Files
swift-mirror/lib/SILGen/SILGenFunction.h
John McCall 338825e73d Fix the emission of r-value pointer conversions to delay the
conversions and extend lifetimes over the call.

Apply this logic to string-to-pointer conversions as well as
array-to-pointer conversions.

Fix the AST verifier to not blow up on optional pointer conversions,
and make sure we SILGen them correctly.  There's still an AST bug
here, but I'll fix that in a follow-up patch.
2017-04-26 14:15:44 -04:00

1837 lines
78 KiB
C++

//===--- SILGenFunction.h - Function Specific AST lower context -*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_SILGEN_SILGENFUNCTION_H
#define SWIFT_SILGEN_SILGENFUNCTION_H
#include "FormalEvaluation.h"
#include "Initialization.h"
#include "JumpDest.h"
#include "RValue.h"
#include "SILGen.h"
#include "SILGenBuilder.h"
#include "swift/AST/AnyFunctionRef.h"
#include "swift/SIL/SILBuilder.h"
#include "llvm/ADT/PointerIntPair.h"
namespace swift {
class ParameterList;
namespace Lowering {
class ArgumentSource;
class Condition;
class ConsumableManagedValue;
class Initialization;
class LogicalPathComponent;
class LValue;
class ManagedValue;
class RValue;
class TemporaryInitialization;
class CalleeTypeInfo;
class ResultPlan;
using ResultPlanPtr = std::unique_ptr<ResultPlan>;
class ArgumentScope;
/// Internal context information for the SILGenFunction visitor.
///
/// In general, emission methods which take an SGFContext indicate
/// that they've initialized the emit-into buffer (if they have) by
/// returning a "isInContext()" ManagedValue of whatever type. Callers who
/// propagate down an SGFContext that might have an emit-into buffer must be
/// aware of this.
///
/// Clients of emission routines that take an SGFContext can also specify that
/// they are ok getting back an RValue at +0 instead of requiring it to be at
/// +1. The client is then responsible for checking the ManagedValue to see if
/// it got back a ManagedValue at +0 or +1.
class SGFContext {
enum DesiredTransfer {
PlusOne,
ImmediatePlusZero,
GuaranteedPlusZero,
};
llvm::PointerIntPair<Initialization *, 2, DesiredTransfer> state;
public:
SGFContext() = default;
enum AllowImmediatePlusZero_t {
/// The client is okay with getting a +0 value and plans to use it
/// immediately.
///
/// For example, in this context, it would be okay to return +0
/// even for a load from a mutable variable, because the only way
/// the value could be invalidated before it's used is a race
/// condition.
AllowImmediatePlusZero
};
enum AllowGuaranteedPlusZero_t {
/// The client is okay with getting a +0 value as long as it's
/// guaranteed to last at least as long as the current evaluation.
/// (For expression evaluation, this generally means at least
/// until the end of the current statement.)
///
/// For example, in this context, it would be okay to return +0
/// for a reference to a local 'let' because that will last until
/// the 'let' goes out of scope. However, it would not be okay to
/// return +0 for a load from a mutable 'var', because that could
/// be mutated before the end of the statement.
AllowGuaranteedPlusZero
};
/// Creates an emitInto context that will store the result of the visited expr
/// into the given Initialization.
explicit SGFContext(Initialization *emitInto) : state(emitInto, PlusOne) {
}
/*implicit*/
SGFContext(AllowImmediatePlusZero_t) : state(nullptr, ImmediatePlusZero) {
}
/*implicit*/
SGFContext(AllowGuaranteedPlusZero_t) : state(nullptr, GuaranteedPlusZero) {
}
/// Returns a pointer to the Initialization that the current expression should
/// store its result to, or null if the expression should allocate temporary
/// storage for its result.
Initialization *getEmitInto() const {
return state.getPointer();
}
/// Try to get the address of the emit-into initialization if we can.
/// Otherwise, return an empty SILValue.
///
/// Note that, if this returns a non-empty address, the caller must
/// finish the emit-into initialization.
SILValue getAddressForInPlaceInitialization(SILGenFunction &SGF,
SILLocation loc) const {
if (auto *init = getEmitInto()) {
if (init->canPerformInPlaceInitialization())
return init->getAddressForInPlaceInitialization(SGF, loc);
}
return SILValue();
}
/// If getAddressForInPlaceInitialization did (or would have)
/// returned a non-null address, finish the initialization and
/// return true. Otherwise, return false.
bool finishInPlaceInitialization(SILGenFunction &SGF) const {
if (auto *init = getEmitInto()) {
if (init->canPerformInPlaceInitialization()) {
init->finishInitialization(SGF);
return true;
}
}
return false;
}
/// Return true if a ManagedValue producer is allowed to return at
/// +0, given that it cannot guarantee that the value will be valid
/// until the end of the current evaluation.
bool isImmediatePlusZeroOk() const {
return state.getInt() == ImmediatePlusZero;
}
/// Return true if a ManagedValue producer is allowed to return at
/// +0 if it can guarantee that the value will be valid until the
/// end of the current evaluation.
bool isGuaranteedPlusZeroOk() const {
// Either ImmediatePlusZero or GuaranteedPlusZero is fine.
return state.getInt() >= ImmediatePlusZero;
}
/// Get a context for a sub-expression given that arbitrary side
/// effects may follow the subevaluation.
SGFContext withFollowingSideEffects() const {
SGFContext copy = *this;
if (copy.state.getInt() == ImmediatePlusZero) {
copy.state.setInt(GuaranteedPlusZero);
}
return copy;
}
/// Get a context for a sub-expression where we plan to project out
/// a value. The Initialization is not okay to propagate down, but
/// the +0/+1-ness is.
SGFContext withFollowingProjection() const {
SGFContext copy;
copy.state.setInt(state.getInt());
return copy;
}
};
enum class ApplyOptions : unsigned {
/// No special treatment is required.
None = 0,
/// Suppress the error-handling edge out of the call. This should
/// be used carefully; it's used to implement features like 'rethrows'.
DoesNotThrow = 0x1,
};
inline ApplyOptions operator|(ApplyOptions lhs, ApplyOptions rhs) {
return ApplyOptions(unsigned(lhs) | unsigned(rhs));
}
inline ApplyOptions &operator|=(ApplyOptions &lhs, ApplyOptions rhs) {
return (lhs = (lhs | rhs));
}
inline bool operator&(ApplyOptions lhs, ApplyOptions rhs) {
return ((unsigned(lhs) & unsigned(rhs)) != 0);
}
inline ApplyOptions operator-(ApplyOptions lhs, ApplyOptions rhs) {
return ApplyOptions(unsigned(lhs) & ~unsigned(rhs));
}
inline ApplyOptions &operator-=(ApplyOptions &lhs, ApplyOptions rhs) {
return (lhs = (lhs - rhs));
}
class PatternMatchContext;
/// A formal section of the function. This is a SILGen-only concept,
/// meant to improve locality. It's only reflected in the generated
/// SIL implicitly.
enum class FunctionSection : bool {
/// The section of the function dedicated to ordinary control flow.
Ordinary,
/// The section of the function dedicated to error-handling and
/// similar things.
Postmatter,
};
/// Parameter to \c SILGenFunction::emitCaptures that indicates what the
/// capture parameters are being emitted for.
enum class CaptureEmission {
/// Captures are being emitted for immediate application to a local function.
ImmediateApplication,
/// Captures are being emitted for partial application to form a closure
/// value.
PartialApplication,
};
/// Parameter to \c SILGenFunction::emitAddressOfLValue that indicates
/// what kind of instrumentation should be emitted when compiling under
/// Thread Sanitizer.
enum class TSanKind : bool {
None = 0,
/// Instrument the LValue access as an inout access.
InoutAccess
};
/// Represents an LValue opened for mutating access.
///
/// This is used by LogicalPathComponent::getMaterialized() and
/// SILGenFunction::emitMaterializeForSetAccessor().
struct MaterializedLValue {
ManagedValue temporary;
// Only set if a callback is required
CanType origSelfType;
CanGenericSignature genericSig;
SILValue callback;
SILValue callbackStorage;
MaterializedLValue() {}
explicit MaterializedLValue(ManagedValue temporary)
: temporary(temporary) {}
MaterializedLValue(ManagedValue temporary,
CanType origSelfType,
CanGenericSignature genericSig,
SILValue callback,
SILValue callbackStorage)
: temporary(temporary),
origSelfType(origSelfType),
genericSig(genericSig),
callback(callback),
callbackStorage(callbackStorage) {}
};
/// SILGenFunction - an ASTVisitor for producing SIL from function bodies.
class LLVM_LIBRARY_VISIBILITY SILGenFunction
: public ASTVisitor<SILGenFunction>
{ // style violation because Xcode <rdar://problem/13065676>
public:
/// The SILGenModule this function belongs to.
