
{
/*value witness table*/ nullptr
}
},
{
MetadataKind::Task,
dispatchSwiftObjectType,
jobInvoke
}
};
const void *const swift::_swift_concurrency_debug_jobMetadata =
static_cast<Metadata *>(&jobHeapMetadata);
const void *const swift::_swift_concurrency_debug_asyncTaskMetadata =
static_cast<Metadata *>(&taskHeapMetadata);
static void completeTaskImpl(AsyncTask *task,
AsyncContext *context,
SwiftError *error) {
assert(task && "completing task, but there is no active task registered");
// Store the error result.
auto asyncContextPrefix = reinterpret_cast<AsyncContextPrefix *>(
reinterpret_cast<char *>(context) - sizeof(AsyncContextPrefix));
asyncContextPrefix->errorResult = error;
task->Private.complete(task);
SWIFT_TASK_DEBUG_LOG("task %p completed", task);
// Complete the future.
// Warning: This deallocates the task in case it's an async let task.
// The task must not be accessed afterwards.
if (task->isFuture()) {
task->completeFuture(context);
}
// TODO: set something in the status?
// if (task->hasChildFragment()) {
// TODO: notify the parent somehow?
// TODO: remove this task from the child-task chain?
// }
}
/// The function that we put in the context of a simple task
/// to handle the final return.
SWIFT_CC(swiftasync)
static void completeTask(SWIFT_ASYNC_CONTEXT AsyncContext *context,
SWIFT_CONTEXT SwiftError *error) {
// Set that there's no longer a running task in the current thread.
auto task = _swift_task_clearCurrent();
assert(task && "completing task, but there is no active task registered");
completeTaskImpl(task, context, error);
}
/// The function that we put in the context of a simple task
/// to handle the final return.
SWIFT_CC(swiftasync)
static void completeTaskAndRelease(SWIFT_ASYNC_CONTEXT AsyncContext *context,
SWIFT_CONTEXT SwiftError *error) {
// Set that there's no longer a running task in the current thread.
auto task = _swift_task_clearCurrent();
assert(task && "completing task, but there is no active task registered");
completeTaskImpl(task, context, error);
// Release the task, balancing the retain that a running task has on itself.
// If it was a group child task, it will remain until the group returns it.
swift_release(task);
}
/// The function that we put in the context of a simple task
/// to handle the final return from a closure.
SWIFT_CC(swiftasync)
static void completeTaskWithClosure(SWIFT_ASYNC_CONTEXT AsyncContext *context,
SWIFT_CONTEXT SwiftError *error) {
// Release the closure context.
auto asyncContextPrefix = reinterpret_cast<AsyncContextPrefix *>(
reinterpret_cast<char *>(context) - sizeof(AsyncContextPrefix));
swift_release((HeapObject *)asyncContextPrefix->closureContext);
// Clean up the rest of the task.
return completeTaskAndRelease(context, error);
}
SWIFT_CC(swiftasync)
static void non_future_adapter(SWIFT_ASYNC_CONTEXT AsyncContext *_context) {
auto asyncContextPrefix = reinterpret_cast<AsyncContextPrefix *>(
reinterpret_cast<char *>(_context) - sizeof(AsyncContextPrefix));
return asyncContextPrefix->asyncEntryPoint(
_context, asyncContextPrefix->closureContext);
}
SWIFT_CC(swiftasync)
static void future_adapter(SWIFT_ASYNC_CONTEXT AsyncContext *_context) {
auto asyncContextPrefix = reinterpret_cast<FutureAsyncContextPrefix *>(
reinterpret_cast<char *>(_context) - sizeof(FutureAsyncContextPrefix));
return asyncContextPrefix->asyncEntryPoint(
asyncContextPrefix->indirectResult, _context,
asyncContextPrefix->closureContext);
}
SWIFT_CC(swiftasync)
static void task_wait_throwing_resume_adapter(SWIFT_ASYNC_CONTEXT AsyncContext *_context) {
auto context = static_cast<TaskFutureWaitAsyncContext *>(_context);
auto resumeWithError =
reinterpret_cast<AsyncVoidClosureEntryPoint *>(context->ResumeParent);
return resumeWithError(context->Parent, context->errorResult);
}
SWIFT_CC(swiftasync)
static void
task_future_wait_resume_adapter(SWIFT_ASYNC_CONTEXT AsyncContext *_context) {
return _context->ResumeParent(_context->Parent);
}
const void *const swift::_swift_concurrency_debug_non_future_adapter =
reinterpret_cast<void *>(non_future_adapter);
