mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
Previously it was part of swiftBasic. The demangler library does not depend on llvm (except some header-only utilities like StringRef). Putting it into its own library makes sure that no llvm stuff will be linked into clients which use the demangler library. This change also contains other refactoring, like moving demangler code into different files. This makes it easier to remove the old demangler from the runtime library when we switch to the new symbol mangling. Also in this commit: remove some unused API functions from the demangler Context. fixes rdar://problem/30503344
371 lines
12 KiB
C++
371 lines
12 KiB
C++
//===--- LLVMInlineTree.cpp - Prints the inline tree ----------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass prints the tree of inlined instructions. It also prints a sorted
|
|
// table containing the contribution to the code size increase for all inlined
|
|
// functions.
|
|
// The output is only an estimation because all printed numbers are LLVM
|
|
// instruction counts rather than real code size bytes.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "llvm-inlinetree"
|
|
#include "swift/LLVMPasses/Passes.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Support/Format.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "swift/Demangling/Demangle.h"
|
|
#include "swift/Basic/Range.h"
|
|
|
|
using namespace llvm;
|
|
using namespace swift;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LLVMInlineTree Pass
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
char InlineTreePrinter::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(InlineTreePrinter,
|
|
"inline-tree-printer", "Inline tree printer pass",
|
|
false, false)
|
|
INITIALIZE_PASS_END(InlineTreePrinter,
|
|
"inline-tree-printer", "Inline tree printer pass",
|
|
false, false)
|
|
|
|
llvm::cl::opt<bool>
|
|
InlineTreeNoDemangle("inline-tree-no-demangle", llvm::cl::init(false),
|
|
llvm::cl::desc("Don't demangle symbols in inline tree output"));
|
|
|
|
|
|
ModulePass *swift::createInlineTreePrinterPass() {
|
|
initializeInlineTreePrinterPass(*PassRegistry::getPassRegistry());
|
|
return new InlineTreePrinter();
|
|
}
|
|
|
|
void InlineTreePrinter::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
}
|
|
|
|
namespace {
|
|
|
|
class InlineTree {
|
|
struct Node;
|
|
|
|
typedef DenseMap<StringRef, Node *> NodeMap;
|
|
typedef SmallVector<Node *, 8> NodeList;
|
|
|
|
/// Defines a unique inline location.
|
|
/// Used to distinguish between different instances of an inlined function.
|
|
struct LocationKey {
|
|
unsigned line;
|
|
unsigned column;
|
|
void *file;
|
|
|
|
LocationKey(DILocation *DL) :
|
|
line(DL->getLine()), column(DL->getColumn()), file(DL->getFile()) {
|
|
}
|
|
|
|
bool operator==(const LocationKey &RHS) const {
|
|
return line == RHS.line && column == RHS.column && file == RHS.file;
|
|
}
|
|
|
|
bool operator<(const LocationKey &RHS) const {
|
|
if (line != RHS.line)
|
|
return line < RHS.line;
|
|
if (column != RHS.column)
|
|
return column < RHS.column;
|
|
return file < RHS.file;
|
|
}
|
|
};
|
|
|
|
/// Represents a function or inlined function. There may be multiple nodes
|
|
/// for a function in case the function is inlined into different callers.
|
|
struct Node {
|
|
StringRef FunctionName;
|
|
|
|
/// Number of inlined instructions of this function in its caller.
|
|
int numSelfInsts = 0;
|
|
|
|
/// numSelfInsts + the callee-instructions inlined into this function.
|
|
int numTotalInsts = 0;
|
|
|
|
/// Callees which are inlined into this function.
|
|
NodeMap UnsortedChildren;
|
|
|
|
/// Contains all nodes of UnsortedChildren, but sorted by numTotalInsts.
|
|
NodeList SortedChildren;
|
|
|
|
/// Unique inline locations. The size is the number of times this function
|
|
/// is inlined into its caller.
|
|
SmallSet<LocationKey, 16> UniqueLocations;
|
|
|
|
/// If true, this is a "real" function not an inlined one.
|
|
bool isTopLevel = false;
|
|
|
|
const NodeList &getChildren() {
|
|
if (SortedChildren.size() == 0 && UnsortedChildren.size() > 0)
|
|
sortNodes(UnsortedChildren, SortedChildren);
|
|
return SortedChildren;
|
|
}
|
|
|
|
Node(StringRef FunctionName) : FunctionName(FunctionName) {}
|
|
};
|
|
|
|
/// The summary for a function. It contains the total overhead of inlining
|
|
/// the function. It is the summarized numbers of all nodes referring to the
|
|
/// function minus the size of the original function (which is not inlined).
|
|
struct Summary {
|
|
StringRef FunctionName;
|
|
unsigned totalInstOverhead = 0;
|
|
unsigned selfInstOverhead = 0;
|
|
unsigned instanceOverhead = 0;
|
|
|
|
Summary(StringRef FunctionName) : FunctionName(FunctionName) { }
|
|
};
|
|
|
|
SpecificBumpPtrAllocator<Node> NodeAllocator;
|
|
|
|
/// Top level functions in the module (= not inlined functions).