SILGenModule &SGM;
/// The SILFunction being constructed.
SILFunction &F;
/// The SILModuleConventions for this SIL module.
SILModuleConventions silConv;
/// The name of the function currently being emitted, as presented to user
/// code by #function.
DeclName MagicFunctionName;
std::string MagicFunctionString;
ASTContext &getASTContext() const { return SGM.M.getASTContext(); }
/// The first block in the postmatter section of the function, if
/// anything has been built there.
///
/// (This field must precede B because B's initializer calls
/// createBasicBlock().)
SILFunction::iterator StartOfPostmatter;
/// The current section of the function that we're emitting code in.
///
/// The postmatter section is a part of the function intended for
/// things like error-handling that don't need to be mixed into the
/// normal code sequence.
///
/// If the current function section is Ordinary, and
/// StartOfPostmatter does not point to the function end, the current
/// insertion block should be ordered before that.
///
/// If the current function section is Postmatter, StartOfPostmatter
/// does not point to the function end and the current insertion block is
/// ordered after that (inclusive).
///
/// (This field must precede B because B's initializer calls
/// createBasicBlock().)
FunctionSection CurFunctionSection = FunctionSection::Ordinary;
/// \brief Does this function require a non-void direct return?
bool NeedsReturn = false;
/// \brief Is emission currently within a formal modification?
bool InWritebackScope = false;
/// \brief Is emission currently within an inout conversion?
bool InInOutConversionScope = false;
/// The SILGenBuilder used to construct the SILFunction. It is what maintains
/// the notion of the current block being emitted into.
SILGenBuilder B;
SILOpenedArchetypesTracker OpenedArchetypesTracker;
struct BreakContinueDest {
LabeledStmt *Target;
JumpDest BreakDest;
JumpDest ContinueDest;
};
std::vector<BreakContinueDest> BreakContinueDestStack;
std::vector<PatternMatchContext*> SwitchStack;
/// Keep track of our current nested scope.
std::vector<SILDebugScope*> DebugScopeStack;
/// The cleanup depth and BB for when the operand of a
/// BindOptionalExpr is a missing value.
SmallVector<JumpDest, 2> BindOptionalFailureDests;
/// The cleanup depth and epilog BB for "return" statements.
JumpDest ReturnDest = JumpDest::invalid();
/// The cleanup depth and epilog BB for "fail" statements.
JumpDest FailDest = JumpDest::invalid();
/// The destination for throws. The block will always be in the
/// postmatter and takes a BB argument of the exception type.
JumpDest ThrowDest = JumpDest::invalid();
/// \brief The SIL location corresponding to the AST node being processed.
SILLocation CurrentSILLoc;
/// \brief This records information about the currently active cleanups.
CleanupManager Cleanups;
/// \brief The current context where formal evaluation cleanups are managed.
FormalEvaluationContext FormalEvalContext;
/// \brief Values to end dynamic access enforcement on. A hack for
/// materializeForSet.
struct UnpairedAccesses {
SILValue Buffer;
unsigned NumAccesses = 0; // Values besides 0 and 1 are unsupported.
explicit UnpairedAccesses(SILValue buffer) : Buffer(buffer) {}
};
UnpairedAccesses *UnpairedAccessesForMaterializeForSet = nullptr;
/// VarLoc - representation of an emitted local variable or constant. There
/// are three scenarios here:
///
/// 1) This could be a simple "var" or "let" emitted into an alloc_box. In
/// this case, 'value' contains a pointer (it is always an address) to the
/// value, and 'box' contains a pointer to the retain count for the box.
/// 2) This could be a simple non-address-only "let" represented directly. In
/// this case, 'value' is the value of the let and is never of address
/// type. 'box' is always nil.
/// 3) This could be an address-only "let" emitted into an alloc_stack, or
/// passed in from somewhere else that has guaranteed lifetime (e.g. an
/// incoming argument of 'in_guaranteed' convention). In this case,
/// 'value' is a pointer to the memory (and thus, its type is always an
/// address) and the 'box' is nil.
///
/// Generally, code shouldn't be written to enumerate these three cases, it
/// should just handle the case of "box or not" or "address or not", depending
/// on what the code cares about.
struct VarLoc {
/// value - the value of the variable, or the address the variable is
/// stored at (if "value.getType().isAddress()" is true).
SILValue value;
/// box - This is the retainable box for something emitted to an alloc_box.
/// It may be invalid if no box was made for the value (e.g., because it was
/// an inout value, or constant emitted to an alloc_stack).
SILValue box;
static VarLoc get(SILValue value, SILValue box = SILValue()) {
VarLoc Result;
Result.value = value;
Result.box = box;
return Result;
}
};
/// VarLocs - Entries in this map are generated when a PatternBindingDecl is
/// emitted. The map is queried to produce the lvalue for a DeclRefExpr to
/// a local variable.
llvm::DenseMap<ValueDecl*, VarLoc> VarLocs;
/// When rebinding 'self' during an initializer delegation, we have to be
/// careful to preserve the object at 1 retain count during the delegation
/// because of assumptions in framework code. This enum tracks the state of
/// 'self' during the delegation.
enum SelfInitDelegationStates {
// 'self' is a normal variable.
NormalSelf,
/// 'self' needs to be shared borrowed next time self is used.
///
/// At this point we do not know if:
///
/// 1. 'self' is used at all. In such a case, the borrow scope for self will
/// end before the delegating init call and we will overwrite the value
/// in
/// the self box.
///
/// 2. If there is a consuming self use, will self be borrowed in an
/// exclusive manner or a shared manner. If we need to perform an
/// exclusive borrow, we will transition to WillExclusiveBorrowSelf in
/// SILGenApply.
WillSharedBorrowSelf,
/// 'self' needs to be exclusively borrowed next time self is used.
///
/// We only advance to this state in SILGenApply when we know that we are
/// going to be passing self to a delegating initializer that will consume
/// it. We will always evaluate self before any other uses of self in the
/// self.init call, so we know that we will never move from
/// WillExclusiveBorrowSelf to WillSharedBorrowSelf.
///
/// Once we are in this point, all other uses of self must be borrows until
/// we use self in the delegating init call. All of the borrow scopes /must/
/// end before the delegating init call.
WillExclusiveBorrowSelf,
/// 'self' was shared borrowed to compute the self argument of the
/// delegating init call.
///
/// This means that the delegating init uses a metatype or the like as its
/// self argument instead of 'self'. Thus we are able to perform a shared
/// borrow of self to compute that value and end the shared borrow scope
/// before the delegating initializer apply.
DidSharedBorrowSelf,
// 'self' was exclusively borrowed for the delegating init call. All further
// uses of self until the actual delegating init must be done via shared
// borrows that end strictly before the delegating init call.
DidExclusiveBorrowSelf,
};
SelfInitDelegationStates SelfInitDelegationState = NormalSelf;
ManagedValue InitDelegationSelf;
SILValue InitDelegationSelfBox;
Optional<SILLocation> InitDelegationLoc;
ManagedValue SuperInitDelegationSelf;
RValue emitRValueForSelfInDelegationInit(SILLocation loc, CanType refType,
SILValue result, SGFContext C);
/// The metatype argument to an allocating constructor, if we're emitting one.
SILValue AllocatorMetatype;
/// True if 'return' without an operand or falling off the end of the current
/// function is valid.
bool allowsVoidReturn() const { return ReturnDest.getBlock()->args_empty(); }
/// This location, when set, is used as an override location for magic
/// identifier expansion (e.g. #file). This allows default argument
/// expansion to report the location of the call, instead of the location
/// of the original expr.
Optional<SourceLoc> overrideLocationForMagicIdentifiers;
/// Emit code to increment a counter for profiling.
void emitProfilerIncrement(ASTNode N) {
if (SGM.Profiler && SGM.Profiler->hasRegionCounters())
SGM.Profiler->emitCounterIncrement(B, N);
}
SILGenFunction(SILGenModule &SGM, SILFunction &F);
~SILGenFunction();
/// Return a stable reference to the current cleanup.