const void *const swift::_swift_concurrency_debug_future_adapter =
reinterpret_cast<void *>(future_adapter);
const void
*const swift::_swift_concurrency_debug_task_wait_throwing_resume_adapter =
reinterpret_cast<void *>(task_wait_throwing_resume_adapter);
const void
*const swift::_swift_concurrency_debug_task_future_wait_resume_adapter =
reinterpret_cast<void *>(task_future_wait_resume_adapter);
const void *AsyncTask::getResumeFunctionForLogging() {
const void *result = reinterpret_cast<const void *>(ResumeTask);
if (ResumeTask == non_future_adapter) {
auto asyncContextPrefix = reinterpret_cast<AsyncContextPrefix *>(
reinterpret_cast<char *>(ResumeContext) - sizeof(AsyncContextPrefix));
result =
reinterpret_cast<const void *>(asyncContextPrefix->asyncEntryPoint);
} else if (ResumeTask == future_adapter) {
auto asyncContextPrefix = reinterpret_cast<FutureAsyncContextPrefix *>(
reinterpret_cast<char *>(ResumeContext) -
sizeof(FutureAsyncContextPrefix));
result =
reinterpret_cast<const void *>(asyncContextPrefix->asyncEntryPoint);
} else if (ResumeTask == task_wait_throwing_resume_adapter) {
auto context = static_cast<TaskFutureWaitAsyncContext *>(ResumeContext);
result = reinterpret_cast<const void *>(context->ResumeParent);
} else if (ResumeTask == task_future_wait_resume_adapter) {
result = reinterpret_cast<const void *>(ResumeContext->ResumeParent);
}
return __ptrauth_swift_runtime_function_entry_strip(result);
}
JobPriority swift::swift_task_currentPriority(AsyncTask *task)
{
// This is racey but this is to be used in an API is inherently racey anyways.
auto oldStatus = task->_private()._status().load(std::memory_order_relaxed);
return oldStatus.getStoredPriority();
}
JobPriority swift::swift_task_basePriority(AsyncTask *task)
{
JobPriority pri = task->_private().BasePriority;
SWIFT_TASK_DEBUG_LOG("Task %p has base priority = %zu", task, pri);
return pri;
}
static inline bool isUnspecified(JobPriority priority) {
return priority == JobPriority::Unspecified;
}
static inline bool taskIsUnstructured(JobFlags jobFlags) {
return !jobFlags.task_isAsyncLetTask() && !jobFlags.task_isGroupChildTask();
}
static inline bool taskIsDetached(TaskCreateFlags createFlags, JobFlags jobFlags) {
return taskIsUnstructured(jobFlags) && !createFlags.copyTaskLocals();
}
/// Implementation of task creation.
SWIFT_CC(swift)
static AsyncTaskAndContext swift_task_create_commonImpl(
size_t rawTaskCreateFlags,
TaskOptionRecord *options,
const Metadata *futureResultType,
TaskContinuationFunction *function, void *closureContext,
size_t initialContextSize) {
TaskCreateFlags taskCreateFlags(rawTaskCreateFlags);
JobFlags jobFlags(JobKind::Task, JobPriority::Unspecified);
// Propagate task-creation flags to job flags as appropriate.
jobFlags.task_setIsChildTask(taskCreateFlags.isChildTask());
if (futureResultType) {
jobFlags.task_setIsFuture(true);
assert(initialContextSize >= sizeof(FutureAsyncContext));
}
// Collect the options we know about.
ExecutorRef executor = ExecutorRef::generic();
TaskGroup *group = nullptr;
AsyncLet *asyncLet = nullptr;
bool hasAsyncLetResultBuffer = false;
for (auto option = options; option; option = option->getParent()) {
switch (option->getKind()) {
case TaskOptionRecordKind::Executor:
executor = cast<ExecutorTaskOptionRecord>(option)->getExecutor();
break;
case TaskOptionRecordKind::TaskGroup:
group = cast<TaskGroupTaskOptionRecord>(option)->getGroup();
assert(group && "Missing group");
jobFlags.task_setIsGroupChildTask(true);
break;
case TaskOptionRecordKind::AsyncLet:
asyncLet = cast<AsyncLetTaskOptionRecord>(option)->getAsyncLet();
assert(asyncLet && "Missing async let storage");
jobFlags.task_setIsAsyncLetTask(true);
jobFlags.task_setIsChildTask(true);
break;
case TaskOptionRecordKind::AsyncLetWithBuffer:
auto *aletRecord = cast<AsyncLetWithBufferTaskOptionRecord>(option);
asyncLet = aletRecord->getAsyncLet();
// TODO: Actually digest the result buffer into the async let task
// context, so that we can emplace the eventual result there instead
// of in a FutureFragment.
