Files
swift-mirror/stdlib/core/Index.swift
Arnold Schwaighofer da6d9152b6 Differentiate between user assertion and preconditions and the like
assert() and fatalError()
These functions are meant to be used in user code. They are enabled in debug
mode and disabled in release or fast mode.

_precondition() and _preconditionFailure()
These functions are meant to be used in library code to check preconditions at
the api boundry. They are enabled in debug mode (with a verbose message) and
release mode (trap). In fast mode they are disabled.

_debugPrecondition() and _debugPreconditionFailure()
These functions are meant to be used in library code to check preconditions that
are not neccesarily comprehensive for safety (UnsafePointer can be null or an
invalid pointer but we can't check both). They are enabled only in debug mode.

_sanityCheck() and _fatalError()
These are meant to be used for internal consistency checks. They are only
enabled when the library is build with -DSWIFT_STDLIB_INTERNAL_CHECKS=ON.

I modified the code in the standard library to the best of my judgement.

rdar://16477198

Swift SVN r18212
2014-05-16 20:49:54 +00:00

266 lines
7.8 KiB
Swift

//===--- Index.swift - A position in a Collection -------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// ForwardIndex, BidirectionalIndex, and RandomAccessIndex
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
//===--- Dispatching advance and distance functions -----------------------===//
// These generic functions are for user consumption; they dispatch to the
// appropriate implementation for T.
/// Measure the distance between start and end.
///
/// If T models RandomAccessIndex, requires that start and end are
/// part of the same sequence and executes in O(1).
///
/// Otherwise, requires that end is reachable from start by
/// incrementation, and executes in O(N), where N is the function's
/// result.
func distance<T: ForwardIndex>(start: T, end: T) -> T.DistanceType {
return start~>_distanceTo(end)
}
/// Return the result of moving start by n positions. If T models
/// RandomAccessIndex, executes in O(1). Otherwise, executes in
/// O(abs(n)). If T does not model BidirectionalIndex, requires that n
/// is non-negative.
func advance<T: ForwardIndex>(start: T, n: T.DistanceType) -> T {
return start~>_advance(n)
}
/// Return the result of moving start by n positions, or until it
/// equals end. If T models RandomAccessIndex, executes in O(1).
/// Otherwise, executes in O(abs(n)). If T does not model
/// BidirectionalIndex, requires that n is non-negative.
func advance<T: ForwardIndex>(start: T, n: T.DistanceType, end: T) -> T {
return start~>_advance(n, end)
}
/// Operation tags for distance and advance
///
/// Operation tags allow us to use a single operator (~>) for
/// dispatching every generic function with a default implementation.
/// Only authors of specialized distance implementations need to touch
/// this tag.
struct _Distance {}
func _distanceTo<I>(end: I) -> (_Distance, (I)) {
return (_Distance(), (end))
}
struct _Advance {}
func _advance<D>(n: D) -> (_Advance, (D)) {
return (_Advance(), (n: n))
}
func _advance<D, I>(n: D, end: I) -> (_Advance, (D, I)) {
return (_Advance(), (n, end))
}
//===----------------------------------------------------------------------===//
//===--- ForwardIndex -----------------------------------------------------===//
// Protocols with default implementations are broken into two parts, a
// base and a more-refined part. From the user's point-of-view,
// however, _ForwardIndex and ForwardIndex should look like a single
// protocol. This technique gets used throughout the standard library
// to break otherwise-cyclic protocol dependencies, which the compiler
// isn't yet smart enough to handle.
protocol _Incrementable : Equatable {
func succ() -> Self
}
protocol _ForwardIndex : _Incrementable {
typealias DistanceType : _SignedInteger = Int
}
@prefix @assignment @transparent
func ++ <T : _Incrementable> (inout x: T) -> T {
x = x.succ()
return x
}
@postfix @assignment @transparent
func ++ <T : _Incrementable> (inout x: T) -> T {
var ret = x
x = x.succ()
return ret
}
protocol ForwardIndex : _ForwardIndex {
