mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
Language features like erasing concrete metatype values are also left for the future. Still, baby steps. The singleton ordinary metatype for existential types is still potentially useful; we allow it to be written as P.Protocol. I've been somewhat cavalier in making code accept AnyMetatypeType instead of a more specific type, and it's likely that a number of these places can and should be more restrictive. When T is an existential type, parse T.Type as an ExistentialMetatypeType instead of a MetatypeType. An existential metatype is the formal type \exists t:P . (t.Type) whereas the ordinary metatype is the formal type (\exists t:P . t).Type which is singleton. Our inability to express that difference was leading to an ever-increasing cascade of hacks where information is shadily passed behind the scenes in order to make various operations with static members of protocols work correctly. This patch takes the first step towards fixing that by splitting out existential metatypes and giving them a pointer representation. Eventually, we will need them to be able to carry protocol witness tables Swift SVN r15716
715 lines
28 KiB
C++
715 lines
28 KiB
C++
//===--- GenPoly.cpp - Swift IR Generation for Polymorphism ---------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements IR generation for polymorphic operations in Swift.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/AST/ASTContext.h"
|
|
#include "swift/AST/ASTVisitor.h"
|
|
#include "swift/AST/Types.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/SIL/SILInstruction.h"
|
|
#include "swift/SIL/SILModule.h"
|
|
#include "swift/SIL/SILType.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
|
|
#include "Explosion.h"
|
|
#include "IRGenFunction.h"
|
|
#include "IRGenModule.h"
|
|
#include "LoadableTypeInfo.h"
|
|
#include "TypeVisitor.h"
|
|
#include "GenTuple.h"
|
|
#include "GenPoly.h"
|
|
#include "GenType.h"
|
|
|
|
using namespace swift;
|
|
using namespace irgen;
|
|
|
|
/// Ways in which we can test two types differ by abstraction.
|
|
enum class AbstractionDifference : bool {
|
|
Memory,
|
|
Explosion
|
|
};
|
|
|
|
/// Function abstraction changes should have been handled in SILGen.
|
|
/// This function checks that SIL function types are call-compatible.
|
|
void checkFunctionsAreCompatible(IRGenModule &IGM,
|
|
CanSILFunctionType origTy,
|
|
CanSILFunctionType substTy) {
|
|
#ifndef NDEBUG
|
|
assert(origTy->getGenericSignature() == substTy->getGenericSignature()
|
|
&& "types have different generic signatures");
|
|
|
|
GenericContextScope scope(IGM, origTy->getGenericSignature());
|
|
|
|
auto getContextType = [&](CanType t) -> CanType {
|
|
if (t->isDependentType())
|
|
return IGM.getContextArchetypes().substDependentType(t)
|
|
->getCanonicalType();
|
|
return t;
|
|
};
|
|
|
|
// The result types must either both be reference types with the same
|
|
// convention, or must be equivalent value types.
|
|
auto origResultTy = getContextType(origTy->getInterfaceResult().getType());
|
|
auto substResultTy = getContextType(substTy->getInterfaceResult().getType());
|
|
|
|
if (origResultTy->hasReferenceSemantics()) {
|
|
assert(substResultTy->hasReferenceSemantics()
|
|
&& "result abstraction difference survived to IRGen");
|
|
assert(origTy->getInterfaceResult().getConvention()
|
|
== substTy->getInterfaceResult().getConvention()
|
|
&& "result abstraction difference survived to IRGen");
|
|
} else {
|
|
// FIXME: Assert that the substTy is a valid substitution of origTy.
|
|
//assert(origTy->getInterfaceResult() == substTy->getInterfaceResult()
|
|
// && "result abstraction difference survived to IRGen");
|
|
}
|
|
assert(origTy->getInterfaceParameters().size()
|
|
== substTy->getInterfaceParameters().size()
|
|
&& "parameter abstraction difference survived to IRGen");
|
|
for (unsigned i = 0, e = origTy->
|
|
getInterfaceParameters().size(); i < e; ++i) {
|
|
auto &origParam = origTy->getInterfaceParameters()[i];
|
|
auto &substParam = substTy->getInterfaceParameters()[i];
|
|
auto origParamTy = getContextType(origParam.getType());
|
|
auto substParamTy = getContextType(substParam.getType());
|
|
// Direct parameters must be both reference types or matching value types.