hasAsyncLetResultBuffer = true;
assert(asyncLet && "Missing async let storage");
jobFlags.task_setIsAsyncLetTask(true);
jobFlags.task_setIsChildTask(true);
break;
}
}
// Add to the task group, if requested.
if (taskCreateFlags.addPendingGroupTaskUnconditionally()) {
assert(group && "Missing group");
swift_taskGroup_addPending(group, /*unconditionally=*/true);
}
AsyncTask *parent = nullptr;
AsyncTask *currentTask = swift_task_getCurrent();
if (jobFlags.task_isChildTask()) {
parent = currentTask;
assert(parent != nullptr && "creating a child task with no active task");
}
// Start with user specified priority at creation time (if any)
JobPriority basePriority = (taskCreateFlags.getRequestedPriority());
if (taskIsDetached(taskCreateFlags, jobFlags)) {
SWIFT_TASK_DEBUG_LOG("Creating a detached task from %p", currentTask);
// Case 1: No priority specified
// Base priority = UN
// Escalated priority = UN
// Case 2: Priority specified
// Base priority = user specified priority
// Escalated priority = UN
//
// Task will be created with max priority = max(base priority, UN) = base
// priority. We shouldn't need to do any additional manipulations here since
// basePriority should already be the right value
} else if (taskIsUnstructured(jobFlags)) {
SWIFT_TASK_DEBUG_LOG("Creating an unstructured task from %p", currentTask);
if (isUnspecified(basePriority)) {
// Case 1: No priority specified
// Base priority = Base priority of parent with a UI -> IN downgrade
// Escalated priority = UN
if (currentTask) {
basePriority = currentTask->_private().BasePriority;
} else {
basePriority = swift_task_getCurrentThreadPriority();
}
basePriority = withUserInteractivePriorityDowngrade(basePriority);
} else {
// Case 2: User specified a priority
// Base priority = user specified priority
// Escalated priority = UN
}
// Task will be created with max priority = max(base priority, UN) = base
// priority
} else {
// Is a structured concurrency child task. Must have a parent.
assert((asyncLet || group) && parent);
SWIFT_TASK_DEBUG_LOG("Creating an structured concurrency task from %p", currentTask);
if (isUnspecified(basePriority)) {
// Case 1: No priority specified
// Base priority = Base priority of parent with a UI -> IN downgrade
// Escalated priority = Escalated priority of parent with a UI -> IN
// downgrade
JobPriority parentBasePri = parent->_private().BasePriority;
basePriority = withUserInteractivePriorityDowngrade(parentBasePri);
} else {
// Case 2: User priority specified
// Base priority = User specified priority
// Escalated priority = Escalated priority of parent with a UI -> IN
// downgrade
}
// Task will be created with escalated priority = base priority. We will
// update the escalated priority with the right rules in
// updateNewChildWithParentAndGroupState when we link the child into
// the parent task/task group since we'll have the right
// synchronization then.
}
if (isUnspecified(basePriority)) {
basePriority = JobPriority::Default;
}
SWIFT_TASK_DEBUG_LOG("Task's base priority = %#zx", basePriority);
// Figure out the size of the header.
size_t headerSize = sizeof(AsyncTask);
if (parent) {
headerSize += sizeof(AsyncTask::ChildFragment);
}
if (group) {
headerSize += sizeof(AsyncTask::GroupChildFragment);
}
if (futureResultType) {
headerSize += FutureFragment::fragmentSize(headerSize, futureResultType);
// Add the future async context prefix.
headerSize += sizeof(FutureAsyncContextPrefix);
} else {
// Add the async context prefix.
headerSize += sizeof(AsyncContextPrefix);
}
headerSize = llvm::alignTo(headerSize, llvm::Align(alignof(AsyncContext)));
// Allocate the initial context together with the job.
