mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
2926 lines
116 KiB
C++
2926 lines
116 KiB
C++
//===--- SILGenLValue.cpp - Constructs logical lvalues for SILGen ---------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Emission of l-value expressions and basic operations on them.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SILGen.h"
|
|
#include "ArgumentSource.h"
|
|
#include "LValue.h"
|
|
#include "RValue.h"
|
|
#include "Scope.h"
|
|
#include "Initialization.h"
|
|
#include "swift/AST/DiagnosticsSIL.h"
|
|
#include "swift/AST/DiagnosticsCommon.h"
|
|
#include "swift/AST/GenericEnvironment.h"
|
|
#include "swift/SIL/PrettyStackTrace.h"
|
|
#include "swift/SIL/SILArgument.h"
|
|
#include "swift/SIL/SILUndef.h"
|
|
#include "swift/SIL/TypeLowering.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "ASTVisitor.h"
|
|
using namespace swift;
|
|
using namespace Lowering;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
struct LValueWritebackCleanup : Cleanup {
|
|
FormalEvaluationContext::stable_iterator Depth;
|
|
|
|
LValueWritebackCleanup() : Depth() {}
|
|
|
|
void emit(SILGenFunction &SGF, CleanupLocation loc) override {
|
|
auto &evaluation = *SGF.FormalEvalContext.find(Depth);
|
|
assert(evaluation.getKind() == FormalAccess::Exclusive);
|
|
auto &lvalue = static_cast<ExclusiveBorrowFormalAccess &>(evaluation);
|
|
lvalue.performWriteback(SGF, /*isFinal*/ false);
|
|
}
|
|
|
|
void dump(SILGenFunction &) const override {
|
|
#ifndef NDEBUG
|
|
llvm::errs() << "LValueWritebackCleanup\n"
|
|
<< "State: " << getState() << "Depth: " << Depth.getDepth()
|
|
<< "\n";
|
|
#endif
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// Push a writeback onto the current LValueWriteback stack.
|
|
static void pushWriteback(SILGenFunction &SGF,
|
|
SILLocation loc,
|
|
std::unique_ptr<LogicalPathComponent> &&comp,
|
|
ManagedValue base,
|
|
MaterializedLValue materialized) {
|
|
assert(SGF.InWritebackScope);
|
|
|
|
// Push a cleanup to execute the writeback consistently.
|
|
auto &context = SGF.FormalEvalContext;
|
|
LValueWritebackCleanup &cleanup =
|
|
SGF.Cleanups.pushCleanup<LValueWritebackCleanup>();
|
|
CleanupHandle handle = SGF.Cleanups.getTopCleanup();
|
|
|
|
context.push<ExclusiveBorrowFormalAccess>(loc, std::move(comp), base,
|
|
materialized, handle);
|
|
cleanup.Depth = context.stable_begin();
|
|
}
|
|
|
|
void ExclusiveBorrowFormalAccess::diagnoseConflict(
|
|
const ExclusiveBorrowFormalAccess &rhs,
|
|
SILGenFunction &SGF) const {
|
|
// If the two writebacks we're comparing are of different kinds (e.g.
|
|
// ownership conversion vs a computed property) then they aren't the
|
|
// same and thus cannot conflict.
|
|
if (component->getKind() != rhs.component->getKind())
|
|
return;
|
|
|
|
// If the lvalues don't have the same base value (possibly null), then
|
|
// they aren't the same. Note that this is the primary source of false
|
|
// negative for this diagnostic.
|
|
SILValue lhsBaseValue = base.getValue(), rhsBaseValue = rhs.base.getValue();
|
|
if (lhsBaseValue != rhsBaseValue &&
|
|
(!lhsBaseValue || !rhsBaseValue ||
|
|
!RValue::areObviouslySameValue(lhsBaseValue, rhsBaseValue))) {
|
|
return;
|
|
}
|
|
|
|
component->diagnoseWritebackConflict(rhs.component.get(), loc, rhs.loc, SGF);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static CanType getSubstFormalRValueType(Expr *expr) {
|
|
return expr->getType()->getRValueType()->getCanonicalType();
|
|
}
|
|
|
|
static LValueTypeData getLogicalStorageTypeData(SILGenModule &SGM,
|
|
CanType substFormalType) {
|
|
AbstractionPattern origFormalType(
|
|
substFormalType.getReferenceStorageReferent());
|
|
return {
|
|
origFormalType,
|
|
substFormalType,
|
|
SGM.Types.getLoweredType(origFormalType, substFormalType).getObjectType()
|
|
};
|
|
}
|
|
|
|
static LValueTypeData getPhysicalStorageTypeData(SILGenModule &SGM,
|
|
AbstractStorageDecl *storage,
|
|
CanType substFormalType) {
|
|
auto origFormalType = SGM.Types.getAbstractionPattern(storage)
|
|
.getReferenceStorageReferentType();
|
|
return {
|
|
origFormalType,
|
|
substFormalType,
|
|
SGM.Types.getLoweredType(origFormalType, substFormalType).getObjectType()
|
|
};
|
|
}
|
|
|
|
static bool shouldUseUnsafeEnforcement(VarDecl *var) {
|
|
if (var->isDebuggerVar())
|
|
return true;
|
|
|
|
// TODO: Check for the explicit "unsafe" attribute.