CleanupsDepth getCleanupsDepth() const {
return Cleanups.getCleanupsDepth();
}
CleanupHandle getTopCleanup() const {
return Cleanups.getTopCleanup();
}
SILFunction &getFunction() { return F; }
SILModule &getModule() { return F.getModule(); }
SILGenBuilder &getBuilder() { return B; }
SILOptions &getOptions() { return getModule().getOptions(); }
const TypeLowering &getTypeLowering(AbstractionPattern orig, Type subst) {
return SGM.Types.getTypeLowering(orig, subst);
}
const TypeLowering &getTypeLowering(Type t) {
return SGM.Types.getTypeLowering(t);
}
CanSILFunctionType getSILFunctionType(AbstractionPattern orig,
CanFunctionType substFnType,
unsigned uncurryLevel) {
return SGM.Types.getSILFunctionType(orig, substFnType, uncurryLevel);
}
SILType getLoweredType(AbstractionPattern orig, Type subst) {
return SGM.Types.getLoweredType(orig, subst);
}
SILType getLoweredType(Type t) {
return SGM.Types.getLoweredType(t);
}
SILType getLoweredLoadableType(Type t) {
return SGM.Types.getLoweredLoadableType(t);
}
const TypeLowering &getTypeLowering(SILType type) {
return SGM.Types.getTypeLowering(type);
}
SILType getSILType(SILParameterInfo param) const {
return silConv.getSILType(param);
}
SILType getSILType(SILResultInfo result) const {
return silConv.getSILType(result);
}
SILConstantInfo getConstantInfo(SILDeclRef constant) {
return SGM.Types.getConstantInfo(constant);
}
Optional<SILAccessEnforcement> getStaticEnforcement(VarDecl *var = nullptr);
Optional<SILAccessEnforcement> getDynamicEnforcement(VarDecl *var = nullptr);
Optional<SILAccessEnforcement> getUnknownEnforcement(VarDecl *var = nullptr);
SourceManager &getSourceManager() { return SGM.M.getASTContext().SourceMgr; }
/// Push a new debug scope and set its parent pointer.
void enterDebugScope(SILLocation Loc) {
auto *Parent =
DebugScopeStack.size() ? DebugScopeStack.back() : F.getDebugScope();
auto *DS = new (SGM.M) SILDebugScope(Loc, &getFunction(), Parent);
DebugScopeStack.push_back(DS);
B.setCurrentDebugScope(DS);
}
/// Return to the previous debug scope.
void leaveDebugScope() {
DebugScopeStack.pop_back();
if (DebugScopeStack.size())
B.setCurrentDebugScope(DebugScopeStack.back());
// Don't reset the debug scope after leaving the outermost scope,
// because the debugger is not expecting the function epilogue to
// be in a different scope.
}
//===--------------------------------------------------------------------===//
// Entry points for codegen
//===--------------------------------------------------------------------===//
/// \brief Generates code for a FuncDecl.
void emitFunction(FuncDecl *fd);
/// \brief Emits code for a ClosureExpr.
void emitClosure(AbstractClosureExpr *ce);
/// Generates code for a class destroying destructor. This
/// emits the body code from the DestructorDecl, calls the base class
/// destructor, then implicitly releases the elements of the class.
void emitDestroyingDestructor(DestructorDecl *dd);
/// Generates code for an artificial top-level function that starts an
/// application based on a main class.
void emitArtificialTopLevel(ClassDecl *mainClass);
/// Generates code for a class deallocating destructor. This
/// calls the destroying destructor and then deallocates 'self'.
void emitDeallocatingDestructor(DestructorDecl *dd);
/// Generates code for a struct constructor.
/// This allocates the new 'self' value, emits the
/// body code, then returns the final initialized 'self'.
void emitValueConstructor(ConstructorDecl *ctor);
/// Generates code for an enum case constructor.
/// This allocates the new 'self' value, injects the enum case,
/// then returns the final initialized 'self'.
void emitEnumConstructor(EnumElementDecl *element);
/// Generates code for a class constructor's
/// allocating entry point. This allocates the new 'self' value, passes it to
/// the initializer entry point, then returns the initialized 'self'.
void emitClassConstructorAllocator(ConstructorDecl *ctor);
/// Generates code for a class constructor's
/// initializing entry point. This takes 'self' and the constructor arguments
/// as parameters and executes the constructor body to initialize 'self'.
void emitClassConstructorInitializer(ConstructorDecl *ctor);
/// Generates code to initialize instance variables from their
/// initializers.
///
/// \param dc The DeclContext containing the current function.
/// \param selfDecl The 'self' declaration within the current function.
/// \param nominal The type whose members are being initialized.
void emitMemberInitializers(DeclContext *dc, VarDecl *selfDecl,
NominalTypeDecl *nominal);
/// Emit a method that initializes the ivars of a class.
void emitIVarInitializer(SILDeclRef ivarInitializer);
/// Emit a method that destroys the ivars of a class.
void emitIVarDestroyer(SILDeclRef ivarDestroyer);
/// Generates code to destroy the instance variables of a class.
///
/// \param selfValue The 'self' value.
/// \param cd The class declaration whose members are being destroyed.
void emitClassMemberDestruction(SILValue selfValue, ClassDecl *cd,
CleanupLocation cleanupLoc);
/// Generates code for a curry thunk from one uncurry level
/// of a function to another.
void emitCurryThunk(ValueDecl *fd,
SILDeclRef fromLevel, SILDeclRef toLevel);
/// Generates a thunk from a foreign function to the native Swift convention.
void emitForeignToNativeThunk(SILDeclRef thunk);
/// Generates a thunk from a native function to the conventions.
void emitNativeToForeignThunk(SILDeclRef thunk);
/// Generate a nullary function that returns the given value.
void emitGeneratorFunction(SILDeclRef function, Expr *value);
/// Generate an ObjC-compatible destructor (-dealloc).
void emitObjCDestructor(SILDeclRef dtor);
ManagedValue emitGlobalVariableRef(SILLocation loc, VarDecl *var);
/// Generate a lazy global initializer.
void emitLazyGlobalInitializer(PatternBindingDecl *binding,
unsigned pbdEntry);
/// Generate a global accessor, using the given initializer token and
/// function
void emitGlobalAccessor(VarDecl *global,
SILGlobalVariable *onceToken,
SILFunction *onceFunc);
void emitGlobalGetter(VarDecl *global,
SILGlobalVariable *onceToken,
SILFunction *onceFunc);
/// Generate a protocol witness entry point, invoking 'witness' at the
/// abstraction level of 'requirement'.
///
/// This is used for both concrete witness thunks and default witness
/// thunks.
void emitProtocolWitness(Type selfType,
AbstractionPattern reqtOrigTy,
CanAnyFunctionType reqtSubstTy,
SILDeclRef requirement,
SILDeclRef witness,
SubstitutionList witnessSubs,
IsFreeFunctionWitness_t isFree);
/// Convert a block to a native function with a thunk.
ManagedValue emitBlockToFunc(SILLocation loc,
ManagedValue block,
CanSILFunctionType funcTy);
/// Convert a native function to a block with a thunk.
ManagedValue emitFuncToBlock(SILLocation loc,
ManagedValue block,
CanSILFunctionType funcTy);
/// Thunk with the signature of a base class method calling a derived class
/// method.
///
/// \param inputOrigType Abstraction pattern of base class method
/// \param inputSubstType Formal AST type of base class method
/// \param outputSubstType Formal AST type of derived class method
void emitVTableThunk(SILDeclRef derived,
SILFunction *implFn,
AbstractionPattern inputOrigType,
CanAnyFunctionType inputSubstType,
CanAnyFunctionType outputSubstType);
//===--------------------------------------------------------------------===//
// Control flow
//===--------------------------------------------------------------------===//
/// emitCondition - Emit a boolean expression as a control-flow condition.
///
/// \param E - The expression to be evaluated as a condition.
/// \param hasFalseCode - true if the false branch doesn't just lead
/// to the fallthrough.
/// \param invertValue - true if this routine should invert the value before
/// testing true/false.
/// \param contArgs - the types of the arguments to the continuation BB.
/// Matching argument values must be passed to exitTrue and exitFalse
/// of the resulting Condition object.
Condition emitCondition(Expr *E,
bool hasFalseCode = true, bool invertValue = false,
ArrayRef<SILType> contArgs = {});
Condition emitCondition(SILValue V, SILLocation Loc,
bool hasFalseCode = true, bool invertValue = false,
ArrayRef<SILType> contArgs = {});
/// Create a new basic block.
///
/// The block can be explicitly placed after a particular block.
