Files
swift-mirror/lib/Sema/Constraint.cpp
John McCall f1180f5e6d in order to work correctly for non-@objc protocols.
Language features like erasing concrete metatype
values are also left for the future.  Still, baby steps.

The singleton ordinary metatype for existential types
is still potentially useful; we allow it to be written
as P.Protocol.

I've been somewhat cavalier in making code accept
AnyMetatypeType instead of a more specific type, and
it's likely that a number of these places can and
should be more restrictive.
When T is an existential type, parse T.Type as an
ExistentialMetatypeType instead of a MetatypeType.

An existential metatype is the formal type
 \exists t:P . (t.Type)
whereas the ordinary metatype is the formal type
 (\exists t:P . t).Type
which is singleton.  Our inability to express that
difference was leading to an ever-increasing cascade
of hacks where information is shadily passed behind
the scenes in order to make various operations with
static members of protocols work correctly.

This patch takes the first step towards fixing that
by splitting out existential metatypes and giving
them a pointer representation.  Eventually, we will
need them to be able to carry protocol witness tables

Swift SVN r15716
2014-04-01 00:38:28 +00:00

508 lines
18 KiB
C++

//===--- Constraint.cpp - Constraint in the Type Checker --------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the \c Constraint class and its related types,
// which is used by the constraint-based type checker to describe a
// constraint that must be solved.
//
//===----------------------------------------------------------------------===//
#include "Constraint.h"
#include "ConstraintSystem.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Fallthrough.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
using namespace swift;
using namespace constraints;
Constraint::Constraint(ConstraintKind kind, ArrayRef<Constraint *> constraints,
ConstraintLocator *locator,
ArrayRef<TypeVariableType *> typeVars)
: Kind(kind), HasRestriction(false), IsActive(false), RememberChoice(false),
NumTypeVariables(typeVars.size()), Nested(constraints), Locator(locator)
{
assert(kind == ConstraintKind::Conjunction ||
kind == ConstraintKind::Disjunction);
std::copy(typeVars.begin(), typeVars.end(), getTypeVariablesBuffer().begin());
}
Constraint::Constraint(ConstraintKind Kind, Type First, Type Second,
DeclName Member, ConstraintLocator *locator,
ArrayRef<TypeVariableType *> typeVars)
: Kind(Kind), HasRestriction(false), IsActive(false), RememberChoice(false),
NumTypeVariables(typeVars.size()),
Types { First, Second, Member }, Locator(locator)
{
switch (Kind) {
case ConstraintKind::Bind:
case ConstraintKind::Equal:
case ConstraintKind::Subtype:
case ConstraintKind::Conversion:
case ConstraintKind::OperatorConversion:
case ConstraintKind::Construction:
case ConstraintKind::ConformsTo:
case ConstraintKind::CheckedCast:
case ConstraintKind::SelfObjectOfProtocol:
case ConstraintKind::DynamicTypeOf:
assert(!First.isNull());
assert(!Second.isNull());
assert(!Member && "Relational constraint cannot have a member");
break;
case ConstraintKind::ApplicableFunction:
assert(First->is<FunctionType>()
&& "The left-hand side type should be a function type");
assert(!Member && "Relational constraint cannot have a member");
break;
case ConstraintKind::TypeMember:
case ConstraintKind::ValueMember:
assert(Member && "Member constraint has no member");
break;
case ConstraintKind::Archetype:
case ConstraintKind::Class:
case ConstraintKind::DynamicLookupValue:
assert(!Member && "Type property cannot have a member");
assert(Second.isNull() && "Type property with second type");
break;
case ConstraintKind::BindOverload:
llvm_unreachable("Wrong constructor for overload binding constraint");
case ConstraintKind::Conjunction:
llvm_unreachable("Conjunction constraints should use create()");
case ConstraintKind::Disjunction:
llvm_unreachable("Disjunction constraints should use create()");
}
std::copy(typeVars.begin(), typeVars.end(), getTypeVariablesBuffer().begin());
}
Constraint::Constraint(Type type, OverloadChoice choice,
ConstraintLocator *locator,