|
|
NodeList FunctionRootNodes;
|
|
|
|
/// Mapping for the top level functions.
|
|
NodeMap Functions2Nodes;
|
|
|
|
/// All nodes: top level functions + inlined functions.
|
|
NodeList allNodes;
|
|
|
|
/// The total number of LLVM instructions in the module.
|
|
unsigned totalNumberOfInstructions = 0;
|
|
|
|
Node *getNode(StringRef FunctionName, NodeMap &Nodes) {
|
|
Node *&Nd = Nodes[FunctionName];
|
|
if (!Nd) {
|
|
Nd = new (NodeAllocator.Allocate()) Node(FunctionName);
|
|
allNodes.push_back(Nd);
|
|
}
|
|
return Nd;
|
|
}
|
|
|
|
/// Create a sorted list of nodes according to numTotalInsts.
|
|
static void sortNodes(const NodeMap &Map, NodeList &Result);
|
|
|
|
/// Build the inline-tree for a function.
|
|
void buildTree(Function *F);
|
|
|
|
/// Returns a printable percent string of the \p numInsts compared to
|
|
/// totalNumberOfInstructions.
|
|
std::string getPercent(int numInsts) const;
|
|
|
|
/// Recursively print the node tree starting at \p Nd.
|
|
void printNode(Node *Nd, int indent, raw_ostream &os);
|
|
|
|
public:
|
|
/// Build the inline tree.
|
|
void build(Module *M);
|
|
|
|
/// Print the inline tree.
|
|
void print(raw_ostream &os);
|
|
};
|
|
|
|
/// Print the function \p Name as simplified demangled name or optionally
|
|
/// as not demangled name.
|
|
static void printSymbol(StringRef Name, raw_ostream &os) {
|
|
if (InlineTreeNoDemangle) {
|
|
os << Name;
|
|
} else {
|
|
os << demangleSymbolAsString(Name,
|
|
Demangle::DemangleOptions::SimplifiedUIDemangleOptions());
|
|
}
|
|
}
|
|
|
|
void InlineTree::sortNodes(const NodeMap &Map, NodeList &Result) {
|
|
for (auto Iter : Map) {
|
|
Node *Nd = Iter.second;
|
|
Result.push_back(Nd);
|
|
}
|
|
|
|
std::sort(Result.begin(), Result.end(), [](Node *Nd1, Node *Nd2) -> bool {
|
|
return Nd1->numTotalInsts > Nd2->numTotalInsts;
|
|
});
|
|
}
|
|
|
|
void InlineTree::buildTree(Function *F) {
|
|
Node *rootNode = getNode(F->getName(), Functions2Nodes);
|
|
rootNode->isTopLevel = true;
|
|
|
|
DEBUG(dbgs() << "\nFunction " << F->getName() << '\n');
|
|
for (BasicBlock &BB : *F) {
|
|
for (Instruction &I : BB) {
|
|
|
|
DEBUG(dbgs() << I << '\n');
|
|
|
|
totalNumberOfInstructions++;
|
|
SmallVector<DILocation *, 8> InlineChain;
|
|
|
|
// Scan the chain of inlined scopes.
|
|
DILocation *DL = I.getDebugLoc().get();
|
|
while (DL) {
|
|
InlineChain.push_back(DL);
|
|
DL = DL->getInlinedAt();
|
|
}
|
|
Node *Nd = nullptr;
|
|
DILocation *PrevDL = nullptr;
|
|
for (DILocation *DL : reversed(InlineChain)) {
|
|
DILocalScope *Sc = DL->getScope();
|
|
DISubprogram *SP = Sc->getSubprogram();
|
|
assert(SP);
|
|
DEBUG(dbgs() << " f=" << SP->getLinkageName());
|
|
if (Nd) {
|
|
Nd = getNode(SP->getLinkageName(), Nd->UnsortedChildren);
|
|
Nd->UniqueLocations.insert(LocationKey(PrevDL));
|
|
DEBUG(dbgs() << ", loc="; PrevDL->print(dbgs()); dbgs() << '\n');
|
|
} else {
|
|
Nd = rootNode;
|
|
DEBUG(dbgs() << ", root\n");
|
|
}
|
|
Nd->numTotalInsts++;
|
|
PrevDL = DL;
|
|
}
|
|
|
|
if (!Nd) {
|
|
Nd = rootNode;
|
|
Nd->numTotalInsts++;
|
|
}
|
|
Nd->numSelfInsts++;
|
|
}
|
|
}
|
|
}
|
|
|
|
std::string InlineTree::getPercent(int numInsts) const {
|
|
assert(totalNumberOfInstructions > 0);
|
|
std::string str;
|
|
raw_string_ostream os(str);
|
|
double percent = (double)numInsts * 100. / totalNumberOfInstructions;
|
|
os << format("%0.2f", percent) << '%';
|
|
return os.str();
|
|
}
|
|
|
|
void InlineTree::printNode(Node *Nd, int indent, raw_ostream &os) {
|
|
os << std::string(indent * 4, ' ') << '[' << Nd->UniqueLocations.size()
|
|
<< "x," << getPercent(Nd->numTotalInsts) << '=' << Nd->numTotalInsts
|
|
<< ",self=" << Nd->numSelfInsts << ']' << ' ';
|
|
printSymbol(Nd->FunctionName, os);
|
|
os << '\n';
|
|
|
|
for (Node *Child : Nd->getChildren()) {
|
|
printNode(Child, indent + 1, os);
|
|
}
|
|
}
|
|
|
|
void InlineTree::build(Module *M) {
|
|
// Build the trees for all top-level functions.