/// Otherwise, if the current insertion point is valid, it will be
/// placed immediately after it. Otherwise, it will be placed at the
/// end of the current function section.
///
/// Because basic blocks are generally constructed with an insertion
/// point active, users should be aware that this behavior leads to
/// an emergent LIFO ordering: if code generation requires multiple
/// blocks, the second block created will be positioned before the
/// first block. (This is clearly desirable behavior when blocks
/// are created by different emissions; it's just a little
/// counter-intuitive within a single emission.)
SILBasicBlock *createBasicBlock(SILBasicBlock *afterBB = nullptr);
/// Create a new basic block at the end of the given function
/// section.
SILBasicBlock *createBasicBlock(FunctionSection section);
/// Erase a basic block that was speculatively created and turned
/// out to be unneeded.
///
/// This should be called instead of eraseFromParent() in order to
/// keep SILGen's internal bookkeeping consistent.
///
/// The block should be empty and have no predecessors.
void eraseBasicBlock(SILBasicBlock *block);
//===--------------------------------------------------------------------===//
// Memory management
//===--------------------------------------------------------------------===//
/// Emit debug info for the artificial error inout argument.
void emitErrorArgument(SILLocation Loc, unsigned ArgNo);
/// emitProlog - Generates prolog code to allocate and clean up mutable
/// storage for closure captures and local arguments.
void emitProlog(AnyFunctionRef TheClosure,
ArrayRef<ParameterList *> paramPatterns, Type resultType,
bool throws);
/// returns the number of variables in paramPatterns.
unsigned emitProlog(ArrayRef<ParameterList *> paramPatterns, Type resultType,
DeclContext *DeclCtx, bool throws);
/// Create SILArguments in the entry block that bind all the values
/// of the given pattern suitably for being forwarded.
void bindParametersForForwarding(const ParameterList *params,
SmallVectorImpl<SILValue> &parameters);
/// \brief Create (but do not emit) the epilog branch, and save the
/// current cleanups depth as the destination for return statement branches.
///
/// \param returnType If non-null, the epilog block will be created with an
/// argument of this type to receive the return value for
/// the function.
/// \param isThrowing If true, create an error epilog block.
/// \param L The SILLocation which should be associated with
/// cleanup instructions.
void prepareEpilog(Type returnType, bool isThrowing, CleanupLocation L);
void prepareRethrowEpilog(CleanupLocation l);
/// \brief Branch to and emit the epilog basic block. This will fuse
/// the epilog to the current basic block if the epilog bb has no predecessor.
/// The insertion point will be moved into the epilog block if it is
/// reachable.
///
/// \param TopLevelLoc The location of the top level AST node for which we are
/// constructing the epilog, such as a AbstractClosureExpr.
/// \returns None if the epilog block is unreachable. Otherwise, returns
/// the epilog block's return value argument, or a null SILValue if
/// the epilog doesn't take a return value. Also returns the location
/// of the return instruction if the epilog block is supposed to host
/// the ReturnLocation (This happens in case the predecessor block is
/// merged with the epilog block.)
std::pair<Optional<SILValue>, SILLocation>
emitEpilogBB(SILLocation TopLevelLoc);
/// \brief Emits a standard epilog which runs top-level cleanups then returns
/// the function return value, if any. This can be customized by clients, who
/// set UsesCustomEpilog to true, and optionally inject their own code into
/// the epilog block before calling this. If they do this, their code is run
/// before the top-level cleanups, and the epilog block to continue is
/// returned as the insertion point of this function. They must provide the
/// final exit sequence for the block as well.
///
/// \param TopLevelLoc The location of the top-level expression during whose
/// evaluation the epilog is being produced, for example, the
/// AbstractClosureExpr.
/// \param UsesCustomEpilog True if the client wants to manage its own epilog
/// logic.
SILLocation emitEpilog(SILLocation TopLevelLoc,bool UsesCustomEpilog = false);
/// \brief Emits the standard rethrow epilog using a Swift error result.
void emitRethrowEpilog(SILLocation topLevelLoc);
/// emitSelfDecl - Emit a SILArgument for 'self', register it in varlocs, set
/// up debug info, etc. This returns the 'self' value.
SILValue emitSelfDecl(VarDecl *selfDecl);
/// Emits a temporary allocation that will be deallocated automatically at the
/// end of the current scope. Returns the address of the allocation.
SILValue emitTemporaryAllocation(SILLocation loc, SILType ty);
/// Prepares a buffer to receive the result of an expression, either using the
/// 'emit into' initialization buffer if available, or allocating a temporary
/// allocation if not.
///
/// The caller should call manageBufferForExprResult at the instant
/// that the buffer has been initialized.
SILValue getBufferForExprResult(SILLocation loc, SILType ty, SGFContext C);
/// Flag that the buffer for an expression result has been properly
/// initialized.
///
/// Returns an empty value if the buffer was taken from the context.
ManagedValue manageBufferForExprResult(SILValue buffer,
const TypeLowering &bufferTL,
SGFContext C);
//===--------------------------------------------------------------------===//
// Type conversions for expr emission and thunks
//===--------------------------------------------------------------------===//
ManagedValue emitInjectEnum(SILLocation loc,
ArgumentSource payload,
SILType enumTy,
EnumElementDecl *element,
SGFContext C);
ManagedValue emitInjectOptional(SILLocation loc,
const TypeLowering &expectedTL,
SGFContext ctxt,
llvm::function_ref<ManagedValue(SGFContext)> generator);
/// Initialize a memory location with an optional value.
///
/// \param loc The location to use for the resulting optional.
/// \param value The value to inject into an optional.
/// \param dest The uninitialized memory in which to store the result value.
/// \param optTL Type lowering information for the optional to create.
void emitInjectOptionalValueInto(SILLocation loc,
ArgumentSource &&value,
SILValue dest,
const TypeLowering &optTL);
/// Initialize a memory location with an optional "nothing"
/// value.
///
/// \param loc The location to use for the resulting optional.
/// \param dest The uninitialized memory in which to store the result value.
/// \param optTL Type lowering information for the optional to create.
void emitInjectOptionalNothingInto(SILLocation loc,
SILValue dest,
const TypeLowering &optTL);
/// Return a value for an optional ".None" of the specified type. This only
/// works for loadable enum types.
SILValue getOptionalNoneValue(SILLocation loc, const TypeLowering &optTL);
/// Return a value for an optional ".Some(x)" of the specified type. This only
/// works for loadable enum types.
ManagedValue getOptionalSomeValue(SILLocation loc, ManagedValue value,
const TypeLowering &optTL);
/// \brief Emit a call to the library intrinsic _doesOptionalHaveValue.
///
/// The result is a Builtin.Int1.
SILValue emitDoesOptionalHaveValue(SILLocation loc, SILValue addrOrValue);
/// \brief Emit a switch_enum to call the library intrinsic
/// _diagnoseUnexpectedNilOptional if the optional has no value. Return the
/// MangedValue resulting from the success case.
ManagedValue emitPreconditionOptionalHasValue(SILLocation loc,
ManagedValue optional);
/// \brief Emit a call to the library intrinsic _getOptionalValue
/// given the address of the optional, which checks that an optional contains
/// some value and either returns the value or traps if there is none.
ManagedValue emitCheckedGetOptionalValueFrom(SILLocation loc,
ManagedValue addr,
const TypeLowering &optTL,
SGFContext C);
/// \brief Extract the value from an optional, which must be known to contain
/// a value.
ManagedValue emitUncheckedGetOptionalValueFrom(SILLocation loc,
ManagedValue addrOrValue,
const TypeLowering &optTL,
SGFContext C = SGFContext());
typedef llvm::function_ref<ManagedValue(SILGenFunction &gen,
SILLocation loc,
ManagedValue input,
SILType loweredResultTy)> ValueTransformRef;
/// Emit a transformation on the value of an optional type.
ManagedValue emitOptionalToOptional(SILLocation loc,
ManagedValue input,
SILType loweredResultTy,
ValueTransformRef transform);
/// Emit a reinterpret-cast from one pointer type to another, using a library
/// intrinsic.