ArrayRef<TypeVariableType *> typeVars)
: Kind(ConstraintKind::BindOverload),
HasRestriction(false), IsActive(false), RememberChoice(false),
NumTypeVariables(typeVars.size()), Overload{type, choice},
Locator(locator)
{
std::copy(typeVars.begin(), typeVars.end(), getTypeVariablesBuffer().begin());
}
Constraint::Constraint(ConstraintKind kind,
ConversionRestrictionKind restriction,
Type first, Type second, ConstraintLocator *locator,
ArrayRef<TypeVariableType *> typeVars)
: Kind(kind), Restriction(restriction),
HasRestriction(true), IsActive(false), RememberChoice(false),
NumTypeVariables(typeVars.size()),
Types{ first, second, Identifier() }, Locator(locator)
{
assert(!first.isNull());
assert(!second.isNull());
std::copy(typeVars.begin(), typeVars.end(), getTypeVariablesBuffer().begin());
}
ProtocolDecl *Constraint::getProtocol() const {
assert((Kind == ConstraintKind::ConformsTo ||
Kind == ConstraintKind::SelfObjectOfProtocol)
&& "Not a conformance constraint");
return Types.Second->castTo<ProtocolType>()->getDecl();
}
void Constraint::print(llvm::raw_ostream &Out, SourceManager *sm) const {
if (Kind == ConstraintKind::Conjunction ||
Kind == ConstraintKind::Disjunction) {
bool isConjunction = (Kind == ConstraintKind::Conjunction);
if (isConjunction) {
Out << "conjunction";
} else {
Out << "disjunction";
if (shouldRememberChoice())
Out << " (remembered)";
}
if (Locator) {
Out << " [[";
Locator->dump(sm, Out);
Out << "]]";
}
Out << ":";
bool first = true;
for (auto constraint : getNestedConstraints()) {
if (first)
first = false;
else if (isConjunction)
Out << " and ";
else
Out << " or ";
constraint->print(Out, sm);
}
return;
}
Types.First->print(Out);
bool skipSecond = false;
switch (Kind) {
case ConstraintKind::Bind: Out << " := "; break;
case ConstraintKind::Equal: Out << " == "; break;
case ConstraintKind::Subtype: Out << " < "; break;
case ConstraintKind::Conversion: Out << " <c "; break;
case ConstraintKind::OperatorConversion: Out << " <oc "; break;
case ConstraintKind::Construction: Out << " <C "; break;
case ConstraintKind::ConformsTo: Out << " conforms to "; break;
case ConstraintKind::CheckedCast: Out << " checked cast to "; break;
case ConstraintKind::SelfObjectOfProtocol: Out << " Self type of "; break;
case ConstraintKind::ApplicableFunction: Out << " ==Fn "; break;
case ConstraintKind::DynamicTypeOf: Out << " dynamicType type of "; break;
case ConstraintKind::BindOverload: {
Out << " bound to ";
auto overload = getOverloadChoice();
auto printDecl = [&] {
auto decl = overload.getDecl();
decl->print(Out);
if (!sm || !decl->getLoc().isValid()) return;
Out << " at ";
decl->getLoc().print(Out, *sm);
};
switch (overload.getKind()) {
case OverloadChoiceKind::Decl:
Out << "decl ";
printDecl();
break;
case OverloadChoiceKind::TypeDecl:
Out << "type decl ";
printDecl();
break;
case OverloadChoiceKind::DeclViaDynamic:
Out << "decl-via-dynamic ";
printDecl();
break;
case OverloadChoiceKind::BaseType:
Out << "base type";
break;
case OverloadChoiceKind::TupleIndex:
Out << "tuple index " << overload.getTupleIndex();
break;
}
skipSecond = true;
break;
}
case ConstraintKind::ValueMember:
Out << "[." << Types.Member << ": value] == ";
break;
case ConstraintKind::TypeMember:
Out << "[." << Types.Member << ": type] == ";
break;
case ConstraintKind::Archetype:
Out << " is an archetype";
skipSecond = true;
break;
case ConstraintKind::Class:
Out << " is a class";
skipSecond = true;
break;
case ConstraintKind::DynamicLookupValue:
Out << " is an AnyObject value";
skipSecond = true;
break;
case ConstraintKind::Conjunction:
case ConstraintKind::Disjunction:
llvm_unreachable("Conjunction/disjunction handled above");
}
if (!skipSecond)
Types.Second->print(Out);
if (auto restriction = getRestriction()) {
Out << ' ' << getName(*restriction);
}
if (Locator) {
Out << " [[";
Locator->dump(sm, Out);
Out << "]];";
}
}
void Constraint::dump(SourceManager *sm) const {
print(llvm::errs(), sm);
}
StringRef swift::constraints::getName(ConversionRestrictionKind kind) {
switch (kind) {
case ConversionRestrictionKind::TupleToTuple:
return "[tuple-to-tuple]";
case ConversionRestrictionKind::ScalarToTuple:
return "[scalar-to-tuple]";
