Files
swift-mirror/lib/AST/Availability.cpp
Slava Pestov 162b2d252e AST: Include gardening to minimize dependencies on Expr.h
A lot of files transitively include Expr.h, because it was
included from SILInstruction.h, SILLocation.h and SILDeclRef.h.

However in reality most of these files don't do anything
with Exprs, especially not anything in IRGen or the SILOptimizer.

Now we're down to 171 files in the frontend which depend on
Expr.h, which is still a lot but much better than before.
2017-03-12 22:26:56 -07:00

212 lines
7.3 KiB
C++

//===--- Availability.cpp - Swift Availability Structures -----------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines data structures for API availability.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Attr.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Types.h"
#include "swift/AST/Availability.h"
#include "swift/AST/PlatformKind.h"
#include "swift/AST/TypeWalker.h"
#include <map>
using namespace swift;
namespace {
/// The inferred availability required to access a group of declarations
/// on a single platform.
struct InferredAvailability {
PlatformAgnosticAvailabilityKind PlatformAgnostic
= PlatformAgnosticAvailabilityKind::None;
Optional<clang::VersionTuple> Introduced;
Optional<clang::VersionTuple> Deprecated;
Optional<clang::VersionTuple> Obsoleted;
};
/// The type of a function that merges two version tuples.
typedef const clang::VersionTuple &(*MergeFunction)(
const clang::VersionTuple &, const clang::VersionTuple &);
} // end anonymous namespace
/// Apply a merge function to two optional versions, returning the result
/// in Inferred.
static void
mergeIntoInferredVersion(const Optional<clang::VersionTuple> &Version,
Optional<clang::VersionTuple> &Inferred,
MergeFunction Merge) {
if (Version.hasValue()) {
if (Inferred.hasValue()) {
Inferred = Merge(Inferred.getValue(), Version.getValue());
} else {
Inferred = Version;
}
}
}
/// Merge an attribute's availability with an existing inferred availability
/// so that the new inferred availability is at least as available as
/// the attribute requires.
static void mergeWithInferredAvailability(const AvailableAttr *Attr,
InferredAvailability &Inferred) {
Inferred.PlatformAgnostic
= static_cast<PlatformAgnosticAvailabilityKind>(
std::max(static_cast<unsigned>(Inferred.PlatformAgnostic),
static_cast<unsigned>(Attr->getPlatformAgnosticAvailability())));
// The merge of two introduction versions is the maximum of the two versions.
mergeIntoInferredVersion(Attr->Introduced, Inferred.Introduced, std::max);
// The merge of deprecated and obsoleted versions takes the minimum.
mergeIntoInferredVersion(Attr->Deprecated, Inferred.Deprecated, std::min);
mergeIntoInferredVersion(Attr->Obsoleted, Inferred.Obsoleted, std::min);
}
/// Create an implicit availability attribute for the given platform
/// and with the inferred availability.
static AvailableAttr *
createAvailableAttr(PlatformKind Platform,
const InferredAvailability &Inferred,
ASTContext &Context) {
clang::VersionTuple Introduced =
Inferred.Introduced.getValueOr(clang::VersionTuple());
clang::VersionTuple Deprecated =
Inferred.Deprecated.getValueOr(clang::VersionTuple());
clang::VersionTuple Obsoleted =
Inferred.Obsoleted.getValueOr(clang::VersionTuple());
return new (Context) AvailableAttr(
SourceLoc(), SourceRange(), Platform,
/*Message=*/StringRef(),
/*Rename=*/StringRef(),
Introduced, /*IntroducedRange=*/SourceRange(),
Deprecated, /*DeprecatedRange=*/SourceRange(),
Obsoleted, /*ObsoletedRange=*/SourceRange(),
Inferred.PlatformAgnostic, /*Implicit=*/true);
}
void AvailabilityInference::applyInferredAvailableAttrs(
Decl *ToDecl, ArrayRef<const Decl *> InferredFromDecls,
ASTContext &Context) {
// Iterate over the declarations and infer required availability on
// a per-platform basis.
std::map<PlatformKind, InferredAvailability> Inferred;
for (const Decl *D : InferredFromDecls) {
for (const DeclAttribute *Attr : D->getAttrs()) {
auto *AvAttr = dyn_cast<AvailableAttr>(Attr);
if (!AvAttr || AvAttr->isInvalid())
continue;
mergeWithInferredAvailability(AvAttr, Inferred[AvAttr->Platform]);
}
}
// Create an availability attribute for each observed platform and add
// to ToDecl.
DeclAttributes &Attrs = ToDecl->getAttrs();
for (auto &Pair : Inferred) {
auto *Attr = createAvailableAttr(Pair.first, Pair.second, Context);
Attrs.add(Attr);
}
}
Optional<AvailabilityContext>
AvailabilityInference::annotatedAvailableRange(const Decl *D, ASTContext &Ctx) {
Optional<AvailabilityContext> AnnotatedRange;
for (auto Attr : D->getAttrs()) {
auto *AvailAttr = dyn_cast<AvailableAttr>(Attr);
if (AvailAttr == nullptr || !AvailAttr->Introduced.hasValue() ||
!AvailAttr->isActivePlatform(Ctx) ||
AvailAttr->isLanguageVersionSpecific()) {
continue;
}
AvailabilityContext AttrRange{
VersionRange::allGTE(AvailAttr->Introduced.getValue())};
// If we have multiple introduction versions, we will conservatively
// assume the worst case scenario. We may want to be more precise here
// in the future or emit a diagnostic.
if (AnnotatedRange.hasValue()) {
AnnotatedRange.getValue().intersectWith(AttrRange);
} else {
AnnotatedRange = AttrRange;
}
}
return AnnotatedRange;
}
AvailabilityContext AvailabilityInference::availableRange(const Decl *D,
ASTContext &Ctx) {
Optional<AvailabilityContext> AnnotatedRange =
annotatedAvailableRange(D, Ctx);
if (AnnotatedRange.hasValue()) {
return AnnotatedRange.getValue();
}
// Unlike other declarations, extensions can be used without referring to them
// by name (they don't have one) in the source. For this reason, when checking
// the available range of a declaration we also need to check to see if it is
// immediately contained in an extension and use the extension's availability
// if the declaration does not have an explicit @available attribute
// itself. This check relies on the fact that we cannot have nested
// extensions.
DeclContext *DC = D->getDeclContext();
if (auto *ED = dyn_cast<ExtensionDecl>(DC)) {
AnnotatedRange = annotatedAvailableRange(ED, Ctx);
if (AnnotatedRange.hasValue()) {
return AnnotatedRange.getValue();
}
}
// Treat unannotated declarations as always available.
return AvailabilityContext::alwaysAvailable();
}
namespace {
/// Infers the availability required to access a type.
class AvailabilityInferenceTypeWalker : public TypeWalker {
public:
ASTContext &AC;
AvailabilityContext AvailabilityInfo = AvailabilityContext::alwaysAvailable();
AvailabilityInferenceTypeWalker(ASTContext &AC) : AC(AC) {}
Action walkToTypePre(Type ty) override {
if (auto *nominalDecl = ty->getAnyNominal()) {
AvailabilityInfo.intersectWith(
AvailabilityInference::availableRange(nominalDecl, AC));
}
return Action::Continue;
}
};
} // end anonymous namespace
AvailabilityContext AvailabilityInference::inferForType(Type t) {
AvailabilityInferenceTypeWalker walker(t->getASTContext());
t.walk(walker);
return walker.AvailabilityInfo;
}