|
|
return false;
|
|
}
|
|
|
|
Optional<SILAccessEnforcement>
|
|
SILGenFunction::getStaticEnforcement(VarDecl *var) {
|
|
if (var && shouldUseUnsafeEnforcement(var))
|
|
return SILAccessEnforcement::Unsafe;
|
|
|
|
return SILAccessEnforcement::Static;
|
|
}
|
|
|
|
Optional<SILAccessEnforcement>
|
|
SILGenFunction::getDynamicEnforcement(VarDecl *var) {
|
|
if (getOptions().EnforceExclusivityDynamic) {
|
|
if (var && shouldUseUnsafeEnforcement(var))
|
|
return SILAccessEnforcement::Unsafe;
|
|
return SILAccessEnforcement::Dynamic;
|
|
}
|
|
return None;
|
|
}
|
|
|
|
Optional<SILAccessEnforcement>
|
|
SILGenFunction::getUnknownEnforcement(VarDecl *var) {
|
|
if (var && shouldUseUnsafeEnforcement(var))
|
|
return SILAccessEnforcement::Unsafe;
|
|
|
|
return SILAccessEnforcement::Unknown;
|
|
}
|
|
|
|
/// SILGenLValue - An ASTVisitor for building logical lvalues.
|
|
class LLVM_LIBRARY_VISIBILITY SILGenLValue
|
|
: public Lowering::ExprVisitor<SILGenLValue, LValue, AccessKind>
|
|
{
|
|
/// A mapping from opaque value expressions to the open-existential
|
|
/// expression that determines them.
|
|
llvm::SmallDenseMap<OpaqueValueExpr *, OpenExistentialExpr *>
|
|
openedExistentials;
|
|
|
|
public:
|
|
SILGenFunction &SGF;
|
|
SILGenLValue(SILGenFunction &SGF) : SGF(SGF) {}
|
|
|
|
LValue visitRec(Expr *e, AccessKind accessKind,
|
|
AbstractionPattern orig = AbstractionPattern::getInvalid());
|
|
|
|
/// Dummy handler to log unimplemented nodes.
|
|
LValue visitExpr(Expr *e, AccessKind accessKind);
|
|
|
|
// Nodes that form the root of lvalue paths
|
|
LValue visitDiscardAssignmentExpr(DiscardAssignmentExpr *e,
|
|
AccessKind accessKind);
|
|
LValue visitDeclRefExpr(DeclRefExpr *e, AccessKind accessKind);
|
|
LValue visitOpaqueValueExpr(OpaqueValueExpr *e, AccessKind accessKind);
|
|
|
|
// Nodes that make up components of lvalue paths
|
|
|
|
LValue visitMemberRefExpr(MemberRefExpr *e, AccessKind accessKind);
|
|
LValue visitSubscriptExpr(SubscriptExpr *e, AccessKind accessKind);
|
|
LValue visitTupleElementExpr(TupleElementExpr *e, AccessKind accessKind);
|
|
LValue visitForceValueExpr(ForceValueExpr *e, AccessKind accessKind);
|
|
LValue visitBindOptionalExpr(BindOptionalExpr *e, AccessKind accessKind);
|
|
LValue visitOpenExistentialExpr(OpenExistentialExpr *e,
|
|
AccessKind accessKind);
|
|
LValue visitKeyPathApplicationExpr(KeyPathApplicationExpr *e,
|
|
AccessKind accessKind);
|
|
|
|
// Expressions that wrap lvalues
|
|
|
|
LValue visitInOutExpr(InOutExpr *e, AccessKind accessKind);
|
|
LValue visitDotSyntaxBaseIgnoredExpr(DotSyntaxBaseIgnoredExpr *e,
|
|
AccessKind accessKind);
|
|
};
|
|
|
|
static ManagedValue
|
|
emitGetIntoTemporary(SILGenFunction &SGF, SILLocation loc, ManagedValue base,
|
|
std::unique_ptr<TemporaryInitialization> &&temporaryInit,
|
|
LogicalPathComponent &&component) {
|
|
// Emit a 'get' into the temporary.
|
|
RValue value =
|
|
std::move(component).get(SGF, loc, base, SGFContext(temporaryInit.get()));
|
|
|
|
// Force the value into the temporary if necessary.
|
|
if (!value.isInContext()) {
|
|
std::move(value).forwardInto(SGF, loc, temporaryInit.get());
|
|
}
|
|
|
|
return temporaryInit->getManagedAddress();
|
|
}
|
|
|
|
ManagedValue LogicalPathComponent::getMaterialized(SILGenFunction &SGF,
|
|
SILLocation loc,
|
|
ManagedValue base,
|
|
AccessKind kind) && {
|
|
// If this is just for a read, emit a load into a temporary memory
|
|
// location.
|
|
if (kind == AccessKind::Read) {
|
|
// Create a temporary.
|
|
std::unique_ptr<TemporaryInitialization> temporaryInit =
|
|
SGF.emitFormalAccessTemporary(loc,
|
|
SGF.getTypeLowering(getTypeOfRValue()));
|
|
return emitGetIntoTemporary(SGF, loc, base, std::move(temporaryInit),
|
|
std::move(*this));
|
|
}
|
|
|
|
assert(SGF.InWritebackScope &&
|
|
"materializing l-value for modification without writeback scope");
|
|
|
|
// Clone anything else about the component that we might need in the
|
|
// writeback.