RValue emitPointerToPointer(SILLocation loc,
ManagedValue input,
CanType inputTy,
CanType outputTy,
SGFContext C = SGFContext());
ManagedValue emitClassMetatypeToObject(SILLocation loc,
ManagedValue v,
SILType resultTy);
ManagedValue emitExistentialMetatypeToObject(SILLocation loc,
ManagedValue v,
SILType resultTy);
ManagedValue emitProtocolMetatypeToObject(SILLocation loc,
CanType inputTy,
SILType resultTy);
/// OpenedArchetypes - Mappings of opened archetypes back to the
/// instruction which opened them.
llvm::DenseMap<ArchetypeType *, SILValue> ArchetypeOpenings;
SILValue getArchetypeOpeningSite(ArchetypeType *archetype) const {
auto it = ArchetypeOpenings.find(archetype);
assert(it != ArchetypeOpenings.end() &&
"opened archetype was not registered with SILGenFunction");
return it->second;
}
void setArchetypeOpeningSite(ArchetypeType *archetype, SILValue site) {
ArchetypeOpenings.insert({archetype, site});
}
struct OpaqueValueState {
ManagedValue Value;
bool IsConsumable;
bool HasBeenConsumed;
};
ManagedValue manageOpaqueValue(OpaqueValueState &entry,
SILLocation loc,
SGFContext C);
/// Open up the given existential value and project its payload.
///
/// \param existentialValue The existential value.
/// \param openedArchetype The opened existential archetype.
/// \param loweredOpenedType The lowered type of the projection, which in
/// practice will be the openedArchetype, possibly wrapped in a metatype.
SILGenFunction::OpaqueValueState
emitOpenExistential(SILLocation loc,
ManagedValue existentialValue,
ArchetypeType *openedArchetype,
SILType loweredOpenedType,
AccessKind accessKind);
/// \brief Wrap the given value in an existential container.
///
/// \param concreteFormalType AST type of value.
/// \param concreteTL Type lowering of value.
/// \param existentialTL Type lowering of existential type.
/// \param F Function reference to emit the existential contents with the
/// given context.
ManagedValue emitExistentialErasure(
SILLocation loc,
CanType concreteFormalType,
const TypeLowering &concreteTL,
const TypeLowering &existentialTL,
ArrayRef<ProtocolConformanceRef> conformances,
SGFContext C,
llvm::function_ref<ManagedValue (SGFContext)> F,
bool allowEmbeddedNSError = true);
RValue emitCollectionConversion(SILLocation loc,
FuncDecl *fn,
CanType fromCollection,
CanType toCollection,
ManagedValue mv,
SGFContext C);
//===--------------------------------------------------------------------===//
// Recursive entry points
//===--------------------------------------------------------------------===//
using ASTVisitorType::visit;
//===--------------------------------------------------------------------===//
// Statements
//===--------------------------------------------------------------------===//
void visit(Stmt *S) = delete;
void emitStmt(Stmt *S);
void emitBreakOutOf(SILLocation loc, Stmt *S);
void emitCatchDispatch(DoCatchStmt *S, ManagedValue exn,
ArrayRef<CatchStmt*> clauses,
JumpDest catchFallthroughDest);
/// Emit code for the throw expr. If \p emitWillThrow is set then emit a
/// call to swift_willThrow, that will allow the debugger to place a
/// breakpoint on throw sites.
void emitThrow(SILLocation loc, ManagedValue exn, bool emitWillThrow = false);
//===--------------------------------------------------------------------===//
// Patterns
//===--------------------------------------------------------------------===//
SILValue emitOSVersionRangeCheck(SILLocation loc, const VersionRange &range);
void emitStmtCondition(StmtCondition Cond, JumpDest FailDest,
SILLocation loc);
void emitConditionalPBD(PatternBindingDecl *PBD, SILBasicBlock *FailBB);
void usingImplicitVariablesForPattern(Pattern *pattern, CaseStmt *stmt,
const llvm::function_ref<void(void)> &f);
void emitSwitchStmt(SwitchStmt *S);
void emitSwitchFallthrough(FallthroughStmt *S);
//===--------------------------------------------------------------------===//
// Expressions
//===--------------------------------------------------------------------===//
RValue visit(Expr *E) = delete;
/// Generate SIL for the given expression, storing the final result into the
/// specified Initialization buffer(s). This avoids an allocation and copy if
/// the result would be allocated into temporary memory normally.
void emitExprInto(Expr *E, Initialization *I);
/// Emit the given expression as an r-value.
RValue emitRValue(Expr *E, SGFContext C = SGFContext());
/// Emit the given expression as an r-value that follows the
/// abstraction patterns of the original type.
ManagedValue emitRValueAsOrig(Expr *E, AbstractionPattern origPattern,
const TypeLowering &origTL,
SGFContext C = SGFContext());
/// Emit an r-value into temporary memory and return the managed address.
ManagedValue
emitMaterializedRValueAsOrig(Expr *E, AbstractionPattern origPattern);
/// Emit the given expression, ignoring its result.
void emitIgnoredExpr(Expr *E);
/// Emit the given expression as an r-value, then (if it is a tuple), combine
/// it together into a single ManagedValue.
ManagedValue emitRValueAsSingleValue(Expr *E, SGFContext C = SGFContext());
/// Emit 'undef' in a particular formal type.
ManagedValue emitUndef(SILLocation loc, Type type);
ManagedValue emitUndef(SILLocation loc, SILType type);
RValue emitUndefRValue(SILLocation loc, Type type);
std::pair<ManagedValue, SILValue>
emitUninitializedArrayAllocation(Type ArrayTy,
SILValue Length,
SILLocation Loc);
CleanupHandle enterDeallocateUninitializedArrayCleanup(SILValue array);
void emitUninitializedArrayDeallocation(SILLocation loc, SILValue array);
CleanupHandle enterDelegateInitSelfWritebackCleanup(SILLocation loc,
SILValue address,
SILValue newValue);
SILValue emitConversionToSemanticRValue(SILLocation loc, SILValue value,
const TypeLowering &valueTL);
ManagedValue emitConversionToSemanticRValue(SILLocation loc,
ManagedValue value,
const TypeLowering &valueTL);
/// Emit the empty tuple value by emitting
SILValue emitEmptyTuple(SILLocation loc);
/// "Emit" an RValue representing an empty tuple.
RValue emitEmptyTupleRValue(SILLocation loc, SGFContext C);
/// Returns a reference to a constant in global context. For local func decls
/// this returns the function constant with unapplied closure context.
SILValue emitGlobalFunctionRef(SILLocation loc, SILDeclRef constant) {
return emitGlobalFunctionRef(loc, constant, getConstantInfo(constant));
}
SILValue emitGlobalFunctionRef(SILLocation loc, SILDeclRef constant,
SILConstantInfo constantInfo);
/// Returns a reference to a function value that dynamically dispatches
/// the function in a runtime-modifiable way.
SILValue emitDynamicMethodRef(SILLocation loc, SILDeclRef constant,
SILConstantInfo constantInfo);
/// Emit the specified VarDecl as an LValue if possible, otherwise return
/// null.
ManagedValue emitLValueForDecl(SILLocation loc, VarDecl *var,
CanType formalRValueType,
AccessKind accessKind,
AccessSemantics semantics
= AccessSemantics::Ordinary);
/// Produce an RValue for a reference to the specified declaration,
/// with the given type and in response to the specified expression. Try to
/// emit into the specified SGFContext to avoid copies (when provided).
RValue emitRValueForDecl(SILLocation loc, ConcreteDeclRef decl, Type ty,
AccessSemantics semantics,
SGFContext C = SGFContext());
/// Produce an RValue for a load from the specified property.
RValue emitRValueForPropertyLoad(SILLocation loc,
ManagedValue base,
CanType baseFormalType,
bool isSuper, VarDecl *property,
SubstitutionList substitutions,
AccessSemantics semantics, Type propTy,
SGFContext C,
bool isGuaranteedValid = false);
void emitCaptures(SILLocation loc,
AnyFunctionRef TheClosure,
CaptureEmission purpose,
SmallVectorImpl<ManagedValue> &captures);
/// Produce a reference to a function, which may be a local function
/// with captures. If the function is generic, substitutions must be
/// given. The result is re-abstracted to the given expected type.
