Files
swift-mirror/stdlib/core/Algorithm.swift
Dmitri Hrybenko a4d9dcf1a7 stdlib: extinguish \brief and \c
Swift SVN r18261
2014-05-17 18:10:51 +00:00

537 lines
13 KiB
Swift

//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
func minElement<
R : Sequence
where R.GeneratorType.Element : Comparable>(range: R)
-> R.GeneratorType.Element {
var g = range.generate()
var result = g.next()!
for e in GeneratorSequence(g) {
if e < result { result = e }
}
return result
}
func maxElement<
R : Sequence
where R.GeneratorType.Element : Comparable>(range: R)
-> R.GeneratorType.Element {
var g = range.generate()
var result = g.next()!
for e in GeneratorSequence(g) {
if e > result { result = e }
}
return result
}
// Returns the first index where value appears in domain or nil if
// domain doesn't contain the value. O(countElements(domain))
func find<
C: Collection where C.GeneratorType.Element : Equatable
>(domain: C, value: C.GeneratorType.Element) -> C.IndexType? {
for i in indices(domain) {
if domain[i] == value {
return i
}
}
return nil
}
func insertionSort<
C: MutableCollection where C.IndexType: BidirectionalIndex
>(
inout elements: C,
range: Range<C.IndexType>,
inout less: (C.GeneratorType.Element, C.GeneratorType.Element)->Bool
) {
if range {
let start = range.startIndex
// Keep track of the end of the initial sequence of sorted
// elements.
var sortedEnd = start
// One element is trivially already-sorted, thus pre-increment
// Continue until the sorted elements cover the whole sequence
while (++sortedEnd != range.endIndex) {
// get the first unsorted element
var x: C.GeneratorType.Element = elements[sortedEnd]
// Look backwards for x's position in the sorted sequence,
// moving elements forward to make room.
var i = sortedEnd
do {
let predecessor: C.GeneratorType.Element = elements[i.pred()]
// if x doesn't belong before y, we've found its position
if !less(x, predecessor) {
break
}
// Move y forward
elements[i] = predecessor
}
while --i != start
if i != sortedEnd {
// Plop x into position
elements[i] = x
}
}
}
}
/// Partition a non empty range into two partially sorted regions:
/// [start..idx), [idx..end)
func partition<C: MutableCollection where C.IndexType: SignedInteger>(
inout elements: C,
range: Range<C.IndexType>,
inout less: (C.GeneratorType.Element, C.GeneratorType.Element)->Bool
) -> C.IndexType {
var i = range.startIndex
var j = range.endIndex - 1
let pivot = (i + j) / 2
while i <= j {
while less(elements[i], elements[pivot]) {
i++
}
while less(elements[pivot], elements[j]) {
j--
}
if i <= j {
swap(&elements[i], &elements[j])
i++
j--
}
}
return i
}
func quickSort<C: MutableCollection where C.IndexType: SignedInteger>(
inout elements: C,
range: Range<C.IndexType>,
less: (C.GeneratorType.Element, C.GeneratorType.Element)->Bool
) {
var comp = less
_quickSort(&elements, range, &comp)
}
func _quickSort<C: MutableCollection where C.IndexType: SignedInteger>(
inout elements: C,
range: Range<C.IndexType>,
inout less: (C.GeneratorType.Element, C.GeneratorType.Element)->Bool
) {
// Insertion sort is better at handling smaller regions.
let cnt = count(range)
if cnt < 16 {
insertionSort(&elements, range, &less)
return
}
// Partition and sort.
let part_idx : C.IndexType = partition(&elements, range, &less)
_quickSort(&elements, range.startIndex..part_idx, &less);
_quickSort(&elements, part_idx..range.endIndex, &less);
}
struct Less<T: Comparable> {
static func compare(x: T, _ y: T) -> Bool {
return x < y
}
}
func sort<T>(var array: T[], pred: (T, T) -> Bool) -> T[] {
quickSort(&array, 0..array.count, pred)
return array
}
/// The functions below are a copy of the functions above except that
/// they don't accept a predicate and they are hardcoded to use the less-than
/// comparator.
func sort<T : Comparable>(var array: T[]) -> T[] {
quickSort(&array, 0..array.count)
return array
}
func insertionSort<
C: MutableCollection where C.IndexType: BidirectionalIndex,
C.GeneratorType.Element: Comparable>(
inout elements: C,
range: Range<C.IndexType>) {
if range {
let start = range.startIndex
// Keep track of the end of the initial sequence of sorted
// elements.