|
|
if (!origParam.isIndirect()) {
|
|
if (origParamTy->hasReferenceSemantics()) {
|
|
assert(substParamTy->hasReferenceSemantics()
|
|
&& "parameter abstraction difference survived to IRGen");
|
|
assert(origParam.getConvention() == substParam.getConvention()
|
|
&& "parameter abstraction difference survived to IRGen");
|
|
} else {
|
|
// FIXME: Assert that the substTy is a valid substitution of origTy.
|
|
//assert(origParam == substParam
|
|
// && "parameter abstraction difference survived to IRGen");
|
|
}
|
|
}
|
|
// Indirect parameters can differ in type; they're just pointers.
|
|
// The convention must still match.
|
|
else {
|
|
assert(origParam.getConvention() == substParam.getConvention()
|
|
&& "parameter abstraction difference survived to IRGen");
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/// Does the representation of the first type "differ by abstraction"
|
|
/// from the second type, which is the result of applying a
|
|
/// substitution to it?
|
|
///
|
|
/// Because we support rich value types, and because we don't want to
|
|
/// always coerce value types into a universal representation (as a
|
|
/// dynamically-typed language would have to), the representation of a
|
|
/// type with an abstract component may differ from the representation
|
|
/// of a type that's fully concrete.
|
|
///
|
|
/// The fundamental cause of this complication is function types. For
|
|
/// example, a function that returns an Int will return it directly in
|
|
/// a register, but a function that returns an abstracted type T will
|
|
/// return it indirectly (via a hidden out-parameter); a similar rule
|
|
/// applies to parameters.
|
|
///
|
|
/// This difference then propagates through other structural types,
|
|
/// creating a set of general rules for translating values.
|
|
///
|
|
/// The following is a complete list of the canonical type forms
|
|
/// which can contain generic parameters:
|
|
/// - generic parameters, e.g. T
|
|
/// - tuples, e.g. (T, Int)
|
|
/// - functions, e.g. T -> Int
|
|
/// - l-values, e.g. [inout] T
|
|
/// - generic bindings, e.g. Vector<T>
|
|
/// - metatypes ?
|
|
///
|
|
/// Given a type T and a substitution S, T "differs by
|
|
/// abstraction" under S if, informally, its representation
|
|
/// is different from that of S(T).
|
|
///
|
|
/// Note S(T) == T if T is not dependent. Note also that some
|
|
/// substitutions don't cause a change in representation: e.g.
|
|
/// if T := U -> Int and S := (T=>Printable), the substitution
|
|
/// doesn't change representation because an existential type
|
|
/// like Printable is always passed indirectly.
|
|
///
|
|
/// More formally, T differs by abstraction under S if:
|
|
/// - T == (T_1, ..., T_k) and T_i differs by abstraction under S
|
|
/// for some i;
|
|
/// - T == [inout] U and U differs by abstraction under S;
|
|
/// - T == U -> V and either
|
|
/// - U differs by abstraction as an argument under S or
|
|
/// - V differs by abstraction as a result under S; or
|
|
/// - T == U.class and U is dependent but S(U) is not.
|
|
/// T differs by abstraction as an argument under S if:
|
|
/// - T differs by abstraction under S; or
|
|
/// - T is a generic parameter and S(T) is not passed indirectly; or
|
|
/// - T == (T_1, ..., T_k) and T_i differs by abstraction as
|
|
/// an argument under S for some i.
|
|
/// T differs by abstraction as a result under S if:
|
|
/// - T differs by abstraction under S or
|
|
/// - T is returned indirectly but S(T) is not.
|
|
///
|
|
/// ** Variables **
|
|
///
|
|
/// All accessors to a variable must agree on its representation.
|
|
/// This is generally okay, because most accesses to a variable
|
|
/// are direct accesses, i.e. occur in code where its declaration
|
|
/// is known, and that declaration determines its abstraction.
|
|
///
|
|
/// For example, suppose we have a generic type:
|
|
/// class Producer<T> {
|
|
/// var f : () -> T
|
|
/// }
|
|
/// Code that accesses Producer<Int>.f directly will know how the
|
|
/// functions stored there are meant to be abstracted because the
|
|
/// declaration of 'f' spells it out. They will know that they
|
|
/// cannot store a () -> Int function in that variable; it must
|
|
/// first be "thunked" so that it returns indirectly.