// This means that we never get rid of this allocation.
size_t amountToAllocate = headerSize + initialContextSize;
assert(amountToAllocate % MaximumAlignment == 0);
unsigned initialSlabSize = 512;
void *allocation = nullptr;
if (asyncLet) {
assert(parent);
// If there isn't enough room in the fixed async let allocation to
// set up the initial context, then we'll have to allocate more space
// from the parent.
if (asyncLet->getSizeOfPreallocatedSpace() < amountToAllocate) {
hasAsyncLetResultBuffer = false;
}
// DEPRECATED. This is separated from the above condition because we
// also have to handle an older async let ABI that did not provide
// space for the initial slab in the compiler-generated preallocation.
if (!hasAsyncLetResultBuffer) {
allocation = _swift_task_alloc_specific(parent,
amountToAllocate + initialSlabSize);
} else {
allocation = asyncLet->getPreallocatedSpace();
assert(asyncLet->getSizeOfPreallocatedSpace() >= amountToAllocate
&& "async let does not preallocate enough space for child task");
initialSlabSize = asyncLet->getSizeOfPreallocatedSpace()
- amountToAllocate;
}
} else {
allocation = malloc(amountToAllocate);
}
SWIFT_TASK_DEBUG_LOG("allocate task %p, parent = %p, slab %u", allocation,
parent, initialSlabSize);
AsyncContext *initialContext =
reinterpret_cast<AsyncContext*>(
reinterpret_cast<char*>(allocation) + headerSize);
// We can't just use `function` because it uses the new async function entry
// ABI -- passing parameters, closure context, indirect result addresses
// directly -- but AsyncTask->ResumeTask expects the signature to be
// `void (*, *, swiftasync *)`.
// Instead we use an adapter. This adaptor should use the storage prefixed to
// the async context to get at the parameters.
// See e.g. FutureAsyncContextPrefix.
if (!futureResultType) {
auto asyncContextPrefix = reinterpret_cast<AsyncContextPrefix *>(
reinterpret_cast<char *>(allocation) + headerSize -
sizeof(AsyncContextPrefix));
asyncContextPrefix->asyncEntryPoint =
reinterpret_cast<AsyncVoidClosureEntryPoint *>(function);
asyncContextPrefix->closureContext = closureContext;
function = non_future_adapter;
assert(sizeof(AsyncContextPrefix) == 3 * sizeof(void *));
} else {
auto asyncContextPrefix = reinterpret_cast<FutureAsyncContextPrefix *>(
reinterpret_cast<char *>(allocation) + headerSize -
sizeof(FutureAsyncContextPrefix));
asyncContextPrefix->asyncEntryPoint =
reinterpret_cast<AsyncGenericClosureEntryPoint *>(function);
function = future_adapter;
asyncContextPrefix->closureContext = closureContext;
assert(sizeof(FutureAsyncContextPrefix) == 4 * sizeof(void *));
}
// Initialize the task so that resuming it will run the given
// function on the initial context.
AsyncTask *task = nullptr;
bool captureCurrentVoucher = !taskIsDetached(taskCreateFlags, jobFlags);
if (asyncLet) {
// Initialize the refcount bits to "immortal", so that
// ARC operations don't have any effect on the task.
task = new(allocation) AsyncTask(&taskHeapMetadata,
InlineRefCounts::Immortal, jobFlags,
function, initialContext,
captureCurrentVoucher);
} else {
task = new(allocation) AsyncTask(&taskHeapMetadata, jobFlags,
function, initialContext,
captureCurrentVoucher);
}
// Initialize the child fragment if applicable.
if (parent) {
auto childFragment = task->childFragment();
::new (childFragment) AsyncTask::ChildFragment(parent);
}
// Initialize the group child fragment if applicable.
if (group) {
auto groupChildFragment = task->groupChildFragment();
::new (groupChildFragment) AsyncTask::GroupChildFragment(group);
}
// Initialize the future fragment if applicable.
if (futureResultType) {
assert(task->isFuture());
auto futureFragment = task->futureFragment();
::new (futureFragment) FutureFragment(futureResultType);
// Set up the context for the future so there is no error, and a successful
// result will be written into the future fragment's storage.
auto futureAsyncContextPrefix =
reinterpret_cast<FutureAsyncContextPrefix *>(
reinterpret_cast<char *>(allocation) + headerSize -
sizeof(FutureAsyncContextPrefix));
futureAsyncContextPrefix->indirectResult = futureFragment->getStoragePtr();
}
SWIFT_TASK_DEBUG_LOG("creating task %p ID %" PRIu64
" with parent %p at base pri %zu",
task, task->getTaskId(), parent, basePriority);
// Initialize the task-local allocator.