|
|
auto clonedComponent = clone(SGF, loc);
|
|
|
|
ManagedValue temporary;
|
|
{
|
|
// Create a temporary.
|
|
std::unique_ptr<TemporaryInitialization> temporaryInit =
|
|
SGF.emitFormalAccessTemporary(loc,
|
|
SGF.getTypeLowering(getTypeOfRValue()));
|
|
|
|
FormalEvaluationScope Scope(SGF);
|
|
|
|
// Otherwise, we need to emit a get and set. Borrow the base for
|
|
// the getter.
|
|
ManagedValue getterBase =
|
|
base ? base.formalAccessBorrow(SGF, loc) : ManagedValue();
|
|
|
|
// Emit a 'get' into a temporary and then pop the borrow of base.
|
|
temporary = emitGetIntoTemporary(
|
|
SGF, loc, getterBase, std::move(temporaryInit), std::move(*this));
|
|
}
|
|
|
|
// Push a writeback for the temporary.
|
|
pushWriteback(SGF, loc, std::move(clonedComponent), base,
|
|
MaterializedLValue(temporary));
|
|
return temporary.unmanagedBorrow();
|
|
}
|
|
|
|
void LogicalPathComponent::writeback(SILGenFunction &SGF, SILLocation loc,
|
|
ManagedValue base,
|
|
MaterializedLValue materialized,
|
|
bool isFinal) {
|
|
assert(!materialized.callback &&
|
|
"unexpected materialized lvalue with callback!");
|
|
|
|
// Load the value from the temporary unless the type is address-only
|
|
// and this is the final use, in which case we can just consume the
|
|
// value as-is.
|
|
auto temporary = materialized.temporary;
|
|
|
|
assert(temporary.getType().isAddress());
|
|
auto &tempTL = SGF.getTypeLowering(temporary.getType());
|
|
if (!tempTL.isAddressOnly() || !isFinal ||
|
|
!SGF.silConv.useLoweredAddresses()) {
|
|
if (isFinal) temporary.forward(SGF);
|
|
temporary = SGF.emitLoad(loc, temporary.getValue(), tempTL,
|
|
SGFContext(), IsTake_t(isFinal));
|
|
}
|
|
RValue rvalue(SGF, loc, getSubstFormalType(), temporary);
|
|
|
|
// Don't consume cleanups on the base if this isn't final.
|
|
if (!isFinal) { base = ManagedValue::forUnmanaged(base.getValue()); }
|
|
|
|
// Clone the component if this isn't final.
|
|
std::unique_ptr<LogicalPathComponent> clonedComponent =
|
|
(isFinal ? nullptr : clone(SGF, loc));
|
|
LogicalPathComponent *component = (isFinal ? this : &*clonedComponent);
|
|
std::move(*component).set(SGF, loc, std::move(rvalue), base);
|
|
}
|
|
|
|
InOutConversionScope::InOutConversionScope(SILGenFunction &SGF)
|
|
: SGF(SGF)
|
|
{
|
|
assert(SGF.InWritebackScope
|
|
&& "inout conversions should happen in writeback scopes");
|
|
assert(!SGF.InInOutConversionScope
|
|
&& "inout conversions should not be nested");
|
|
SGF.InInOutConversionScope = true;
|
|
}
|
|
|
|
InOutConversionScope::~InOutConversionScope() {
|
|
assert(SGF.InInOutConversionScope && "already exited conversion scope?!");
|
|
SGF.InInOutConversionScope = false;
|
|
}
|
|
|
|
void PathComponent::_anchor() {}
|
|
void PhysicalPathComponent::_anchor() {}
|
|
void LogicalPathComponent::_anchor() {}
|
|
|
|
void PathComponent::dump() const {
|
|
print(llvm::errs());
|
|
}
|
|
|
|
/// Return the LValueTypeData for a SIL value with the given AST formal type.
|
|
static LValueTypeData getValueTypeData(CanType formalType,
|
|
SILValue value) {
|
|
return {
|
|
AbstractionPattern(formalType),
|
|
formalType,
|
|
value->getType().getObjectType()
|
|
};
|
|
}
|
|
static LValueTypeData getValueTypeData(SILGenFunction &SGF, Expr *e) {
|
|
CanType formalType = getSubstFormalRValueType(e);
|
|
SILType loweredType = SGF.getLoweredType(formalType).getObjectType();
|
|
|
|
return {
|
|
AbstractionPattern(formalType),
|
|
formalType,
|
|
loweredType
|
|
};
|
|
}
|
|
|
|
/// Given the address of an optional value, unsafely project out the
|
|
/// address of the value.
|
|
static ManagedValue getAddressOfOptionalValue(SILGenFunction &SGF,
|
|
SILLocation loc,
|
|
ManagedValue optAddr,
|
|
const LValueTypeData &valueTypeData) {
|
|
// Project out the 'Some' payload.
|
|
EnumElementDecl *someDecl = SGF.getASTContext().getOptionalSomeDecl();
|
|
|
|
// If the base is +1, we want to forward the cleanup.
|
|
bool hadCleanup = optAddr.hasCleanup();
|
|
|
|
// UncheckedTakeEnumDataAddr is safe to apply to Optional, because it is
|
|
// a single-payload enum. There will (currently) never be spare bits
|
|
// embedded in the payload.
|
|
SILValue valueAddr =
|
|
SGF.B.createUncheckedTakeEnumDataAddr(loc, optAddr.forward(SGF), someDecl,
|
|
valueTypeData.TypeOfRValue.getAddressType());
|
|
|
|
// Return the value as +1 if the optional was +1.