|
|
///
|
|
/// The same rule applies to local variables, which are contained
|
|
/// and declared in the context of a possibly-generic function.
|
|
///
|
|
/// There is (currently) one way in which a variable can be accessed
|
|
/// indirectly, without knowledge of how it was originally declared,
|
|
/// and that is when it is passed [inout]. A variable cannot be
|
|
/// passed directly by reference when the target l-value type
|
|
/// differs by abstraction from the variable's type. However, the
|
|
/// mechanics and relatively weak guarantees of [inout] make it
|
|
/// legal to instead pass a properly-abstracted temporary variable,
|
|
/// thunking the current value as it's passed in and "un-thunking"
|
|
/// it on the way out. Of course, that ain't free.
|
|
///
|
|
/// In the functions below, parameters named \c orig refer to the type T in the
|
|
/// definition -- substitution has been performed on this type. Parameters named
|
|
/// \c subst refer to a type after substitution, i.e. S(T).
|
|
namespace {
|
|
class DiffersByAbstraction
|
|
: public SubstTypeVisitor<DiffersByAbstraction, bool> {
|
|
IRGenModule &IGM;
|
|
ResilienceExpansion ExplosionLevel;
|
|
AbstractionDifference DiffKind;
|
|
public:
|
|
DiffersByAbstraction(IRGenModule &IGM, ResilienceExpansion explosionLevel,
|
|
AbstractionDifference kind)
|
|
: IGM(IGM), ExplosionLevel(explosionLevel), DiffKind(kind) {}
|
|
|
|
bool visit(CanType origTy, CanType substTy) {
|
|
if (origTy == substTy) return false;
|
|
|
|
// Contextualize dependent types.
|
|
if (origTy->isDependentType())
|
|
origTy = IGM.getContextArchetypes().substDependentType(origTy)
|
|
->getCanonicalType();
|
|
if (substTy->isDependentType())
|
|
substTy = IGM.getContextArchetypes().substDependentType(substTy)
|
|
->getCanonicalType();
|
|
|
|
return super::visit(origTy, substTy);
|
|
}
|
|
|
|
bool visitLeafType(CanType origTy, CanType substTy) {
|
|
// The check in visit should make this impossible.
|
|
llvm_unreachable("difference with leaf types");
|
|
}
|
|
|
|
// We assume that all reference storage types have equivalent
|
|
// representation. This may not be true.
|
|
bool visitReferenceStorageType(CanReferenceStorageType origTy,
|
|
CanReferenceStorageType substTy) {
|
|
return false;
|
|
}
|
|
|
|
CanType getArchetypeReprType(CanArchetypeType a) {
|
|
if (Type super = a->getSuperclass())
|
|
return CanType(super);
|
|
return CanType(IGM.Context.TheObjCPointerType);
|
|
}
|
|
|
|
bool visitArchetypeType(CanArchetypeType origTy, CanType substTy) {
|
|
// Archetypes vary by what we're considering this for.
|
|
|
|
if (origTy->requiresClass()) {
|
|
// Class archetypes are represented as some refcounted
|
|
// pointer type that needs to be bitcast.
|
|
return origTy != substTy;
|
|
}
|
|
|
|
// Archetypes are laid out in memory in the same way as a
|
|
// concrete type would be.
|
|
if (DiffKind == AbstractionDifference::Memory) return false;
|
|
|
|
auto substType = SILType::getPrimitiveObjectType(substTy);
|
|
|
|
// For function arguments, consider whether the substituted type
|
|
// is passed indirectly under the abstract-call convention.
|
|
// We only ever care about the abstract-call convention.
|
|
return !IGM.isSingleIndirectValue(substType, ExplosionLevel);
|
|
}
|
|
|
|
bool visitArrayType(CanArrayType origTy, CanArrayType substTy) {
|
|
return visit(origTy.getBaseType(), substTy.getBaseType());
|
|
}
|
|
|
|
bool visitBoundGenericType(CanBoundGenericType origTy,
|
|
CanBoundGenericType substTy) {
|
|
assert(origTy->getDecl() == substTy->getDecl());
|
|
|
|
// Bound generic types with reference semantics will never
|
|
// differ by abstraction. Bound generic types with value
|
|
// semantics might someday, if we want things like Optional<T>
|
|
// to have an efficient representation. For now, though, they
|
|
// don't.