case ConversionRestrictionKind::TupleToScalar:
return "[tuple-to-scalar]";
case ConversionRestrictionKind::DeepEquality:
return "[deep equality]";
case ConversionRestrictionKind::Superclass:
return "[superclass]";
case ConversionRestrictionKind::LValueToRValue:
return "[lvalue-to-rvalue]";
case ConversionRestrictionKind::Existential:
return "[existential]";
case ConversionRestrictionKind::ValueToOptional:
return "[value-to-optional]";
case ConversionRestrictionKind::OptionalToOptional:
return "[optional-to-optional]";
case ConversionRestrictionKind::UncheckedOptionalToOptional:
return "[unchecked-optional-to-optional]";
case ConversionRestrictionKind::OptionalToUncheckedOptional:
return "[optional-to-unchecked-optional]";
case ConversionRestrictionKind::ForceUnchecked:
return "[force-unchecked]";
case ConversionRestrictionKind::User:
return "[user]";
}
llvm_unreachable("bad conversion restriction kind");
}
/// Recursively gather the set of type variables referenced by this constraint.
static void
gatherReferencedTypeVars(Constraint *constraint,
SmallVectorImpl<TypeVariableType *> &typeVars) {
switch (constraint->getKind()) {
case ConstraintKind::Conjunction:
case ConstraintKind::Disjunction:
for (auto nested : constraint->getNestedConstraints())
gatherReferencedTypeVars(nested, typeVars);
return;
case ConstraintKind::ApplicableFunction:
case ConstraintKind::Bind:
case ConstraintKind::Construction:
case ConstraintKind::Conversion:
case ConstraintKind::OperatorConversion:
case ConstraintKind::CheckedCast:
case ConstraintKind::Equal:
case ConstraintKind::Subtype:
case ConstraintKind::TypeMember:
case ConstraintKind::ValueMember:
case ConstraintKind::DynamicTypeOf:
constraint->getSecondType()->getTypeVariables(typeVars);
SWIFT_FALLTHROUGH;
case ConstraintKind::Archetype:
case ConstraintKind::BindOverload:
case ConstraintKind::Class:
case ConstraintKind::ConformsTo:
case ConstraintKind::DynamicLookupValue:
case ConstraintKind::SelfObjectOfProtocol:
constraint->getFirstType()->getTypeVariables(typeVars);
// Special case: the base type of an overloading binding.
if (constraint->getKind() == ConstraintKind::BindOverload) {
if (auto baseType = constraint->getOverloadChoice().getBaseType()) {
baseType->getTypeVariables(typeVars);
}
}
break;
}
}
/// Unique the given set of type variables.
static void uniqueTypeVariables(SmallVectorImpl<TypeVariableType *> &typeVars) {
// Remove any duplicate type variables.
llvm::SmallPtrSet<TypeVariableType *, 4> knownTypeVars;
typeVars.erase(std::remove_if(typeVars.begin(), typeVars.end(),
[&](TypeVariableType *typeVar) {
return !knownTypeVars.insert(typeVar);
}),
typeVars.end());
}
Constraint *Constraint::create(ConstraintSystem &cs, ConstraintKind kind,
Type first, Type second, DeclName member,
ConstraintLocator *locator) {
// Collect type variables.
SmallVector<TypeVariableType *, 4> typeVars;
if (first->hasTypeVariable())
first->getTypeVariables(typeVars);
if (second && second->hasTypeVariable())
second->getTypeVariables(typeVars);
uniqueTypeVariables(typeVars);
// Create the constraint.
unsigned size = sizeof(Constraint)
+ typeVars.size() * sizeof(TypeVariableType*);
void *mem = cs.getAllocator().Allocate(size, alignof(Constraint));
return new (mem) Constraint(kind, first, second, member, locator, typeVars);
}
Constraint *Constraint::createBindOverload(ConstraintSystem &cs, Type type,
OverloadChoice choice,
ConstraintLocator *locator) {
// Collect type variables.
SmallVector<TypeVariableType *, 4> typeVars;
if (type->hasTypeVariable())
type->getTypeVariables(typeVars);
if (auto baseType = choice.getBaseType()) {
baseType->getTypeVariables(typeVars);
}
// Create the constraint.
unsigned size = sizeof(Constraint)
+ typeVars.size() * sizeof(TypeVariableType*);
void *mem = cs.getAllocator().Allocate(size, alignof(Constraint));
return new (mem) Constraint(type, choice, locator, typeVars);
}
Constraint *Constraint::createRestricted(ConstraintSystem &cs,
ConstraintKind kind,
ConversionRestrictionKind restriction,
Type first, Type second,
ConstraintLocator *locator) {
// Collect type variables.
SmallVector<TypeVariableType *, 4> typeVars;
if (first->hasTypeVariable())
first->getTypeVariables(typeVars);