initialContext->ResumeParent = reinterpret_cast<TaskContinuationFunction *>(
asyncLet ? &completeTask
: closureContext ? &completeTaskWithClosure
: &completeTaskAndRelease);
if (asyncLet && initialSlabSize > 0) {
assert(parent);
void *initialSlab = (char*)allocation + amountToAllocate;
task->Private.initializeWithSlab(basePriority, initialSlab,
initialSlabSize);
} else {
task->Private.initialize(basePriority);
}
// Perform additional linking between parent and child task.
if (parent) {
// If the parent was already cancelled, we carry this flag forward to the child.
//
// In a task group we would not have allowed the `add` to create a child anymore,
// however better safe than sorry and `async let` are not expressed as task groups,
// so they may have been spawned in any case still.
if (swift_task_isCancelled(parent) ||
(group && group->isCancelled()))
swift_task_cancel(task);
// Initialize task locals with a link to the parent task.
task->_private().Local.initializeLinkParent(task, parent);
}
// Configure the initial context.
//
// FIXME: if we store a null pointer here using the standard ABI for
// signed null pointers, then we'll have to authenticate context pointers
// as if they might be null, even though the only time they ever might
// be is the final hop. Store a signed null instead.
initialContext->Parent = nullptr;
concurrency::trace::task_create(
task, parent, group, asyncLet,
static_cast<uint8_t>(task->Flags.getPriority()),
task->Flags.task_isChildTask(), task->Flags.task_isFuture(),
task->Flags.task_isGroupChildTask(), task->Flags.task_isAsyncLetTask());
// Attach to the group, if needed.
if (group) {
swift_taskGroup_attachChild(group, task);
}
// If we're supposed to copy task locals, do so now.
if (taskCreateFlags.copyTaskLocals()) {
swift_task_localsCopyTo(task);
}
// Push the async let task status record.
if (asyncLet) {
asyncLet_addImpl(task, asyncLet, !hasAsyncLetResultBuffer);
}
// If we're supposed to enqueue the task, do so now.
if (taskCreateFlags.enqueueJob()) {
swift_retain(task);
task->flagAsAndEnqueueOnExecutor(executor);
}
return {task, initialContext};
}
/// Extract the entry point address and initial context size from an async closure value.
template<typename AsyncSignature, uint16_t AuthDiscriminator>
SWIFT_ALWAYS_INLINE // so this doesn't hang out as a ptrauth gadget
std::pair<typename AsyncSignature::FunctionType *, size_t>
getAsyncClosureEntryPointAndContextSize(void *function,
HeapObject *functionContext) {
auto fnPtr =
reinterpret_cast<const AsyncFunctionPointer<AsyncSignature> *>(function);
#if SWIFT_PTRAUTH
fnPtr = (const AsyncFunctionPointer<AsyncSignature> *)ptrauth_auth_data(
(void *)fnPtr, ptrauth_key_process_independent_data, AuthDiscriminator);
#endif
return {reinterpret_cast<typename AsyncSignature::FunctionType *>(
fnPtr->Function.get()),
fnPtr->ExpectedContextSize};
}
SWIFT_CC(swift)
AsyncTaskAndContext swift::swift_task_create(
size_t taskCreateFlags,
TaskOptionRecord *options,
const Metadata *futureResultType,
void *closureEntry, HeapObject *closureContext) {
FutureAsyncSignature::FunctionType *taskEntry;
size_t initialContextSize;
std::tie(taskEntry, initialContextSize)
= getAsyncClosureEntryPointAndContextSize<
FutureAsyncSignature,
SpecialPointerAuthDiscriminators::AsyncFutureFunction
>(closureEntry, closureContext);
return swift_task_create_common(
taskCreateFlags, options, futureResultType,
reinterpret_cast<TaskContinuationFunction *>(taskEntry), closureContext,
initialContextSize);
}
#ifdef __ARM_ARCH_7K__
__attribute__((noinline))
SWIFT_CC(swiftasync) static void workaround_function_swift_task_future_waitImpl(
OpaqueValue *result, SWIFT_ASYNC_CONTEXT AsyncContext *callerContext,
AsyncTask *task, TaskContinuationFunction resumeFunction,
AsyncContext *callContext) {
// Make sure we don't eliminate calls to this function.
asm volatile("" // Do nothing.
: // Output list, empty.