var sortedEnd = start
// One element is trivially already-sorted, thus pre-increment
// Continue until the sorted elements cover the whole sequence
while (++sortedEnd != range.endIndex) {
// get the first unsorted element
var x: C.GeneratorType.Element = elements[sortedEnd]
// Look backwards for x's position in the sorted sequence,
// moving elements forward to make room.
var i = sortedEnd
do {
let predecessor: C.GeneratorType.Element = elements[i.pred()]
// if x doesn't belong before y, we've found its position
if !Less.compare(x, predecessor) {
break
}
// Move y forward
elements[i] = predecessor
}
while --i != start
if i != sortedEnd {
// Plop x into position
elements[i] = x
}
}
}
}
/// Partition a non empty range into two partially sorted regions:
/// [start..idx), [idx..end)
func partition<C: MutableCollection where C.GeneratorType.Element: Comparable, C.IndexType: SignedInteger>(
inout elements: C,
range: Range<C.IndexType>) -> C.IndexType {
var i = range.startIndex
var j = range.endIndex - 1
let pivot = (i + j) / 2
while i <= j {
while Less.compare(elements[i], elements[pivot]) {
i++
}
while Less.compare(elements[pivot], elements[j]) {
j--
}
if i <= j {
swap(&elements[i], &elements[j])
i++
j--
}
}
return i
}
func quickSort<C: MutableCollection where C.GeneratorType.Element: Comparable, C.IndexType: SignedInteger>(
inout elements: C,
range: Range<C.IndexType>) {
_quickSort(&elements, range)
}
func _quickSort<C: MutableCollection where C.GeneratorType.Element: Comparable, C.IndexType: SignedInteger>(
inout elements: C, range: Range<C.IndexType>) {
// Insertion sort is better at handling smaller regions.
let cnt = count(range)
if cnt < 16 {
insertionSort(&elements, range)
return
}
// Partition and sort.
let part_idx : C.IndexType = partition(&elements, range)
_quickSort(&elements, range.startIndex..part_idx);
_quickSort(&elements, part_idx..range.endIndex);
}
//// End of non-predicate sort functions.
func swap<T>(inout a : T, inout b : T) {
// Semantically equivalent to (a, b) = (b, a).
// Microoptimized to avoid retain/release traffic.
let p1 = Builtin.addressof(&a)
let p2 = Builtin.addressof(&b)
// Take from P1.
let tmp : T = Builtin.take(p1)
// Transfer P2 into P1.
Builtin.initialize(Builtin.take(p2) as T, p1)
// Initialize P2.
Builtin.initialize(tmp, p2)
}
func min<T : Comparable>(x: T, y: T, rest: T...) -> T {
var r = x
if y < x {
r = y
}
for z in rest {
if z < r {
r = z
}
}
return r
}
func max<T : Comparable>(x: T, y: T, rest: T...) -> T {
var r = y
if y < x {
r = x
}
for z in rest {
if z >= r {
r = z
}
}
return r
}
func split<Seq: Sliceable, R:LogicValue>(
seq: Seq,
isSeparator: (Seq.GeneratorType.Element)->R,
maxSplit: Int = Int.max,
allowEmptySlices: Bool = false
) -> Seq.SliceType[] {
var result = Array<Seq.SliceType>()
// FIXME: could be simplified pending <rdar://problem/15032945>
// (ternary operator not resolving some/none)
var startIndex: Optional<Seq.IndexType>
= allowEmptySlices ? .Some(seq.startIndex) : .None
var splits = 0
for j in indices(seq) {
if isSeparator(seq[j]) {
if startIndex {
var i = startIndex!
result.append(seq[i..j])
startIndex = .Some(j.succ())
if ++splits >= maxSplit {
break
}
if !allowEmptySlices {
startIndex = .None
}
}
}
else {
if !startIndex {
startIndex = .Some(j)
}
}
}
switch startIndex {
case .Some(var i):
result.append(seq[i..seq.endIndex])
default:
()
}
return result
}
/// Return true iff the elements of `e1` are equal to the initial
/// elements of `e2`.
func startsWith<
S0: Sequence, S1: Sequence
where
S0.GeneratorType.Element == S1.GeneratorType.Element,
S0.GeneratorType.Element : Equatable
>(s0: S0, s1: S1) -> Bool
{
var g1 = s1.generate()
for e0 in s0 {
var e1 = g1.next()
if !e1 { return true }
if e0 != e1! {
return false
}
}
return g1.next() ? false : true
}
struct EnumerateGenerator<Base: Generator> : Generator, Sequence {
typealias Element = (index: Int, element: Base.Element)
var base: Base
var count: Int
init(_ base: Base) {
self.base = base
count = 0
}
mutating func next() -> Element? {
var b = base.next()
if !b { return .None }
return .Some((index: count++, element: b!))