|
|
return false;
|
|
}
|
|
|
|
bool visitAnyFunctionType(CanAnyFunctionType origTy,
|
|
CanAnyFunctionType substTy) {
|
|
llvm_unreachable("should have been lowered by SILGen");
|
|
}
|
|
|
|
bool visitSILFunctionType(CanSILFunctionType origTy,
|
|
CanSILFunctionType substTy) {
|
|
// Function abstraction changes should have been handled in SILGen.
|
|
checkFunctionsAreCompatible(IGM, origTy, substTy);
|
|
return false;
|
|
}
|
|
|
|
// L-values go by the object type; note that we ask the ordinary
|
|
// question, not the argument question.
|
|
bool visitLValueType(CanLValueType origTy, CanLValueType substTy) {
|
|
llvm_unreachable("should have been lowered by SILGen");
|
|
}
|
|
|
|
// inout go by the object type; note that we ask the ordinary
|
|
// question, not the argument question.
|
|
bool visitInOutType(CanInOutType origTy, CanInOutType substTy) {
|
|
return differsByAbstractionInMemory(IGM,
|
|
origTy.getObjectType(),
|
|
substTy.getObjectType());
|
|
}
|
|
|
|
bool visitMetatypeType(CanMetatypeType origTy, CanMetatypeType substTy) {
|
|
// Metatypes can differ by abstraction if the substitution
|
|
// reveals that the type is actually not a class type.
|
|
return (IGM.isTrivialMetatype(substTy) &&
|
|
!IGM.isTrivialMetatype(origTy));
|
|
}
|
|
|
|
/// Whether we're checking for memory or for an explosion, tuples
|
|
/// are considered element-wise.
|
|
///
|
|
/// TODO: unless the original tuple contains a variadic explosion,
|
|
/// in which case that portion of the tuple is passed indirectly
|
|
/// in an explosion!
|
|
bool visitTupleType(CanTupleType origTy, CanTupleType substTy) {
|
|
assert(origTy->getNumElements() == substTy->getNumElements());
|
|
for (unsigned i = 0, e = origTy->getNumElements(); i != e; ++i)
|
|
if (visit(origTy.getElementType(i), substTy.getElementType(i)))
|
|
return true;
|
|
return false;
|
|
}
|
|
};
|
|
}
|
|
|
|
bool irgen::differsByAbstractionInMemory(IRGenModule &IGM,
|
|
CanType origTy, CanType substTy) {
|
|
return DiffersByAbstraction(IGM, ResilienceExpansion::Minimal,
|
|
AbstractionDifference::Memory)
|
|
.visit(origTy, substTy);
|
|
}
|
|
|
|
bool irgen::differsByAbstractionInExplosion(IRGenModule &IGM,
|
|
CanType origTy, CanType substTy,
|
|
ResilienceExpansion explosionLevel) {
|
|
return DiffersByAbstraction(IGM, explosionLevel,
|
|
AbstractionDifference::Explosion)
|
|
.visit(origTy, substTy);
|
|
}
|
|
|
|
/// A class for testing whether a type directly stores an archetype.
|
|
struct EmbedsArchetype : DeclVisitor<EmbedsArchetype, bool>,
|
|
CanTypeVisitor<EmbedsArchetype, bool> {
|
|
IRGenModule &IGM;
|
|
EmbedsArchetype(IRGenModule &IGM) : IGM(IGM) {}
|
|
|
|
using DeclVisitor<EmbedsArchetype, bool>::visit;
|
|
using CanTypeVisitor<EmbedsArchetype, bool>::visit;
|
|
|
|
bool visitTupleType(CanTupleType type) {
|
|
for (auto eltType : type.getElementTypes())
|
|
if (visit(eltType))
|
|
return true;
|
|
return false;
|
|
}
|
|
bool visitArchetypeType(CanArchetypeType type) {
|
|
return true;
|
|
}
|
|
bool visitBoundGenericType(CanBoundGenericType type) {
|
|
return visit(type->getDecl());
|
|
}
|
|
#define FOR_NOMINAL_TYPE(Kind) \
|
|
bool visit##Kind##Type(Can##Kind##Type type) { \
|
|
return visit##Kind##Decl(type->getDecl()); \
|
|
}
|
|
FOR_NOMINAL_TYPE(Protocol)
|
|
FOR_NOMINAL_TYPE(Struct)
|
|
FOR_NOMINAL_TYPE(Class)
|
|
FOR_NOMINAL_TYPE(Enum)
|
|
#undef FOR_NOMINAL_TYPE
|
|
|
|
bool visitArrayType(CanArrayType type) {
|
|
return visit(type.getBaseType());
|
|
}
|
|
|
|
// All these types are leaves, in the sense that they don't directly
|
|
// store any other types.