: "r"(result), "r"(callerContext), "r"(task) // Input list.
: // Clobber list, empty.
);
return;
}
#endif
SWIFT_CC(swiftasync)
static void swift_task_future_waitImpl(
OpaqueValue *result,
SWIFT_ASYNC_CONTEXT AsyncContext *callerContext,
AsyncTask *task,
TaskContinuationFunction *resumeFn,
AsyncContext *callContext) {
// Suspend the waiting task.
auto waitingTask = swift_task_getCurrent();
waitingTask->ResumeTask = task_future_wait_resume_adapter;
waitingTask->ResumeContext = callContext;
// Wait on the future.
assert(task->isFuture());
switch (task->waitFuture(waitingTask, callContext, resumeFn, callerContext,
result)) {
case FutureFragment::Status::Executing:
// The waiting task has been queued on the future.
#ifdef __ARM_ARCH_7K__
return workaround_function_swift_task_future_waitImpl(
result, callerContext, task, resumeFn, callContext);
#else
return;
#endif
case FutureFragment::Status::Success: {
// Run the task with a successful result.
auto future = task->futureFragment();
future->getResultType()->vw_initializeWithCopy(result,
future->getStoragePtr());
return resumeFn(callerContext);
}
case FutureFragment::Status::Error:
swift_Concurrency_fatalError(0, "future reported an error, but wait cannot throw");
}
}
#ifdef __ARM_ARCH_7K__
__attribute__((noinline))
SWIFT_CC(swiftasync) static void workaround_function_swift_task_future_wait_throwingImpl(
OpaqueValue *result, SWIFT_ASYNC_CONTEXT AsyncContext *callerContext,
AsyncTask *task, ThrowingTaskFutureWaitContinuationFunction resumeFunction,
AsyncContext *callContext) {
// Make sure we don't eliminate calls to this function.
asm volatile("" // Do nothing.
: // Output list, empty.
: "r"(result), "r"(callerContext), "r"(task) // Input list.
: // Clobber list, empty.
);
return;
}
#endif
SWIFT_CC(swiftasync)
void swift_task_future_wait_throwingImpl(
OpaqueValue *result, SWIFT_ASYNC_CONTEXT AsyncContext *callerContext,
AsyncTask *task,
ThrowingTaskFutureWaitContinuationFunction *resumeFunction,
AsyncContext *callContext) {
auto waitingTask = swift_task_getCurrent();
// Suspend the waiting task.
waitingTask->ResumeTask = task_wait_throwing_resume_adapter;
waitingTask->ResumeContext = callContext;
auto resumeFn = reinterpret_cast<TaskContinuationFunction *>(resumeFunction);
// Wait on the future.
assert(task->isFuture());
switch (task->waitFuture(waitingTask, callContext, resumeFn, callerContext,
result)) {
case FutureFragment::Status::Executing:
// The waiting task has been queued on the future.
#ifdef __ARM_ARCH_7K__
return workaround_function_swift_task_future_wait_throwingImpl(
result, callerContext, task, resumeFunction, callContext);
#else
return;
#endif
case FutureFragment::Status::Success: {
auto future = task->futureFragment();
future->getResultType()->vw_initializeWithCopy(result,
future->getStoragePtr());
return resumeFunction(callerContext, nullptr /*error*/);
}
case FutureFragment::Status::Error: {
// Run the task with an error result.
auto future = task->futureFragment();
auto error = future->getError();
swift_errorRetain(error);
return resumeFunction(callerContext, error);
}
}
}
size_t swift::swift_task_getJobFlags(AsyncTask *task) {
return task->Flags.getOpaqueValue();
}
SWIFT_CC(swift)
static AsyncTask *swift_task_suspendImpl() {
auto task = _swift_task_clearCurrent();
task->flagAsSuspended();
return task;
}
SWIFT_CC(swift)
static void
swift_task_enqueueTaskOnExecutorImpl(AsyncTask *task, ExecutorRef executor)
{
task->flagAsAndEnqueueOnExecutor(executor);
}
SWIFT_CC(swift)
static AsyncTask *swift_continuation_initImpl(ContinuationAsyncContext *context,
AsyncContinuationFlags flags) {
context->Flags = ContinuationAsyncContext::FlagsType();
if (flags.canThrow()) context->Flags.setCanThrow(true);
if (flags.isExecutorSwitchForced())
context->Flags.setIsExecutorSwitchForced(true);
context->ErrorResult = nullptr;
// Set the generic executor as the target executor unless there's
// an executor override.