ManagedValue emitClosureValue(SILLocation loc,
SILDeclRef function,
CanType expectedType,
SubstitutionList subs);
ArgumentSource prepareAccessorBaseArg(SILLocation loc, ManagedValue base,
CanType baseFormalType,
SILDeclRef accessor);
SILDeclRef getGetterDeclRef(AbstractStorageDecl *decl,
bool isDirectAccessorUse);
RValue emitGetAccessor(SILLocation loc, SILDeclRef getter,
SubstitutionList substitutions,
ArgumentSource &&optionalSelfValue,
bool isSuper, bool isDirectAccessorUse,
RValue &&optionalSubscripts, SGFContext C);
SILDeclRef getSetterDeclRef(AbstractStorageDecl *decl,
bool isDirectAccessorUse);
void emitSetAccessor(SILLocation loc, SILDeclRef setter,
SubstitutionList substitutions,
ArgumentSource &&optionalSelfValue,
bool isSuper, bool isDirectAccessorUse,
RValue &&optionalSubscripts, RValue &&value);
SILDeclRef getMaterializeForSetDeclRef(AbstractStorageDecl *decl,
bool isDirectAccessorUse);
MaterializedLValue
emitMaterializeForSetAccessor(SILLocation loc, SILDeclRef materializeForSet,
SubstitutionList substitutions,
ArgumentSource &&optionalSelfValue,
bool isSuper, bool isDirectAccessorUse,
RValue &&optionalSubscripts,
SILValue buffer, SILValue callbackStorage);
bool maybeEmitMaterializeForSetThunk(ProtocolConformance *conformance,
SILLinkage linkage,
Type selfInterfaceType,
Type selfType,
GenericEnvironment *genericEnv,
FuncDecl *requirement,
FuncDecl *witness,
SubstitutionList witnessSubs);
void emitMaterializeForSet(FuncDecl *decl);
SILDeclRef getAddressorDeclRef(AbstractStorageDecl *decl,
AccessKind accessKind,
bool isDirectAccessorUse);
std::pair<ManagedValue,ManagedValue>
emitAddressorAccessor(SILLocation loc, SILDeclRef addressor,
SubstitutionList substitutions,
ArgumentSource &&optionalSelfValue,
bool isSuper, bool isDirectAccessorUse,
RValue &&optionalSubscripts,
SILType addressType);
RValue emitApplyConversionFunction(SILLocation loc,
Expr *funcExpr,
Type resultType,
RValue &&operand);
ManagedValue emitManagedRetain(SILLocation loc, SILValue v);
ManagedValue emitManagedRetain(SILLocation loc, SILValue v,
const TypeLowering &lowering);
ManagedValue emitManagedLoadCopy(SILLocation loc, SILValue v);
ManagedValue emitManagedLoadCopy(SILLocation loc, SILValue v,
const TypeLowering &lowering);
ManagedValue emitManagedStoreBorrow(SILLocation loc, SILValue v,
SILValue addr);
ManagedValue emitManagedStoreBorrow(SILLocation loc, SILValue v,
SILValue addr,
const TypeLowering &lowering);
ManagedValue emitManagedLoadBorrow(SILLocation loc, SILValue v);
ManagedValue emitManagedLoadBorrow(SILLocation loc, SILValue v,
const TypeLowering &lowering);
ManagedValue emitManagedBeginBorrow(SILLocation loc, SILValue v,
const TypeLowering &lowering);
ManagedValue emitManagedBeginBorrow(SILLocation loc, SILValue v);
ManagedValue emitManagedBorrowedRValueWithCleanup(SILValue original,
SILValue borrowedValue);
ManagedValue emitManagedBorrowedRValueWithCleanup(
SILValue original, SILValue borrowedValue, const TypeLowering &lowering);
ManagedValue emitFormalEvaluationManagedBorrowedRValueWithCleanup(
SILLocation loc, SILValue original, SILValue borrowedValue);
ManagedValue emitFormalEvaluationManagedBorrowedRValueWithCleanup(
SILLocation loc, SILValue original, SILValue borrowedValue,
const TypeLowering &lowering);
ManagedValue emitFormalEvaluationManagedBeginBorrow(SILLocation loc,
SILValue v);
ManagedValue
emitFormalEvaluationManagedBeginBorrow(SILLocation loc, SILValue v,
const TypeLowering &lowering);
ManagedValue emitManagedRValueWithCleanup(SILValue v);
ManagedValue emitManagedRValueWithCleanup(SILValue v,
const TypeLowering &lowering);
ManagedValue emitManagedBufferWithCleanup(SILValue addr);
ManagedValue emitManagedBufferWithCleanup(SILValue addr,
const TypeLowering &lowering);
ManagedValue emitFormalAccessManagedRValueWithCleanup(SILLocation loc,
SILValue value);
ManagedValue emitFormalAccessManagedBufferWithCleanup(SILLocation loc,
SILValue addr);
void emitSemanticLoadInto(SILLocation loc, SILValue src,
const TypeLowering &srcLowering,
SILValue dest,
const TypeLowering &destLowering,
IsTake_t isTake, IsInitialization_t isInit);
SILValue emitSemanticLoad(SILLocation loc, SILValue src,
const TypeLowering &srcLowering,
const TypeLowering &rvalueLowering,
IsTake_t isTake);
void emitSemanticStore(SILLocation loc, SILValue value,
SILValue dest, const TypeLowering &destTL,
IsInitialization_t isInit);
SILValue emitConversionFromSemanticValue(SILLocation loc,
SILValue semanticValue,
SILType storageType);
ManagedValue emitLoad(SILLocation loc, SILValue addr,
const TypeLowering &rvalueTL,
SGFContext C, IsTake_t isTake,
bool isGuaranteedValid = false);
ManagedValue emitFormalAccessLoad(SILLocation loc, SILValue addr,
const TypeLowering &rvalueTL, SGFContext C,
IsTake_t isTake,
bool isGuaranteedValid = false);
void emitAssignToLValue(SILLocation loc, RValue &&src,
LValue &&dest);
void emitAssignLValueToLValue(SILLocation loc,
LValue &&src, LValue &&dest);
void emitCopyLValueInto(SILLocation loc, LValue &&src,
Initialization *dest);
ManagedValue emitAddressOfLValue(SILLocation loc, LValue &&src,
AccessKind accessKind,
TSanKind tsanKind = TSanKind::None);
RValue emitLoadOfLValue(SILLocation loc, LValue &&src, SGFContext C,
bool isGuaranteedValid = false);
/// Emit a reference to a method from within another method of the type.
std::tuple<ManagedValue, SILType>
emitSiblingMethodRef(SILLocation loc,
SILValue selfValue,
SILDeclRef methodConstant,
const SubstitutionMap &subMap);
SILValue emitMetatypeOfValue(SILLocation loc, Expr *baseExpr);
void emitReturnExpr(SILLocation loc, Expr *ret);
RValue emitAnyHashableErasure(SILLocation loc,
ManagedValue value,
Type type,
ProtocolConformanceRef conformance,
SGFContext C);
/// Turn a consumable managed value into a +1 managed value.
ManagedValue getManagedValue(SILLocation loc,
ConsumableManagedValue value);
//
// Helpers for emitting ApplyExpr chains.
//
RValue emitApplyExpr(Expr *e, SGFContext c);
/// Emit a function application, assuming that the arguments have been
/// lowered appropriately for the abstraction level but that the
/// result does need to be turned back into something matching a
/// formal type.
RValue emitApply(ResultPlanPtr &&resultPlan, ArgumentScope &&argScope,
SILLocation loc, ManagedValue fn, SubstitutionList subs,
ArrayRef<ManagedValue> args,
const CalleeTypeInfo &calleeTypeInfo, ApplyOptions options,
SGFContext evalContext);
RValue emitApplyOfDefaultArgGenerator(SILLocation loc,
ConcreteDeclRef defaultArgsOwner,
unsigned destIndex,
CanType resultType,
AbstractionPattern origResultType,
SGFContext C = SGFContext());
RValue emitApplyOfStoredPropertyInitializer(
SILLocation loc,
const PatternBindingEntry &entry,
SubstitutionList subs,
CanType resultType,
AbstractionPattern origResultType,
SGFContext C);
/// A convenience method for emitApply that just handles monomorphic
/// applications.
RValue emitMonomorphicApply(SILLocation loc,
ManagedValue fn,
ArrayRef<ManagedValue> args,
CanType resultType,
ApplyOptions options,
Optional<SILFunctionTypeRepresentation> overrideRep,
const Optional<ForeignErrorConvention> &foreignError);
RValue emitApplyOfLibraryIntrinsic(SILLocation loc,
FuncDecl *fn,
const SubstitutionMap &subMap,
ArrayRef<ManagedValue> args,
SGFContext ctx);
SILValue emitApplyWithRethrow(SILLocation loc, SILValue fn,
SILType substFnType,
SubstitutionList subs,
ArrayRef<SILValue> args);
/// Emit a literal that applies the various initializers.