|
|
bool visitBuiltinType(CanBuiltinType type) { return false; }
|
|
bool visitAnyMetatypeType(CanAnyMetatypeType type) { return false; }
|
|
bool visitModuleType(CanModuleType type) { return false; }
|
|
bool visitDynamicSelfType(CanDynamicSelfType type) { return false; }
|
|
bool visitAnyFunctionType(CanAnyFunctionType type) { return false; }
|
|
bool visitSILFunctionType(CanSILFunctionType type) { return false; }
|
|
|
|
bool visitLValueType(CanLValueType type) { return false; }
|
|
bool visitInOutType(CanInOutType type) { return false; }
|
|
bool visitProtocolCompositionType(CanProtocolCompositionType type) {
|
|
return false;
|
|
}
|
|
bool visitReferenceStorageType(CanReferenceStorageType type) {
|
|
return visit(type.getReferentType());
|
|
}
|
|
bool visitGenericTypeParamType(CanGenericTypeParamType type) {
|
|
// FIXME: These might map down to an archetype.
|
|
return false;
|
|
}
|
|
bool visitDependentMemberType(CanDependentMemberType type) {
|
|
// FIXME: These might map down to an archetype.
|
|
return false;
|
|
}
|
|
bool visitProtocolDecl(ProtocolDecl *decl) { return false; }
|
|
bool visitClassDecl(ClassDecl *decl) { return false; }
|
|
bool visitStructDecl(StructDecl *decl) {
|
|
if (IGM.isResilient(decl, ResilienceScope::Local)) return true;
|
|
return visitMembers(decl->getMembers());
|
|
}
|
|
bool visitEnumDecl(EnumDecl *decl) {
|
|
if (IGM.isResilient(decl, ResilienceScope::Local)) return true;
|
|
return visitMembers(decl->getMembers());
|
|
}
|
|
bool visitVarDecl(VarDecl *var) {
|
|
if (!var->hasStorage()) return false;
|
|
return visit(var->getType()->getCanonicalType());
|
|
}
|
|
bool visitEnumElementDecl(EnumElementDecl *decl) {
|
|
return visit(decl->getType()->getCanonicalType());
|
|
}
|
|
bool visitDecl(Decl *decl) { return false; }
|
|
|
|
bool visitMembers(ArrayRef<Decl*> members) {
|
|
for (auto member : members)
|
|
if (visit(member))
|
|
return true;
|
|
return false;
|
|
}
|
|
};
|
|
|
|
namespace {
|
|
/// A CRTP class for translating substituted explosions into
|
|
/// unsubstituted ones, or in other words, emitting them at a higher
|
|
/// (less concrete) abstraction level.
|
|
class ReemitAsUnsubstituted : public SubstTypeVisitor<ReemitAsUnsubstituted> {
|
|
IRGenFunction &IGF;
|
|
ArrayRef<Substitution> Subs;
|
|
Explosion &In;
|
|
Explosion &Out;
|
|
public:
|
|
ReemitAsUnsubstituted(IRGenFunction &IGF, ArrayRef<Substitution> subs,
|
|
Explosion &in, Explosion &out)
|
|
: IGF(IGF), Subs(subs), In(in), Out(out) {
|
|
}
|
|
|
|
void visitLeafType(CanType origTy, CanType substTy) {
|
|
assert(origTy == substTy);
|
|
auto &ti = IGF.getTypeInfo(getLoweredType(origTy, origTy));
|
|
if (ti.isLoadable()) {
|
|
cast<LoadableTypeInfo>(ti).reexplode(IGF, In, Out);
|
|
} else {
|
|
Out.add(In.claimNext());
|
|
}
|
|
}
|
|
|
|
void visitArchetypeType(CanArchetypeType origTy, CanType substTy) {
|
|
// For class protocols, bitcast to the archetype class pointer
|
|
// representation.