if (!flags.hasExecutorOverride())
context->ResumeToExecutor = ExecutorRef::generic();
// We can initialize this with a relaxed store because resumption
// must happen-after this call.
context->AwaitSynchronization.store(flags.isPreawaited()
? ContinuationStatus::Awaited
: ContinuationStatus::Pending,
std::memory_order_relaxed);
AsyncTask *task;
// A preawait immediately suspends the task.
if (flags.isPreawaited()) {
task = _swift_task_clearCurrent();
assert(task && "initializing a continuation with no current task");
task->flagAsSuspended();
} else {
task = swift_task_getCurrent();
assert(task && "initializing a continuation with no current task");
}
task->ResumeContext = context;
task->ResumeTask = context->ResumeParent;
concurrency::trace::task_continuation_init(task, context);
return task;
}
SWIFT_CC(swiftasync)
static void swift_continuation_awaitImpl(ContinuationAsyncContext *context) {
#ifndef NDEBUG
auto task = swift_task_getCurrent();
assert(task && "awaiting continuation without a task");
assert(task->ResumeContext == context);
assert(task->ResumeTask == context->ResumeParent);
#endif
concurrency::trace::task_continuation_await(context);
auto &sync = context->AwaitSynchronization;
auto oldStatus = sync.load(std::memory_order_acquire);
assert((oldStatus == ContinuationStatus::Pending ||
oldStatus == ContinuationStatus::Resumed) &&
"awaiting a corrupt or already-awaited continuation");
// If the status is already Resumed, we can resume immediately.
// Comparing against Pending may be very slightly more compact.
if (oldStatus != ContinuationStatus::Pending) {
if (context->isExecutorSwitchForced())
return swift_task_switch(context, context->ResumeParent,
context->ResumeToExecutor);
return context->ResumeParent(context);
}
// Load the current task (we already did this in assertions builds).
#ifdef NDEBUG
auto task = swift_task_getCurrent();
#endif
// Flag the task as suspended.
task->flagAsSuspended();
// Try to transition to Awaited.
bool success =
sync.compare_exchange_strong(oldStatus, ContinuationStatus::Awaited,
/*success*/ std::memory_order_release,
/*failure*/ std::memory_order_acquire);
// If that succeeded, we have nothing to do.
if (success) {
_swift_task_clearCurrent();
return;
}
// If it failed, it should be because someone concurrently resumed
// (note that the compare-exchange above is strong).
assert(oldStatus == ContinuationStatus::Resumed &&
"continuation was concurrently corrupted or awaited");
// Restore the running state of the task and resume it.
task->flagAsRunning();
if (context->isExecutorSwitchForced())
return swift_task_switch(context, context->ResumeParent,
context->ResumeToExecutor);
return context->ResumeParent(context);
}
static void resumeTaskAfterContinuation(AsyncTask *task,
ContinuationAsyncContext *context) {
auto &sync = context->AwaitSynchronization;
auto status = sync.load(std::memory_order_acquire);
assert(status != ContinuationStatus::Resumed &&
"continuation was already resumed");
// Make sure TSan knows that the resume call happens-before the task
// restarting.
_swift_tsan_release(static_cast<Job *>(task));
// The status should be either Pending or Awaited. If it's Awaited,
// which is probably the most likely option, then we should immediately
// enqueue; we don't need to update the state because there shouldn't
// be a racing attempt to resume the continuation. If it's Pending,
// we need to set it to Resumed; if that fails (with a strong cmpxchg),
// it should be because the original thread concurrently set it to
// Awaited, and so we need to enqueue.
if (status == ContinuationStatus::Pending &&
sync.compare_exchange_strong(status, ContinuationStatus::Resumed,
/*success*/ std::memory_order_release,
/*failure*/ std::memory_order_relaxed)) {
return;
}
assert(status == ContinuationStatus::Awaited &&
"detected concurrent attempt to resume continuation");
// TODO: maybe in some mode we should set the status to Resumed here
// to make a stronger best-effort attempt to catch racing attempts to
// resume the continuation?