RValue emitLiteral(LiteralExpr *literal, SGFContext C);
SILBasicBlock *getTryApplyErrorDest(SILLocation loc,
SILResultInfo exnResult,
bool isSuppressed);
/// Emit a dynamic member reference.
RValue emitDynamicMemberRefExpr(DynamicMemberRefExpr *e, SGFContext c);
/// Emit a dynamic subscript.
RValue emitDynamicSubscriptExpr(DynamicSubscriptExpr *e, SGFContext c);
/// Open up the given existential expression and emit its
/// subexpression in a caller-specified manner.
///
/// \param e The expression.
///
/// \param emitSubExpr A function to call to emit the subexpression
/// (which will be passed in).
void emitOpenExistentialExprImpl(OpenExistentialExpr *e,
llvm::function_ref<void(Expr *)> emitSubExpr);
/// Open up the given existential expression and emit its
/// subexpression in a caller-specified manner.
///
/// \param e The expression.
///
/// \param emitSubExpr A function to call to emit the subexpression
/// (which will be passed in).
template<typename R, typename F>
R emitOpenExistentialExpr(OpenExistentialExpr *e, F emitSubExpr) {
Optional<R> result;
emitOpenExistentialExprImpl(e,
[&](Expr *subExpr) {
result.emplace(emitSubExpr(subExpr));
});
return std::move(*result);
}
/// Open up the given existential expression and emit its
/// subexpression in a caller-specified manner.
///
/// \param e The expression.
///
/// \param emitSubExpr A function to call to emit the subexpression
/// (which will be passed in).
template<typename F>
void emitOpenExistentialExpr(OpenExistentialExpr *e, F emitSubExpr) {
emitOpenExistentialExprImpl(e, emitSubExpr);
}
/// Mapping from active opaque value expressions to their values,
/// along with a bit for each indicating whether it has been consumed yet.
llvm::DenseMap<OpaqueValueExpr *, OpaqueValueState> OpaqueValues;
/// RAII object that introduces a temporary binding for an opaque value.
///
/// Each time the opaque value expression is referenced, it will be
/// retained/released separately. When this RAII object goes out of
/// scope, the value will be destroyed if requested.
class OpaqueValueRAII {
SILGenFunction &Self;
OpaqueValueExpr *OpaqueValue;
OpaqueValueRAII(const OpaqueValueRAII &) = delete;
OpaqueValueRAII &operator=(const OpaqueValueRAII &) = delete;
public:
OpaqueValueRAII(SILGenFunction &self, OpaqueValueExpr *opaqueValue,
OpaqueValueState state)
: Self(self), OpaqueValue(opaqueValue) {
assert(Self.OpaqueValues.count(OpaqueValue) == 0 &&
"Opaque value already has a binding");
Self.OpaqueValues[OpaqueValue] = state;
}
~OpaqueValueRAII();
};
/// \brief Emit a conditional checked cast branch. Does not
/// re-abstract the argument to the success branch. Terminates the
/// current BB.
///
/// \param loc The AST location associated with the operation.
/// \param src The abstract value to cast.
/// \param sourceType The formal source type.
/// \param targetType The formal target type.
/// \param C Information about the result of the cast.
/// \param handleTrue A callback to invoke with the result of the cast
/// in the success path. The current BB should be
/// terminated.
/// \param handleFalse A callback to invoke in the failure path. The
/// current BB should be terminated.
void emitCheckedCastBranch(
SILLocation loc, ConsumableManagedValue src, Type sourceType,
CanType targetType, SGFContext C,
std::function<void(ManagedValue)> handleTrue,
std::function<void(Optional<ManagedValue>)> handleFalse);
/// A form of checked cast branch that uses the old non-ownership preserving
/// semantics.
///
/// The main difference is that this code does not pass the old argument as a
/// block argument in the failure case. This causes values to be double
/// consumed.
void emitCheckedCastBranchOld(SILLocation loc, Expr *source, Type targetType,
SGFContext ctx,
std::function<void(ManagedValue)> handleTrue,
std::function<void()> handleFalse);
/// \brief Emit a conditional checked cast branch, starting from an
/// expression. Terminates the current BB.
///
/// \param loc The AST location associated with the operation.
/// \param src An expression which will generate the value to cast.
/// \param targetType The formal target type.
/// \param C Information about the result of the cast.
/// \param handleTrue A callback to invoke with the result of the cast
/// in the success path. The current BB should be
/// terminated.
/// \param handleFalse A callback to invoke in the failure path. The
/// current BB should be terminated.
void emitCheckedCastBranch(
SILLocation loc, Expr *src, Type targetType, SGFContext C,
std::function<void(ManagedValue)> handleTrue,
std::function<void(Optional<ManagedValue>)> handleFalse);
/// A form of checked cast branch that uses the old non-ownership preserving
/// semantics.
///
/// The main difference is that this code does not pass the old argument as a
/// block argument in the failure case. This causes values to be double
/// consumed.
void emitCheckedCastBranchOld(SILLocation loc, ConsumableManagedValue src,
Type sourceType, CanType targetType,
SGFContext ctx,
std::function<void(ManagedValue)> handleTrue,
std::function<void()> handleFalse);
/// Emit the control flow for an optional 'bind' operation, branching to the
/// active failure destination if the optional value addressed by optionalAddr
/// is nil, and leaving the insertion point on the success branch.
///
/// NOTE: This operation does *not* consume the managed value.
///
void emitBindOptional(SILLocation loc, ManagedValue optionalAddrOrValue,
unsigned depth);
void emitOptionalEvaluation(SILLocation loc, Type optionalType,
SmallVectorImpl<ManagedValue> &results,
SGFContext C,
llvm::function_ref<void(SmallVectorImpl<ManagedValue> &,
SGFContext primaryC)>
generateNormalResults);
//===--------------------------------------------------------------------===//
// Bridging thunks
//===--------------------------------------------------------------------===//
/// Convert a native Swift value to a value that can be passed as an argument
/// to or returned as the result of a function with the given calling
/// convention.
ManagedValue emitNativeToBridgedValue(SILLocation loc, ManagedValue v,
SILFunctionTypeRepresentation destRep,
CanType bridgedTy);
/// Convert a value received as the result or argument of a function with
/// the given calling convention to a native Swift value of the given type.
ManagedValue emitBridgedToNativeValue(SILLocation loc, ManagedValue v,
SILFunctionTypeRepresentation srcRep,
CanType nativeTy);
/// Convert a bridged error type to the native Swift Error
/// representation. The value may be optional.
ManagedValue emitBridgedToNativeError(SILLocation loc, ManagedValue v);
/// Convert a value in the native Swift Error representation to
/// a bridged error type representation.
ManagedValue emitNativeToBridgedError(SILLocation loc, ManagedValue v,
CanType bridgedType);
SILValue emitBridgeErrorForForeignError(SILLocation loc,
SILValue nativeError,
SILType bridgedResultType,
SILValue foreignErrorSlot,
const ForeignErrorConvention &foreignError);
SILValue
emitBridgeReturnValueForForeignError(SILLocation loc,
SILValue result,
SILFunctionTypeRepresentation repr,
SILType bridgedResultType,
SILValue foreignErrorSlot,
const ForeignErrorConvention &foreignError);
void emitForeignErrorBlock(SILLocation loc, SILBasicBlock *errorBB,
Optional<ManagedValue> errorSlot);
void emitForeignErrorCheck(SILLocation loc,
SmallVectorImpl<ManagedValue> &directResults,
ManagedValue errorSlot,
bool suppressErrorCheck,
const ForeignErrorConvention &foreignError);
//===--------------------------------------------------------------------===//
// Re-abstraction thunks
//===--------------------------------------------------------------------===//
/// Convert a value with the abstraction patterns of the original type
/// to a value with the abstraction patterns of the substituted type.
ManagedValue emitOrigToSubstValue(SILLocation loc, ManagedValue input,
AbstractionPattern origType,
CanType substType,
SGFContext ctx = SGFContext());
RValue emitOrigToSubstValue(SILLocation loc, RValue &&input,
AbstractionPattern origType,
CanType substType,
SGFContext ctx = SGFContext());
/// Convert a value with the abstraction patterns of the substituted
/// type to a value with the abstraction patterns of the original type.
ManagedValue emitSubstToOrigValue(SILLocation loc, ManagedValue input,
AbstractionPattern origType,
CanType substType,
SGFContext ctx = SGFContext());
RValue emitSubstToOrigValue(SILLocation loc, RValue &&input,
AbstractionPattern origType,
CanType substType,
SGFContext ctx = SGFContext());
/// Transform the AST-level types in the function signature without an
/// abstraction or representation change.