|
|
if (hadCleanup) {
|
|
return SGF.emitManagedBufferWithCleanup(valueAddr);
|
|
} else {
|
|
return ManagedValue::forLValue(valueAddr);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
/// A helper class for creating writebacks associated with l-value
|
|
/// components that don't really need them.
|
|
class WritebackPseudoComponent : public LogicalPathComponent {
|
|
protected:
|
|
WritebackPseudoComponent(const LValueTypeData &typeData)
|
|
: LogicalPathComponent(typeData, WritebackPseudoKind) {}
|
|
|
|
public:
|
|
AccessKind getBaseAccessKind(SILGenFunction &SGF,
|
|
AccessKind accessKind) const override {
|
|
llvm_unreachable("called getBaseAccessKind on pseudo-component");
|
|
}
|
|
std::unique_ptr<LogicalPathComponent>
|
|
clone(SILGenFunction &SGF, SILLocation l) const override {
|
|
llvm_unreachable("called clone on pseudo-component");
|
|
}
|
|
|
|
RValue get(SILGenFunction &SGF, SILLocation loc,
|
|
ManagedValue base, SGFContext c) && override {
|
|
llvm_unreachable("called get on a pseudo-component");
|
|
}
|
|
void set(SILGenFunction &SGF, SILLocation loc,
|
|
RValue &&value, ManagedValue base) && override {
|
|
llvm_unreachable("called set on a pseudo-component");
|
|
}
|
|
ManagedValue getMaterialized(SILGenFunction &SGF, SILLocation loc,
|
|
ManagedValue base,
|
|
AccessKind accessKind) && override {
|
|
llvm_unreachable("called getMaterialized on a pseudo-component");
|
|
}
|
|
|
|
void diagnoseWritebackConflict(LogicalPathComponent *rhs,
|
|
SILLocation loc1, SILLocation loc2,
|
|
SILGenFunction &SGF) override {
|
|
// do nothing
|
|
}
|
|
};
|
|
|
|
class EndAccessPseudoComponent : public WritebackPseudoComponent {
|
|
public:
|
|
EndAccessPseudoComponent(const LValueTypeData &typeData)
|
|
: WritebackPseudoComponent(typeData) {}
|
|
|
|
private:
|
|
void writeback(SILGenFunction &SGF, SILLocation loc,
|
|
ManagedValue base,
|
|
MaterializedLValue materialized,
|
|
bool isFinal) override {
|
|
assert(base.isLValue());
|
|
SGF.B.createEndAccess(loc, base.getValue(), /*abort*/ false);
|
|
}
|
|
|
|
void print(raw_ostream &OS) const override {
|
|
OS << "EndAccessPseudoComponent";
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
static SILValue enterAccessScope(SILGenFunction &SGF, SILLocation loc,
|
|
SILValue addr, LValueTypeData typeData,
|
|
AccessKind accessKind,
|
|
SILAccessEnforcement enforcement) {
|
|
auto silAccessKind = [&] {
|
|
switch (accessKind) {
|
|
case AccessKind::Read:
|
|
return SILAccessKind::Read;
|
|
case AccessKind::Write:
|
|
case AccessKind::ReadWrite:
|
|
return SILAccessKind::Modify;
|
|
}
|
|
}();
|
|
|
|
// Hack for materializeForSet emission, where we can't safely
|
|
// push a begin/end access.
|
|
if (!SGF.InWritebackScope) {
|
|
auto unpairedAccesses = SGF.UnpairedAccessesForMaterializeForSet;
|
|
assert(unpairedAccesses &&
|
|
"tried to enter access scope without a writeback scope!");
|
|
if (enforcement == SILAccessEnforcement::Dynamic) {
|
|
SGF.B.createBeginUnpairedAccess(loc, addr, unpairedAccesses->Buffer,
|
|
silAccessKind, enforcement);
|
|
unpairedAccesses->NumAccesses++;
|
|
}
|
|
return addr;
|
|
}
|
|
|
|
// Enter the access.
|
|
addr = SGF.B.createBeginAccess(loc, addr, silAccessKind, enforcement);
|
|
|
|
// Push a writeback to end it.
|
|
auto accessedMV = ManagedValue::forLValue(addr);
|
|
std::unique_ptr<LogicalPathComponent>
|
|
component(new EndAccessPseudoComponent(typeData));
|
|
pushWriteback(SGF, loc, std::move(component), accessedMV,
|
|
MaterializedLValue());
|
|
|
|
return addr;
|
|
}
|
|
|
|
namespace {
|
|
class RefElementComponent : public PhysicalPathComponent {
|
|
VarDecl *Field;
|
|
SILType SubstFieldType;
|
|
public:
|
|
RefElementComponent(VarDecl *field, SILType substFieldType,
|
|
LValueTypeData typeData)
|
|
: PhysicalPathComponent(typeData, RefElementKind),
|
|
Field(field), SubstFieldType(substFieldType) {}
|
|
|
|
ManagedValue offset(SILGenFunction &SGF, SILLocation loc, ManagedValue base,
|
|
AccessKind accessKind) && override {
|
|
assert(base.getType().isObject() &&
|
|
"base for ref element component must be an object");
|
|
assert(base.getType().hasReferenceSemantics() &&
|
|
"base for ref element component must be a reference type");
|
|
// Borrow the ref element addr using formal access. If we need the ref
|
|
// element addr, we will load it in this expression.