// This requirement allows generic distance() to find default
// implementations. Only the author of F and the author of a
// refinement of F having a non-default distance implementation need
// to know about it. These refinements are expected to be rare
// (which is why defaulted requirements are a win)
// Do not use these operators directly; call distance(start, end)
// and advance(start, n) instead
func ~> (start:Self, _ : (_Distance, Self)) -> DistanceType
func ~> (start:Self, _ : (_Advance, DistanceType)) -> Self
func ~> (start:Self, _ : (_Advance, (DistanceType, Self))) -> Self
}
// advance and distance implementations
/// Do not use this operator directly; call distance(start, end) instead
func ~> <T: _ForwardIndex>(start:T, rest: (_Distance, T)) -> T.DistanceType {
var p = start
var count: T.DistanceType = 0
let end = rest.1
while p != end {
++count
++p
}
return count
}
/// Do not use this operator directly; call advance(start, n) instead
@transparent
func ~> <T: _ForwardIndex>(
start: T, rest: (_Advance, T.DistanceType)
) -> T {
let n = rest.1
return _advanceForward(start, n)
}
func _advanceForward<T: _ForwardIndex>(start: T, n: T.DistanceType) -> T {
_precondition(n >= 0, "Only BidirectionalIndex can be advanced by a negative amount")
var p = start
for var i: T.DistanceType = 0; i != n; ++i {
++p
}
return p
}
/// Do not use this operator directly; call advance(start, n, end) instead
@transparent
func ~> <T: _ForwardIndex>(
start:T, rest: ( _Advance, (T.DistanceType, T))
) -> T {
return _advanceForward(start, rest.1.0, rest.1.1)
}
func _advanceForward<T: _ForwardIndex>(
start: T, n: T.DistanceType, end: T
) -> T {
_precondition(n >= 0, "Only BidirectionalIndex can be advanced by a negative amount")
var p = start
for var i: T.DistanceType = 0; i != n && p != end; ++i {
++p
}
return p
}
//===----------------------------------------------------------------------===//
//===--- BidirectionalIndex -----------------------------------------------===//
protocol _BidirectionalIndex : _ForwardIndex {
func pred() -> Self
}
protocol BidirectionalIndex : ForwardIndex, _BidirectionalIndex {
}
@prefix @assignment @transparent
func -- <T: _BidirectionalIndex> (inout x: T) -> T {
x = x.pred()
return x
}
@postfix @assignment @transparent
func -- <T: _BidirectionalIndex> (inout x: T) -> T {
var ret = x
x = x.pred()
return ret
}
// advance implementation
/// Do not use this operator directly; call advance(start, n) instead
@transparent
func ~> <T: _BidirectionalIndex>(
start:T , rest: (_Advance, T.DistanceType)
) -> T {
let n = rest.1
if n >= 0 {
return _advanceForward(start, n)
}
var p = start
for var i: T.DistanceType = n; i != 0; ++i {
--p
}
return p
}
/// Do not use this operator directly; call advance(start, n, end) instead
@transparent
func ~> <T: _BidirectionalIndex>(
start:T, rest: (_Advance, (T.DistanceType, T))
) -> T {
let n = rest.1.0
let end = rest.1.1
if n >= 0 {
return _advanceForward(start, n, end)
}
var p = start
for var i: T.DistanceType = n; i != 0 && p != end; ++i {
--p
}
return p
}
//===----------------------------------------------------------------------===//
//===--- RandomAccessIndex ------------------------------------------------===//
protocol _RandomAccessIndex : _BidirectionalIndex {
func distanceTo(Self) -> DistanceType
func advancedBy(DistanceType) -> Self
}
protocol RandomAccessIndex : BidirectionalIndex, _RandomAccessIndex {
/* typealias DistanceType : IntegerArithmetic*/
}
// advance and distance implementations
/// Do not use this operator directly; call distance(start, end) instead
@transparent
func ~> <T: _RandomAccessIndex>(start:T, rest:(_Distance, (T)))
-> T.DistanceType {
let end = rest.1
return start.distanceTo(end)
}
/// Do not use this operator directly; call advance(start, n) instead
@transparent
func ~> <T: _RandomAccessIndex>(
start:T, rest:(_Advance, (T.DistanceType))
) -> T {
let n = rest.1
return start.advancedBy(n)
}
/// Do not use this operator directly; call advance(start, n, end) instead
@transparent
func ~> <T: _RandomAccessIndex>(
start:T, rest:(_Advance, (T.DistanceType, T))
) -> T {
let n = rest.1.0
let end = rest.1.1
let d = start.distanceTo(end)
return (n > 0 ? d < n : d > n) ? end : start.advancedBy(n)
}