|
|
if (origTy->requiresClass()) {
|
|
llvm::Value *inValue = In.claimNext();
|
|
auto origStorageType = IGF.IGM.getStorageTypeForLowered(origTy);
|
|
auto addr = IGF.Builder.CreateBitCast(inValue,
|
|
origStorageType,
|
|
"substitution.class_bound");
|
|
Out.add(addr);
|
|
return;
|
|
}
|
|
|
|
auto loweredTy = getLoweredType(origTy, substTy);
|
|
|
|
// Handle the not-unlikely case that the input is a single
|
|
// indirect value.
|
|
if (IGF.IGM.isSingleIndirectValue(loweredTy, In.getKind())) {
|
|
llvm::Value *inValue = In.claimNext();
|
|
auto addr = IGF.Builder.CreateBitCast(inValue,
|
|
IGF.IGM.OpaquePtrTy,
|
|
"substitution.reinterpret");
|
|
Out.add(addr);
|
|
return;
|
|
}
|
|
|
|
// Otherwise, we need to make a temporary.
|
|
// FIXME: this temporary has to get cleaned up!
|
|
auto &substTI = IGF.getTypeInfo(loweredTy);
|
|
auto addr = substTI.allocateStack(IGF, substTy,
|
|
"substitution.temp").getAddress();
|
|
|
|
// Initialize into it.
|
|
initIntoTemporary(substTy, substTI, addr);
|
|
|
|
// Cast to the expected pointer type.
|
|
addr = IGF.Builder.CreateBitCast(addr, IGF.IGM.OpaquePtrTy, "temp.cast");
|
|
|
|
// Add that to the output explosion.
|
|
Out.add(addr.getAddress());
|
|
}
|
|
|
|
void initIntoTemporary(CanType substTy, const TypeInfo &substTI,
|
|
Address dest) {
|
|
// This is really easy if the substituted type is loadable.
|
|
if (substTI.isLoadable()) {
|
|
cast<LoadableTypeInfo>(substTI).initialize(IGF, In, dest);
|
|
|
|
// Otherwise, if it's a tuple, we need to unexplode it.
|
|
} else if (auto tupleTy = dyn_cast<TupleType>(substTy)) {
|
|
auto nextIndex = 0;
|
|
for (auto eltType : tupleTy.getElementTypes()) {
|
|
auto index = nextIndex++;
|
|
auto &eltTI = IGF.getTypeInfoForUnlowered(eltType);
|
|
if (eltTI.isKnownEmpty()) continue;
|
|
|
|
auto eltAddr = projectTupleElementAddress(IGF, dest,
|
|
SILType::getPrimitiveObjectType(tupleTy),
|
|
index);
|
|
initIntoTemporary(eltType, eltTI, eltAddr);
|
|
}
|
|
|
|
// Otherwise, just copy over.
|
|
} else {
|
|
Address src = substTI.getAddressForPointer(In.claimNext());
|
|
substTI.initializeWithTake(IGF, dest, src, substTy);
|
|
}
|
|
}
|
|
|
|
void visitArrayType(CanArrayType origTy, CanArrayType substTy) {
|
|
llvm_unreachable("remapping values of array type");
|
|
}
|
|
|
|
void visitBoundGenericType(CanBoundGenericType origTy,
|
|
CanBoundGenericType substTy) {
|
|
assert(origTy->getDecl() == substTy->getDecl());
|
|
|
|
// If the base type has reference semantics, we can just copy
|
|
// that reference into the output explosion.
|
|
if (origTy->hasReferenceSemantics())
|
|
return In.transferInto(Out, 1);
|
|
|
|
auto origSILTy = getLoweredType(origTy, origTy);
|
|
auto substSILTy = getLoweredType(origTy, substTy);
|
|
|
|
// Otherwise, this gets more complicated.