task->flagAsAndEnqueueOnExecutor(context->ResumeToExecutor);
}
SWIFT_CC(swift)
static void swift_continuation_resumeImpl(AsyncTask *task) {
auto context = static_cast<ContinuationAsyncContext*>(task->ResumeContext);
concurrency::trace::task_continuation_resume(context, false);
resumeTaskAfterContinuation(task, context);
}
SWIFT_CC(swift)
static void swift_continuation_throwingResumeImpl(AsyncTask *task) {
auto context = static_cast<ContinuationAsyncContext*>(task->ResumeContext);
concurrency::trace::task_continuation_resume(context, false);
resumeTaskAfterContinuation(task, context);
}
SWIFT_CC(swift)
static void swift_continuation_throwingResumeWithErrorImpl(AsyncTask *task,
/* +1 */ SwiftError *error) {
auto context = static_cast<ContinuationAsyncContext*>(task->ResumeContext);
concurrency::trace::task_continuation_resume(context, true);
context->ErrorResult = error;
resumeTaskAfterContinuation(task, context);
}
bool swift::swift_task_isCancelled(AsyncTask *task) {
return task->isCancelled();
}
SWIFT_CC(swift)
static CancellationNotificationStatusRecord*
swift_task_addCancellationHandlerImpl(
CancellationNotificationStatusRecord::FunctionType handler,
void *context) {
void *allocation =
swift_task_alloc(sizeof(CancellationNotificationStatusRecord));
auto unsigned_handler = swift_auth_code(handler, 3848);
auto *record = ::new (allocation)
CancellationNotificationStatusRecord(unsigned_handler, context);
bool fireHandlerNow = false;
addStatusRecord(record, [&](ActiveTaskStatus parentStatus) {
if (parentStatus.isCancelled()) {
fireHandlerNow = true;
// We don't fire the cancellation handler here since this function needs
// to be idempotent
}
return true;
});
if (fireHandlerNow) {
record->run();
}
return record;
}
SWIFT_CC(swift)
static void swift_task_removeCancellationHandlerImpl(
CancellationNotificationStatusRecord *record) {
removeStatusRecord(record);
swift_task_dealloc(record);
}
SWIFT_CC(swift)
static NullaryContinuationJob*
swift_task_createNullaryContinuationJobImpl(
size_t priority,
AsyncTask *continuation) {
void *allocation =
swift_task_alloc(sizeof(NullaryContinuationJob));
auto *job =
::new (allocation) NullaryContinuationJob(
swift_task_getCurrent(), static_cast<JobPriority>(priority),
continuation);
return job;
}
SWIFT_CC(swift)
void swift::swift_continuation_logFailedCheck(const char *message) {
swift_reportError(0, message);
}
SWIFT_RUNTIME_ATTRIBUTE_NORETURN
SWIFT_CC(swift)
static void swift_task_asyncMainDrainQueueImpl() {
#if SWIFT_CONCURRENCY_COOPERATIVE_GLOBAL_EXECUTOR
bool Finished = false;
swift_task_donateThreadToGlobalExecutorUntil([](void *context) {
return *reinterpret_cast<bool*>(context);
}, &Finished);
#elif !SWIFT_CONCURRENCY_ENABLE_DISPATCH
// FIXME: consider implementing a concurrent global main queue for
// these environments?
swift_reportError(0, "operation unsupported without libdispatch: "
"swift_task_asyncMainDrainQueue");
#else
#if defined(_WIN32)
HMODULE hModule = LoadLibraryW(L"dispatch.dll");
if (hModule == NULL) {
swift_Concurrency_fatalError(0,
"unable to load dispatch.dll: %lu", GetLastError());
}
auto pfndispatch_main = reinterpret_cast<void (FAR *)(void)>(
GetProcAddress(hModule, "dispatch_main"));
if (pfndispatch_main == NULL) {
swift_Concurrency_fatalError(0,
"unable to locate dispatch_main in dispatch.dll: %lu", GetLastError());
}
pfndispatch_main();
swift_unreachable("Returned from dispatch_main()");
#else
// CFRunLoop is not available on non-Darwin targets. Foundation has an
// implementation, but CoreFoundation is not meant to be exposed. We can only
// assume the existence of `CFRunLoopRun` on Darwin platforms, where the
// system provides an implementation of CoreFoundation.
#if defined(__APPLE__)
auto runLoop =
reinterpret_cast<void (*)(void)>(dlsym(RTLD_DEFAULT, "CFRunLoopRun"));
if (runLoop) {
runLoop();
exit(0);
}
#endif
dispatch_main();
#endif
#endif
}
#define OVERRIDE_TASK COMPATIBILITY_OVERRIDE
#include COMPATIBILITY_OVERRIDE_INCLUDE_PATH