|
|
base = base.formalAccessBorrow(SGF, loc);
|
|
SILValue result =
|
|
SGF.B.createRefElementAddr(loc, base.getUnmanagedValue(),
|
|
Field, SubstFieldType);
|
|
|
|
if (auto enforcement = SGF.getDynamicEnforcement(Field)) {
|
|
result = enterAccessScope(SGF, loc, result, getTypeData(),
|
|
accessKind, *enforcement);
|
|
}
|
|
|
|
return ManagedValue::forLValue(result);
|
|
}
|
|
|
|
void print(raw_ostream &OS) const override {
|
|
OS << "RefElementComponent(" << Field->getName() << ")\n";
|
|
}
|
|
};
|
|
|
|
class TupleElementComponent : public PhysicalPathComponent {
|
|
unsigned ElementIndex;
|
|
public:
|
|
TupleElementComponent(unsigned elementIndex, LValueTypeData typeData)
|
|
: PhysicalPathComponent(typeData, TupleElementKind),
|
|
ElementIndex(elementIndex) {}
|
|
|
|
ManagedValue offset(SILGenFunction &SGF, SILLocation loc, ManagedValue base,
|
|
AccessKind accessKind) && override {
|
|
assert(base && "invalid value for element base");
|
|
// TODO: if the base is +1, break apart its cleanup.
|
|
auto Res = SGF.B.createTupleElementAddr(loc, base.getValue(),
|
|
ElementIndex,
|
|
getTypeOfRValue().getAddressType());
|
|
return ManagedValue::forLValue(Res);
|
|
}
|
|
|
|
void print(raw_ostream &OS) const override {
|
|
OS << "TupleElementComponent(" << ElementIndex << ")\n";
|
|
}
|
|
};
|
|
|
|
class StructElementComponent : public PhysicalPathComponent {
|
|
VarDecl *Field;
|
|
SILType SubstFieldType;
|
|
public:
|
|
StructElementComponent(VarDecl *field, SILType substFieldType,
|
|
LValueTypeData typeData)
|
|
: PhysicalPathComponent(typeData, StructElementKind),
|
|
Field(field), SubstFieldType(substFieldType) {}
|
|
|
|
ManagedValue offset(SILGenFunction &SGF, SILLocation loc, ManagedValue base,
|
|
AccessKind accessKind) && override {
|
|
assert(base && "invalid value for element base");
|
|
// TODO: if the base is +1, break apart its cleanup.
|
|
auto Res = SGF.B.createStructElementAddr(loc, base.getValue(),
|
|
Field, SubstFieldType);
|
|
return ManagedValue::forLValue(Res);
|
|
}
|
|
void print(raw_ostream &OS) const override {
|
|
OS << "StructElementComponent(" << Field->getName() << ")\n";
|
|
}
|
|
};
|
|
|
|
/// A physical path component which force-projects the address of
|
|
/// the value of an optional l-value.
|
|
class ForceOptionalObjectComponent : public PhysicalPathComponent {
|
|
public:
|
|
ForceOptionalObjectComponent(LValueTypeData typeData)
|
|
: PhysicalPathComponent(typeData, OptionalObjectKind) {}
|
|
|
|
ManagedValue offset(SILGenFunction &SGF, SILLocation loc, ManagedValue base,
|
|
AccessKind accessKind) && override {
|
|
// Assert that the optional value is present and return the projected out
|
|
// payload.
|
|
return SGF.emitPreconditionOptionalHasValue(loc, base);
|
|
}
|
|
|
|
void print(raw_ostream &OS) const override {
|
|
OS << "ForceOptionalObjectComponent()\n";
|
|
}
|
|
};
|
|
|
|
/// A physical path component which projects out an opened archetype
|
|
/// from an existential.
|
|
class OpenOpaqueExistentialComponent : public PhysicalPathComponent {
|
|
static LValueTypeData getOpenedArchetypeTypeData(CanArchetypeType type) {
|
|
return {
|
|
AbstractionPattern::getOpaque(), type,
|
|
SILType::getPrimitiveObjectType(type)
|
|
};
|
|
}
|
|
public:
|
|
OpenOpaqueExistentialComponent(CanArchetypeType openedArchetype)
|
|
: PhysicalPathComponent(getOpenedArchetypeTypeData(openedArchetype),
|
|
OpenedExistentialKind) {}
|
|
|
|
ManagedValue offset(SILGenFunction &SGF, SILLocation loc, ManagedValue base,
|
|
AccessKind accessKind) && override {
|
|
assert(base.getType().isExistentialType() &&
|
|
"base for open existential component must be an existential");
|
|
auto addr = SGF.B.createOpenExistentialAddr(
|
|
loc, base.getLValueAddress(), getTypeOfRValue().getAddressType(),
|
|
getOpenedExistentialAccessFor(accessKind));
|
|
|
|
if (base.hasCleanup()) {
|
|
assert(false && "I believe that we should never end up here. One, we "
|
|
"assert above that base is an l-value address and we "
|
|
"state l-values don't have associated cleanup. Two, we "
|
|
"enter deinit of the buffer but don't have "
|
|
"book-keeping for the value. Three, I believe that "
|
|
"would mean to have a l-value passed at +1 which I "
|
|
"don't believe we do.");
|
|
// Leave a cleanup to deinit the existential container.