|
|
// Handle the easy cases where one or both of the arguments are
|
|
// represented using single indirect pointers
|
|
auto *origIndirect = IGF.IGM.isSingleIndirectValue(origSILTy, In.getKind());
|
|
auto *substIndirect = IGF.IGM.isSingleIndirectValue(substSILTy, In.getKind());
|
|
|
|
// Bitcast between address-only instantiations.
|
|
if (origIndirect && substIndirect) {
|
|
llvm::Value *inValue = In.claimNext();
|
|
auto addr = IGF.Builder.CreateBitCast(inValue, origIndirect);
|
|
Out.add(addr);
|
|
return;
|
|
}
|
|
|
|
// Substitute a loadable instantiation for an address-only one by emitting
|
|
// to a temporary.
|
|
if (origIndirect && !substIndirect) {
|
|
auto &substTI = IGF.getTypeInfo(substSILTy);
|
|
auto addr = substTI.allocateStack(IGF, substTy,
|
|
"substitution.temp").getAddress();
|
|
initIntoTemporary(substTy, substTI, addr);
|
|
addr = IGF.Builder.CreateBitCast(addr, origIndirect);
|
|
Out.add(addr.getAddress());
|
|
return;
|
|
}
|
|
|
|
// FIXME: This is my first shot at implementing this, but it doesn't
|
|
// handle cases which actually need remapping.
|
|
if (EmbedsArchetype(IGF.IGM).visitBoundGenericType(origTy))
|
|
IGF.unimplemented(SourceLoc(),
|
|
"remapping bound generic value types with archetype members");
|
|
|
|
auto n = IGF.IGM.getExplosionSize(origSILTy, In.getKind());
|
|
In.transferInto(Out, n);
|
|
}
|
|
|
|
void visitAnyFunctionType(CanAnyFunctionType origTy,
|
|
CanAnyFunctionType substTy) {
|
|
llvm_unreachable("should have been lowered by SIL");
|
|
}
|
|
|
|
void visitSILFunctionType(CanSILFunctionType origTy,
|
|
CanSILFunctionType substTy) {
|
|
checkFunctionsAreCompatible(IGF.IGM, origTy, substTy);
|
|
In.transferInto(Out, 1 + (origTy->isThin() ? 0 : 1));
|
|
}
|
|
|
|
void visitLValueType(CanLValueType origTy, CanLValueType substTy) {
|
|
llvm_unreachable("should have been lowered by SILGen");
|
|
}
|
|
|
|
void visitInOutType(CanInOutType origTy, CanInOutType substTy) {
|
|
CanType origObjectTy = origTy.getObjectType();
|
|
CanType substObjectTy = substTy.getObjectType();
|
|
if (differsByAbstractionInMemory(IGF.IGM, origObjectTy, substObjectTy))
|
|
IGF.unimplemented(SourceLoc(), "remapping inout values");
|
|
|
|
llvm::Value *substMV = In.claimNext();
|
|
if (origObjectTy == substObjectTy)
|
|
return Out.add(substMV);
|
|
|
|
// A bitcast will be sufficient.
|
|
auto &origObjectTI = IGF.IGM.getTypeInfoForUnlowered(origObjectTy);
|
|
auto origPtrTy = origObjectTI.getStorageType()->getPointerTo();
|
|
|
|
auto substValue = substMV;
|
|
auto origValue =
|
|
IGF.Builder.CreateBitCast(substValue, origPtrTy,
|
|
substValue->getName() + ".reinterpret");
|
|
Out.add(origValue);
|
|
}
|
|
|
|
void visitMetatypeType(CanMetatypeType origTy, CanMetatypeType substTy) {
|
|
CanType origInstanceTy = origTy.getInstanceType();
|
|
CanType substInstanceTy = substTy.getInstanceType();
|
|
|
|
// The only metatypes with non-trivial representations are those
|
|
// for archetypes and class types. A type can't lose the class
|
|
// nature under substitution, so if the substituted type is
|
|
// trivial, the original type either must also be or must be an
|
|
// archetype.