if (second->hasTypeVariable())
second->getTypeVariables(typeVars);
uniqueTypeVariables(typeVars);
// Create the constraint.
unsigned size = sizeof(Constraint)
+ typeVars.size() * sizeof(TypeVariableType*);
void *mem = cs.getAllocator().Allocate(size, alignof(Constraint));
return new (mem) Constraint(kind, restriction, first, second, locator,
typeVars);
}
Constraint *Constraint::createConjunction(ConstraintSystem &cs,
ArrayRef<Constraint *> constraints,
ConstraintLocator *locator) {
// Unwrap any conjunctions inside the conjunction constraint.
SmallVector<TypeVariableType *, 4> typeVars;
bool unwrappedAny = false;
SmallVector<Constraint *, 1> unwrapped;
unsigned index = 0;
for (auto constraint : constraints) {
// Gather type variables from this constraint.
gatherReferencedTypeVars(constraint, typeVars);
// If we have a nested conjunction, unwrap it.
if (constraint->getKind() == ConstraintKind::Conjunction) {
// If we haven't unwrapped anything before, copy all of the constraints
// we skipped.
if (!unwrappedAny) {
unwrapped.append(constraints.begin(), constraints.begin() + index);
unwrappedAny = true;
}
// Add all of the constraints in the conjunction.
unwrapped.append(constraint->getNestedConstraints().begin(),
constraint->getNestedConstraints().end());
} else if (unwrappedAny) {
// Since we unwrapped constraints before, add this constraint.
unwrapped.push_back(constraint);
}
// FIXME: If we find any disjunctions in here, should we distribute them?
++index;
}
// If we unwrapped anything, our list of constraints is the unwrapped list.
if (unwrappedAny)
constraints = unwrapped;
assert(!constraints.empty() && "Empty conjunction constraint");
// If there is a single constraint, this isn't a disjunction at all.
if (constraints.size() == 1)
return constraints.front();
// Create the conjunction constraint.
uniqueTypeVariables(typeVars);
unsigned size = sizeof(Constraint)
+ typeVars.size() * sizeof(TypeVariableType*);
void *mem = cs.getAllocator().Allocate(size, alignof(Constraint));
return new (mem) Constraint(ConstraintKind::Conjunction,
cs.allocateCopy(constraints), locator, typeVars);
}
Constraint *Constraint::createDisjunction(ConstraintSystem &cs,
ArrayRef<Constraint *> constraints,
ConstraintLocator *locator,
RememberChoice_t rememberChoice) {
// Unwrap any disjunctions inside the disjunction constraint; we only allow
// disjunctions at the top level.
SmallVector<TypeVariableType *, 4> typeVars;
bool unwrappedAny = false;
SmallVector<Constraint *, 1> unwrapped;
unsigned index = 0;
for (auto constraint : constraints) {
// Gather type variables from this constraint.
gatherReferencedTypeVars(constraint, typeVars);
// If we have a nested disjunction, unwrap it.
if (constraint->getKind() == ConstraintKind::Disjunction) {
// If we haven't unwrapped anything before, copy all of the constraints
// we skipped.
if (!unwrappedAny) {
unwrapped.append(constraints.begin(), constraints.begin() + index);
unwrappedAny = true;
}
// Add all of the constraints in the disjunction.
unwrapped.append(constraint->getNestedConstraints().begin(),
constraint->getNestedConstraints().end());
} else if (unwrappedAny) {
// Since we unwrapped constraints before, add this constraint.
unwrapped.push_back(constraint);
}
++index;
}
// If we unwrapped anything, our list of constraints is the unwrapped list.
if (unwrappedAny)
constraints = unwrapped;
assert(!constraints.empty() && "Empty disjunction constraint");
// If there is a single constraint, this isn't a disjunction at all.
if (constraints.size() == 1) {
assert(!rememberChoice && "simplified an important disjunction?");
return constraints.front();
}
// Create the disjunction constraint.
uniqueTypeVariables(typeVars);
unsigned size = sizeof(Constraint)
+ typeVars.size() * sizeof(TypeVariableType*);
void *mem = cs.getAllocator().Allocate(size, alignof(Constraint));
auto disjunction = new (mem) Constraint(ConstraintKind::Disjunction,
cs.allocateCopy(constraints), locator, typeVars);
disjunction->RememberChoice = (bool) rememberChoice;
return disjunction;
}
void *Constraint::operator new(size_t bytes, ConstraintSystem& cs,
size_t alignment) {
return ::operator new (bytes, cs, alignment);
}