|
|
SGF.enterDeinitExistentialCleanup(base.getValue(), CanType(),
|
|
ExistentialRepresentation::Opaque);
|
|
}
|
|
|
|
SGF.setArchetypeOpeningSite(cast<ArchetypeType>(getSubstFormalType()),
|
|
addr);
|
|
return ManagedValue::forLValue(addr);
|
|
}
|
|
|
|
void print(raw_ostream &OS) const override {
|
|
OS << "OpenOpaqueExistentialComponent(" << getSubstFormalType() << ")\n";
|
|
}
|
|
};
|
|
|
|
/// A physical path component which returns a literal address.
|
|
class ValueComponent : public PhysicalPathComponent {
|
|
ManagedValue Value;
|
|
Optional<SILAccessEnforcement> Enforcement;
|
|
bool IsRValue;
|
|
public:
|
|
ValueComponent(ManagedValue value,
|
|
Optional<SILAccessEnforcement> enforcement,
|
|
LValueTypeData typeData,
|
|
bool isRValue = false) :
|
|
PhysicalPathComponent(typeData, ValueKind),
|
|
Value(value),
|
|
Enforcement(enforcement),
|
|
IsRValue(isRValue) {
|
|
assert(IsRValue || value.getType().isAddress());
|
|
}
|
|
|
|
ManagedValue offset(SILGenFunction &SGF, SILLocation loc, ManagedValue base,
|
|
AccessKind accessKind) && override {
|
|
assert(!base && "value component must be root of lvalue path");
|
|
|
|
if (!Enforcement)
|
|
return Value;
|
|
|
|
SILValue addr = Value.getLValueAddress();
|
|
addr = enterAccessScope(SGF, loc, addr, getTypeData(),
|
|
accessKind, *Enforcement);
|
|
|
|
return ManagedValue::forLValue(addr);
|
|
}
|
|
|
|
bool isRValue() const override {
|
|
return IsRValue;
|
|
}
|
|
|
|
void print(raw_ostream &OS) const override {
|
|
OS << "ValueComponent()\n";
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
static bool isReadNoneFunction(const Expr *e) {
|
|
// If this is a curried call to an integer literal conversion operations, then
|
|
// we can "safely" assume it is readnone (btw, yes this is totally gross).
|
|
// This is better to be attribute driven, a la rdar://15587352.
|
|
if (auto *dre = dyn_cast<DeclRefExpr>(e)) {
|
|
DeclName name = dre->getDecl()->getFullName();
|
|
return (name.getArgumentNames().size() == 1 &&
|
|
name.getBaseName().str() == "init" &&
|
|
!name.getArgumentNames()[0].empty() &&
|
|
(name.getArgumentNames()[0].str() == "integerLiteral" ||
|
|
name.getArgumentNames()[0].str() == "_builtinIntegerLiteral"));
|
|
}
|
|
|
|
// Look through DotSyntaxCallExpr, since the literal functions are curried.
|
|
if (auto *CRCE = dyn_cast<ConstructorRefCallExpr>(e))
|
|
return isReadNoneFunction(CRCE->getFn());
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/// Given two expressions used as indexes to the same SubscriptDecl (and thus
|
|
/// are guaranteed to have the same AST type) check to see if they are going to
|
|
/// produce the same value.
|
|
static bool areCertainlyEqualIndices(const Expr *e1, const Expr *e2) {
|
|
if (e1->getKind() != e2->getKind()) return false;
|
|
|
|
// Look through ParenExpr's.
|
|
if (auto *pe1 = dyn_cast<ParenExpr>(e1)) {
|
|
auto *pe2 = cast<ParenExpr>(e2);
|
|
return areCertainlyEqualIndices(pe1->getSubExpr(), pe2->getSubExpr());
|
|
}
|
|
|
|
// Calls are identical if the callee and operands are identical and we know
|
|
// that the call is something that is "readnone".
|
|
if (auto *ae1 = dyn_cast<ApplyExpr>(e1)) {
|
|
auto *ae2 = cast<ApplyExpr>(e2);
|
|
return areCertainlyEqualIndices(ae1->getFn(), ae2->getFn()) &&
|
|
areCertainlyEqualIndices(ae1->getArg(), ae2->getArg()) &&
|
|
isReadNoneFunction(ae1->getFn());
|
|
}
|
|
|
|
// TypeExpr's that produce the same metatype type are identical.
|
|
if (isa<TypeExpr>(e1))
|
|
return true;
|
|
|
|
if (auto *dre1 = dyn_cast<DeclRefExpr>(e1)) {
|
|
auto *dre2 = cast<DeclRefExpr>(e2);
|
|
return dre1->getDecl() == dre2->getDecl() &&
|
|
dre1->getGenericArgs() == dre2->getGenericArgs();
|
|
}
|
|
|
|
// Compare a variety of literals.
|
|
if (auto *il1 = dyn_cast<IntegerLiteralExpr>(e1))
|
|
return il1->getValue() == cast<IntegerLiteralExpr>(e2)->getValue();
|
|
if (auto *il1 = dyn_cast<FloatLiteralExpr>(e1))
|
|
return il1->getValue().bitwiseIsEqual(
|
|
cast<FloatLiteralExpr>(e2)->getValue());
|
|
if (auto *bl1 = dyn_cast<BooleanLiteralExpr>(e1))
|
|
return bl1->getValue() == cast<BooleanLiteralExpr>(e2)->getValue();
|
|
if (auto *sl1 = dyn_cast<StringLiteralExpr>(e1))
|
|
return sl1->getValue() == cast<StringLiteralExpr>(e2)->getValue();
|
|
|
|
// Compare tuple expressions.