|
|
if (IGF.IGM.isTrivialMetatype(substTy)) {
|
|
assert(IGF.IGM.isTrivialMetatype(origTy) ||
|
|
isa<ArchetypeType>(origInstanceTy));
|
|
if (isa<ArchetypeType>(origInstanceTy))
|
|
Out.add(IGF.emitTypeMetadataRef(substInstanceTy));
|
|
return;
|
|
}
|
|
|
|
// Otherwise, the original type is either a class type or an
|
|
// archetype, and in either case it has a non-trivial representation.
|
|
assert(!IGF.IGM.isTrivialMetatype(origTy));
|
|
In.transferInto(Out, 1);
|
|
}
|
|
|
|
void visitTupleType(CanTupleType origTy, CanTupleType substTy) {
|
|
assert(origTy->getNumElements() == substTy->getNumElements());
|
|
for (unsigned i = 0, e = origTy->getNumElements(); i != e; ++i) {
|
|
visit(origTy.getElementType(i), substTy.getElementType(i));
|
|
}
|
|
}
|
|
|
|
void visitReferenceStorageType(CanReferenceStorageType origTy,
|
|
CanReferenceStorageType substTy) {
|
|
auto origLoweredTy = getLoweredType(origTy, origTy);
|
|
unsigned count = IGF.IGM.getExplosionSize(origLoweredTy, Out.getKind());
|
|
In.transferInto(Out, count);
|
|
}
|
|
|
|
private:
|
|
SILType getLoweredType(CanType orig, CanType subst) {
|
|
return IGF.IGM.SILMod->Types.getLoweredType(subst); // FIXME
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Given a substituted explosion, re-emit it as an unsubstituted one.
|
|
///
|
|
/// For example, given an explosion which begins with the
|
|
/// representation of an (Int, Float), consume that and produce the
|
|
/// representation of an (Int, T).
|
|
///
|
|
/// The substitutions must carry origTy to substTy.
|
|
void irgen::reemitAsUnsubstituted(IRGenFunction &IGF,
|
|
CanType expectedTy, CanType substTy,
|
|
ArrayRef<Substitution> subs,
|
|
Explosion &in, Explosion &out) {
|
|
if (expectedTy->isDependentType())
|
|
expectedTy = IGF.IGM.getContextArchetypes().substDependentType(expectedTy)
|
|
->getCanonicalType();
|
|
if (substTy->isDependentType())
|
|
substTy = IGF.IGM.getContextArchetypes().substDependentType(substTy)
|
|
->getCanonicalType();
|
|
|
|
ReemitAsUnsubstituted(IGF, subs, in, out).visit(expectedTy, substTy);
|
|
}
|
|
|
|
llvm::Value *
|
|
IRGenFunction::emitSuperToClassArchetypeConversion(llvm::Value *super,
|
|
SILType destType,
|
|
CheckedCastMode mode) {
|
|
assert(destType.is<ArchetypeType>() && "expected archetype type");
|
|
assert(destType.castTo<ArchetypeType>()->requiresClass()
|
|
&& "expected class archetype type");
|
|
|
|
// Cast the super pointer to i8* for the runtime call.
|
|
super = Builder.CreateBitCast(super, IGM.Int8PtrTy);
|
|
|
|
// Retrieve the metadata.
|
|
llvm::Value *metadataRef = emitTypeMetadataRef(destType);
|
|
if (metadataRef->getType() != IGM.Int8PtrTy)
|
|
metadataRef = Builder.CreateBitCast(metadataRef, IGM.Int8PtrTy);
|
|
|
|
// Call the (unconditional) dynamic cast.
|
|
llvm::Value *castFn;
|
|
switch (mode) {
|
|
case CheckedCastMode::Unconditional:
|
|
castFn = IGM.getDynamicCastUnconditionalFn();
|
|
break;
|
|
case CheckedCastMode::Conditional:
|
|
castFn = IGM.getDynamicCastFn();
|
|
break;
|
|
}
|
|
|
|
auto call
|
|
= Builder.CreateCall2(castFn, super, metadataRef);
|
|
|
|
// FIXME: Eventually, we may want to throw.
|
|
call->setDoesNotThrow();
|
|
|
|
// Bitcast the result to the archetype's representation type.
|
|
auto &destTI = getTypeInfo(destType);
|
|
llvm::Value *cast = Builder.CreateBitCast(call, destTI.StorageType);
|
|
|
|
return cast;
|
|
}
|