}
// Every Generator is also a single-pass Sequence
typealias GeneratorType = EnumerateGenerator<Base>
func generate() -> GeneratorType {
return self
}
}
func enumerate<Seq : Sequence>(
seq: Seq
) -> EnumerateGenerator<Seq.GeneratorType> {
return EnumerateGenerator(seq.generate())
}
/// Return true iff `a1` and `a2` contain the same elements.
func equal<
S1 : Sequence, S2 : Sequence
where
S1.GeneratorType.Element == S2.GeneratorType.Element,
S1.GeneratorType.Element : Equatable
>(a1: S1, a2: S2) -> Bool
{
var g1 = a1.generate()
var g2 = a2.generate()
while true {
var e1 = g1.next()
var e2 = g2.next()
if e1 && e2 {
if e1! != e2! {
return false
}
}
else {
return !e1 == !e2
}
}
}
/// Return true iff `a1` and `a2` contain the same elements, using
/// `pred` as equality `==` comparison.
func equal<
S1 : Sequence, S2 : Sequence
where
S1.GeneratorType.Element == S2.GeneratorType.Element
>(a1: S1, a2: S2,
pred: (S1.GeneratorType.Element, S1.GeneratorType.Element) -> Bool) -> Bool
{
var g1 = a1.generate()
var g2 = a2.generate()
while true {
var e1 = g1.next()
var e2 = g2.next()
if e1 && e2 {
if !pred(e1!, e2!) {
return false
}
}
else {
return !e1 == !e2
}
}
}
/// Return true iff a1 precedes a2 in a lexicographical ("dictionary")
/// ordering, using "<" as the comparison between elements.
func lexicographicalCompare<
S1 : Sequence, S2 : Sequence
where
S1.GeneratorType.Element == S2.GeneratorType.Element,
S1.GeneratorType.Element : Comparable>(
a1: S1, a2: S2) -> Bool {
var g1 = a1.generate()
var g2 = a2.generate()
while true {
var e1_ = g1.next()
var e2_ = g2.next()
if let e1 = e1_ {
if let e2 = e2_ {
if e1 < e2 {
return true
}
if e2 < e1 {
return false
}
continue // equivalent
}
return false
}
return e2_.getLogicValue()
}
}
/// Return true iff `a1` precedes `a2` in a lexicographical ("dictionary")
/// ordering, using `less` as the comparison between elements.
func lexicographicalCompare<
S1 : Sequence, S2 : Sequence
where
S1.GeneratorType.Element == S2.GeneratorType.Element
>(
a1: S1, a2: S2,
less: (S1.GeneratorType.Element,S1.GeneratorType.Element)->Bool
) -> Bool {
var g1 = a1.generate()
var g2 = a2.generate()
while true {
var e1_ = g1.next()
var e2_ = g2.next()
if let e1 = e1_ {
if let e2 = e2_ {
if less(e1, e2) {
return true
}
if less(e2, e1) {
return false
}
continue // equivalent
}
return false
}
return e2_.getLogicValue()
}
}
/// Return `true` iff an element in `seq` satisfies `predicate`.
func contains<
S: Sequence, L: LogicValue
>(seq: S, predicate: (S.GeneratorType.Element)->L) -> Bool {
for a in seq {
if predicate(a) {
return true
}
}
return false
}
/// Return `true` iff `x` is in `seq`.
func contains<
S: Sequence where S.GeneratorType.Element: Equatable
>(seq: S, x: S.GeneratorType.Element) -> Bool {
return contains(seq, { $0 == x })
}
func reduce<S: Sequence, U>(
sequence: S, initial: U, combine: (U, S.GeneratorType.Element)->U
) -> U {
var result = initial
for element in sequence {
result = combine(result, element)
}
return result
}