|
|
if (auto *te1 = dyn_cast<TupleExpr>(e1)) {
|
|
auto *te2 = cast<TupleExpr>(e2);
|
|
|
|
// Easy checks: # of elements, trailing closures, element names.
|
|
if (te1->getNumElements() != te2->getNumElements() ||
|
|
te1->hasTrailingClosure() != te2->hasTrailingClosure() ||
|
|
te1->getElementNames() != te2->getElementNames()) {
|
|
return false;
|
|
}
|
|
|
|
for (unsigned i = 0, n = te1->getNumElements(); i != n; ++i) {
|
|
if (!areCertainlyEqualIndices(te1->getElement(i), te2->getElement(i)))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, we have no idea if they are identical.
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
/// A helper class for implementing a component that involves
|
|
/// calling accessors.
|
|
template <class Base>
|
|
class AccessorBasedComponent : public Base {
|
|
protected:
|
|
// The VarDecl or SubscriptDecl being get/set.
|
|
AbstractStorageDecl *decl;
|
|
bool IsSuper;
|
|
bool IsDirectAccessorUse;
|
|
std::vector<Substitution> substitutions;
|
|
|
|
/// The subscript index expression. Useless
|
|
Expr *subscriptIndexExpr;
|
|
RValue subscripts;
|
|
|
|
/// AST type of the base expression, in case the accessor call
|
|
/// requires re-abstraction.
|
|
CanType baseFormalType;
|
|
|
|
struct AccessorArgs {
|
|
ArgumentSource base;
|
|
RValue subscripts;
|
|
};
|
|
|
|
/// Returns a tuple of RValues holding the accessor value, base (retained if
|
|
/// necessary), and subscript arguments, in that order.
|
|
AccessorArgs
|
|
prepareAccessorArgs(SILGenFunction &SGF, SILLocation loc,
|
|
ManagedValue base, SILDeclRef accessor) &&
|
|
{
|
|
AccessorArgs result;
|
|
if (base)
|
|
result.base = SGF.prepareAccessorBaseArg(loc, base, baseFormalType,
|
|
accessor);
|
|
|
|
if (subscripts)
|
|
result.subscripts = std::move(subscripts);
|
|
|
|
return result;
|
|
}
|
|
|
|
AccessorBasedComponent(PathComponent::KindTy kind,
|
|
AbstractStorageDecl *decl,
|
|
bool isSuper, bool isDirectAccessorUse,
|
|
SubstitutionList substitutions,
|
|
CanType baseFormalType,
|
|
LValueTypeData typeData,
|
|
Expr *subscriptIndexExpr,
|
|
RValue *optSubscripts)
|
|
: Base(typeData, kind), decl(decl),
|
|
IsSuper(isSuper), IsDirectAccessorUse(isDirectAccessorUse),
|
|
substitutions(substitutions.begin(), substitutions.end()),
|
|
subscriptIndexExpr(subscriptIndexExpr),
|
|
baseFormalType(baseFormalType)
|
|
{
|
|
if (optSubscripts)
|
|
subscripts = std::move(*optSubscripts);
|
|
}
|
|
|
|
AccessorBasedComponent(const AccessorBasedComponent &copied,
|
|
SILGenFunction &SGF,
|
|
SILLocation loc)
|
|
: Base(copied.getTypeData(), copied.getKind()),
|
|
decl(copied.decl),
|
|
IsSuper(copied.IsSuper),
|
|
IsDirectAccessorUse(copied.IsDirectAccessorUse),
|
|
substitutions(copied.substitutions),
|
|
subscriptIndexExpr(copied.subscriptIndexExpr),
|
|
subscripts(copied.subscripts.copy(SGF, loc)) ,
|
|
baseFormalType(copied.baseFormalType) {}
|
|
|
|
virtual SILDeclRef getAccessor(SILGenFunction &SGF,
|
|
AccessKind kind) const = 0;
|
|
|
|
AccessKind getBaseAccessKind(SILGenFunction &SGF,
|
|
AccessKind kind) const override {
|
|
SILDeclRef accessor = getAccessor(SGF, kind);
|
|
auto accessorSelf = SGF.SGM.Types.getConstantSelfParameter(accessor);
|
|
if (accessorSelf.getType() && accessorSelf.isIndirectMutating()) {
|
|
return AccessKind::ReadWrite;
|
|
} else {
|
|
return AccessKind::Read;
|
|
}
|
|
}
|
|
|
|
void printBase(raw_ostream &OS, StringRef name) const {
|
|
OS << name << "(" << decl->getName() << ")";
|
|
if (IsSuper) OS << " isSuper";
|
|
if (IsDirectAccessorUse) OS << " isDirectAccessorUse";
|
|
if (subscriptIndexExpr) {
|
|
OS << " subscript_index:\n";
|
|
subscriptIndexExpr->print(OS, 2);
|
|
}
|
|
OS << '\n';
|
|
}
|
|
};
|
|
|
|
class GetterSetterComponent
|
|
: public AccessorBasedComponent<LogicalPathComponent> {
|
|
public:
|
|
|
|
GetterSetterComponent(AbstractStorageDecl *decl,
|
|
bool isSuper, bool isDirectAccessorUse,
|
|
SubstitutionList substitutions,
|
|
CanType baseFormalType,
|
|
LValueTypeData typeData,
|
|
Expr *subscriptIndexExpr = nullptr,