ManagedValue emitTransformedValue(SILLocation loc, ManagedValue input,
CanType inputType,
CanType outputType,
SGFContext ctx = SGFContext());
/// Most general form of the above.
ManagedValue emitTransformedValue(SILLocation loc, ManagedValue input,
AbstractionPattern inputOrigType,
CanType inputSubstType,
AbstractionPattern outputOrigType,
CanType outputSubstType,
SGFContext ctx = SGFContext());
RValue emitTransformedValue(SILLocation loc, RValue &&input,
AbstractionPattern inputOrigType,
CanType inputSubstType,
AbstractionPattern outputOrigType,
CanType outputSubstType,
SGFContext ctx = SGFContext());
/// Used for emitting SILArguments of bare functions, such as thunks and
/// open-coded materializeForSet.
void collectThunkParams(SILLocation loc,
SmallVectorImpl<ManagedValue> &params,
bool allowPlusZero);
/// Build the type of a function transformation thunk.
CanSILFunctionType buildThunkType(CanSILFunctionType &sourceType,
CanSILFunctionType &expectedType,
CanType &inputSubstType,
CanType &outputSubstType,
GenericEnvironment *&genericEnv,
SubstitutionMap &interfaceSubs);
//===--------------------------------------------------------------------===//
// Declarations
//===--------------------------------------------------------------------===//
void visitDecl(Decl *D) {
llvm_unreachable("Not yet implemented");
}
void visitFuncDecl(FuncDecl *D);
void visitPatternBindingDecl(PatternBindingDecl *D);
void emitPatternBinding(PatternBindingDecl *D, unsigned entry);
std::unique_ptr<Initialization>
emitPatternBindingInitialization(Pattern *P, JumpDest failureDest);
void visitNominalTypeDecl(NominalTypeDecl *D) {
// No lowering support needed.
}
void visitTypeAliasDecl(TypeAliasDecl *D) {
// No lowering support needed.
}
void visitGenericTypeParamDecl(GenericTypeParamDecl *D) {
// No lowering support needed.
}
void visitAssociatedTypeDecl(AssociatedTypeDecl *D) {
// No lowering support needed.
}
void visitVarDecl(VarDecl *D);
/// Emit an Initialization for a 'var' or 'let' decl in a pattern.
std::unique_ptr<Initialization> emitInitializationForVarDecl(VarDecl *vd);
/// Emit the allocation for a local variable, provides an Initialization
/// that can be used to initialize it, and registers cleanups in the active
/// scope.
/// \param ArgNo optionally describes this function argument's
/// position for debug info.
std::unique_ptr<Initialization>
emitLocalVariableWithCleanup(VarDecl *D,
Optional<MarkUninitializedInst::Kind> kind,
unsigned ArgNo = 0);
/// Emit the allocation for a local temporary, provides an
/// Initialization that can be used to initialize it, and registers
/// cleanups in the active scope.
///
/// The initialization is guaranteed to be a single buffer.
std::unique_ptr<TemporaryInitialization>
emitTemporary(SILLocation loc, const TypeLowering &tempTL);
/// Emit the allocation for a local temporary, provides an
/// Initialization that can be used to initialize it, and registers
/// cleanups in the current active formal evaluation scope.
///
/// The initialization is guaranteed to be a single buffer.
std::unique_ptr<TemporaryInitialization>
emitFormalAccessTemporary(SILLocation loc, const TypeLowering &tempTL);
/// Provides an Initialization that can be used to initialize an already-
/// allocated temporary, and registers cleanups in the active scope.
///
/// The initialization is guaranteed to be a single buffer.
std::unique_ptr<TemporaryInitialization>
useBufferAsTemporary(SILValue addr, const TypeLowering &tempTL);
/// Enter a currently-dormant cleanup to destroy the value in the
/// given address.
CleanupHandle enterDormantTemporaryCleanup(SILValue temp,
const TypeLowering &tempTL);
/// Enter a currently-dormant cleanup to destroy the value in the
/// given address.
CleanupHandle
enterDormantFormalAccessTemporaryCleanup(SILValue temp, SILLocation loc,
const TypeLowering &tempTL);
/// Destroy and deallocate an initialized local variable.
void destroyLocalVariable(SILLocation L, VarDecl *D);
/// Deallocate an uninitialized local variable.
void deallocateUninitializedLocalVariable(SILLocation L, VarDecl *D);
/// Enter a cleanup to deallocate a stack variable.
CleanupHandle enterDeallocStackCleanup(SILValue address);
/// Enter a cleanup to emit a ReleaseValue/DestroyAddr of the specified value.
CleanupHandle enterDestroyCleanup(SILValue valueOrAddr);
/// Enter a cleanup to emit a DeinitExistentialAddr or DeinitExistentialBox
/// of the specified value.
CleanupHandle enterDeinitExistentialCleanup(SILValue valueOrAddr,
CanType concreteFormalType,
ExistentialRepresentation repr);
/// Evaluate an Expr as an lvalue.
LValue emitLValue(Expr *E, AccessKind accessKind);
/// Emit a reference to a variable as an lvalue.
LValue emitLValueForAddressedNonMemberVarDecl(SILLocation loc, VarDecl *var,
CanType formalRValueType,
AccessKind accessKind,
AccessSemantics semantics);
/// Emit an lvalue that directly refers to the given instance variable
/// (without going through getters or setters).
LValue emitPropertyLValue(SILLocation loc, ManagedValue base,
CanType baseFormalType, VarDecl *var,
AccessKind accessKind, AccessSemantics semantics);
struct PointerAccessInfo {
CanType PointerType;
PointerTypeKind PointerKind;
swift::AccessKind AccessKind;
};
PointerAccessInfo getPointerAccessInfo(Type pointerType);
ManagedValue emitLValueToPointer(SILLocation loc, LValue &&lvalue,
PointerAccessInfo accessInfo);
struct ArrayAccessInfo {
Type PointerType;
Type ArrayType;
swift::AccessKind AccessKind;
};
ArrayAccessInfo getArrayAccessInfo(Type pointerType, Type arrayType);
std::pair<ManagedValue,ManagedValue>
emitArrayToPointer(SILLocation loc, LValue &&lvalue,
ArrayAccessInfo accessInfo);
std::pair<ManagedValue,ManagedValue>
emitArrayToPointer(SILLocation loc, ManagedValue arrayValue,
ArrayAccessInfo accessInfo);
std::pair<ManagedValue,ManagedValue>
emitStringToPointer(SILLocation loc, ManagedValue stringValue,
Type pointerType);
class ForceTryEmission {
SILGenFunction &SGF;
Expr *Loc;
JumpDest OldThrowDest;
public:
ForceTryEmission(SILGenFunction &SGF, Expr *loc);
ForceTryEmission(const ForceTryEmission &) = delete;
ForceTryEmission &operator=(const ForceTryEmission &) = delete;
void finish();
~ForceTryEmission() {
if (Loc) finish();
}
};
/// Return forwarding substitutions for the archetypes in the current
/// function.
SubstitutionList getForwardingSubstitutions();
/// Get the _Pointer protocol used for pointer argument operations.
ProtocolDecl *getPointerProtocol();
};
/// A utility class for saving and restoring the insertion point.
class SavedInsertionPoint {
SILGenFunction &SGF;
SILBasicBlock *SavedIP;
FunctionSection SavedSection;
public:
SavedInsertionPoint(SILGenFunction &SGF, SILBasicBlock *newIP,
Optional<FunctionSection> optSection = None)
: SGF(SGF), SavedIP(SGF.B.getInsertionBB()),
SavedSection(SGF.CurFunctionSection) {
FunctionSection section = (optSection ? *optSection : SavedSection);
assert((section != FunctionSection::Postmatter ||
SGF.StartOfPostmatter != SGF.F.end()) &&
"trying to move to postmatter without a registered start "
"of postmatter?");
SGF.B.setInsertionPoint(newIP);
SGF.CurFunctionSection = section;
}
SavedInsertionPoint(const SavedInsertionPoint &) = delete;
SavedInsertionPoint &operator=(const SavedInsertionPoint &) = delete;
~SavedInsertionPoint() {
if (SavedIP) {
SGF.B.setInsertionPoint(SavedIP);
} else {
SGF.B.clearInsertionPoint();
}
SGF.CurFunctionSection = SavedSection;
}
};
} // end namespace Lowering
} // end namespace swift
#endif