|
|
for (Function &F : *M) {
|
|
if (F.size() == 0)
|
|
continue;
|
|
buildTree(&F);
|
|
}
|
|
sortNodes(Functions2Nodes, FunctionRootNodes);
|
|
|
|
// Sort all nodes by FunctionName -> isTopLevel -> numTotalInsts
|
|
std::sort(allNodes.begin(), allNodes.end(), [](Node *Nd1, Node *Nd2) -> bool {
|
|
if (Nd1->FunctionName != Nd2->FunctionName)
|
|
return Nd1->FunctionName < Nd2->FunctionName;
|
|
if (Nd1->isTopLevel != Nd2->isTopLevel)
|
|
return (int)Nd1->isTopLevel > (int)Nd2->isTopLevel;
|
|
return Nd1->numTotalInsts > Nd2->numTotalInsts;
|
|
});
|
|
}
|
|
|
|
void InlineTree::print(raw_ostream &os) {
|
|
// Calculate the summary information.
|
|
os << "Inlining overhead (total = " << totalNumberOfInstructions << "):\n";
|
|
SmallVector<Summary, 64> Summaries;
|
|
Summary S = Summary(StringRef());
|
|
|
|
// allNodes is sorted by function name.
|
|
for (Node *Nd : allNodes) {
|
|
if (Nd->FunctionName != S.FunctionName) {
|
|
// Record the summary for the current function and continue with the
|
|
// new function.
|
|
if (S.instanceOverhead)
|
|
Summaries.push_back(S);
|
|
S = Summary(Nd->FunctionName);
|
|
// The top-level node for the function appears first in the list. In this
|
|
// case the size of UniqueLocations is 1. Only if the function is only
|
|
// inlined and not present as top-level function the instanceOverhead may
|
|
// be > 1.
|
|
S.instanceOverhead = Nd->UniqueLocations.size();
|
|
if (S.instanceOverhead > 0) {
|
|
// Remove the size of the first instance, because a single instance
|
|
// of a function is always needed and does not contribute to the
|
|
// _overhead_.
|
|
S.totalInstOverhead = Nd->numTotalInsts - Nd->numTotalInsts /
|
|
S.instanceOverhead;
|
|
S.selfInstOverhead = Nd->numSelfInsts - Nd->numSelfInsts /
|
|
S.instanceOverhead;
|
|
S.instanceOverhead--;
|
|
}
|
|
} else {
|
|
S.totalInstOverhead += Nd->numTotalInsts;
|
|
S.selfInstOverhead += Nd->numSelfInsts;
|
|
S.instanceOverhead += Nd->UniqueLocations.size();
|
|
}
|
|
}
|
|
if (S.instanceOverhead)
|
|
Summaries.push_back(S);
|
|
|
|
// Sort the summary table.
|
|
std::sort(Summaries.begin(), Summaries.end(), [](const Summary &S1,
|
|
const Summary &S2) -> bool {
|
|
if (S1.totalInstOverhead != S2.totalInstOverhead)
|
|
return S1.totalInstOverhead > S2.totalInstOverhead;
|
|
if (S1.selfInstOverhead != S2.selfInstOverhead)
|
|
return S1.selfInstOverhead > S2.selfInstOverhead;
|
|
return S1.instanceOverhead > S2.instanceOverhead;
|
|
});
|
|
|
|
// Print the summary table.
|
|
unsigned totalOverhead = 0;
|
|
for (const Summary &S : Summaries) {
|
|
os << '[' << S.instanceOverhead << "x," << getPercent(S.totalInstOverhead)
|
|
<< '=' << S.totalInstOverhead << ",self=" << S.selfInstOverhead << "] ";
|
|
printSymbol(S.FunctionName, os);
|
|
os << '\n';
|
|
totalOverhead += S.selfInstOverhead;
|
|
}
|
|
os << "\nTotal inlining overhead; " << getPercent(totalOverhead) << '='
|
|
<< totalOverhead << '\n';
|
|
|
|
// Print the inline tree.
|
|
os << "\nInlining tree:\n";
|
|
for (Node *Nd : FunctionRootNodes) {
|
|
printNode(Nd, 0, os);
|
|
os << '\n';
|
|
}
|
|
|
|
}
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// The main entry point.
|
|
bool InlineTreePrinter::runOnModule(Module &M) {
|
|
InlineTree Tree;
|
|
Tree.build(&M);
|
|
Tree.print(outs());
|
|
return false;
|
|
}
|