|
|
RValue *subscriptIndex = nullptr)
|
|
: AccessorBasedComponent(GetterSetterKind, decl, isSuper,
|
|
isDirectAccessorUse, substitutions,
|
|
baseFormalType, typeData, subscriptIndexExpr,
|
|
subscriptIndex)
|
|
{
|
|
}
|
|
|
|
GetterSetterComponent(const GetterSetterComponent &copied,
|
|
SILGenFunction &SGF,
|
|
SILLocation loc)
|
|
: AccessorBasedComponent(copied, SGF, loc)
|
|
{
|
|
}
|
|
|
|
SILDeclRef getAccessor(SILGenFunction &SGF,
|
|
AccessKind accessKind) const override {
|
|
if (accessKind == AccessKind::Read) {
|
|
return SGF.getGetterDeclRef(decl, IsDirectAccessorUse);
|
|
} else {
|
|
return SGF.getSetterDeclRef(decl, IsDirectAccessorUse);
|
|
}
|
|
}
|
|
|
|
void set(SILGenFunction &SGF, SILLocation loc,
|
|
RValue &&value, ManagedValue base) && override {
|
|
SILDeclRef setter = SGF.getSetterDeclRef(decl, IsDirectAccessorUse);
|
|
|
|
FormalEvaluationScope scope(SGF);
|
|
// Pass in just the setter.
|
|
auto args =
|
|
std::move(*this).prepareAccessorArgs(SGF, loc, base, setter);
|
|
|
|
return SGF.emitSetAccessor(loc, setter, substitutions,
|
|
std::move(args.base), IsSuper,
|
|
IsDirectAccessorUse,
|
|
std::move(args.subscripts),
|
|
std::move(value));
|
|
}
|
|
|
|
bool shouldUseMaterializeForSet(SILGenFunction &SGF,
|
|
AccessKind accessKind) {
|
|
// If this access is for a read, we can just call the getter.
|
|
if (accessKind == AccessKind::Read)
|
|
return false;
|
|
|
|
// If the declaration is dynamic, there's no materializeForSet.
|
|
if (decl->isDynamic())
|
|
return false;
|
|
|
|
// If the declaration was imported from C, we won't gain anything
|
|
// from using materializeForSet, and furthermore, it might not
|
|
// exist.
|
|
if (decl->hasClangNode())
|
|
return false;
|
|
|
|
// If the declaration is not in type context, there's no
|
|
// materializeForSet.
|
|
if (!decl->getDeclContext()->isTypeContext())
|
|
return false;
|
|
|
|
// If the declaration is in a different resilience domain, we have
|
|
// to use materializeForSet.
|
|
//
|
|
// FIXME: Use correct ResilienceExpansion if gen is @transparent
|
|
if (!decl->hasFixedLayout(SGF.SGM.M.getSwiftModule(),
|
|
ResilienceExpansion::Maximal))
|
|
return true;
|
|
|
|
// If the declaration is dynamically dispatched through a class,
|
|
// we have to use materializeForSet.
|
|
if (auto *classDecl = dyn_cast<ClassDecl>(decl->getDeclContext())) {
|
|
if (decl->isFinal() || classDecl->isFinal())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// If the declaration is dynamically dispatched through a
|
|
// non-ObjC protocol, we have to use materializeForSet.
|
|
if (auto *protoDecl = dyn_cast<ProtocolDecl>(decl->getDeclContext()))
|
|
if (!protoDecl->isObjC())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
ManagedValue getMaterialized(SILGenFunction &SGF,
|
|
SILLocation loc,
|
|
ManagedValue base,
|
|
AccessKind accessKind) && override {
|
|
if (!shouldUseMaterializeForSet(SGF, accessKind)) {
|
|
return std::move(*this).LogicalPathComponent::getMaterialized(SGF,
|
|
loc, base, accessKind);
|
|
}
|
|
|
|
assert(decl->getMaterializeForSetFunc() &&
|
|
"polymorphic storage without materializeForSet");
|
|
assert(SGF.InWritebackScope &&
|
|
"materializing l-value for modification without writeback scope");
|
|
|
|
// Allocate opaque storage for the callback to use.
|
|
SILValue callbackStorage = SGF.emitTemporaryAllocation(loc,
|
|
SILType::getPrimitiveObjectType(
|
|
SGF.getASTContext().TheUnsafeValueBufferType));
|
|
|
|
// Allocate a temporary.
|
|
SILValue buffer =
|
|
SGF.emitTemporaryAllocation(loc, getTypeOfRValue());
|
|
|
|
// Clone the component without cloning the indices. We don't actually
|
|
// consume them in writeback().
|
|
std::unique_ptr<LogicalPathComponent> clonedComponent(
|
|
[&]() -> LogicalPathComponent* {
|
|
// Steal the subscript values without copying them so that we
|
|
// can peek at them in diagnoseWritebackConflict.
|
|
//
|
|
// This is *amazingly* unprincipled.
|
|
RValue borrowedSubscripts;
|
|
RValue *optSubscripts = nullptr;
|
|
if (subscripts) {
|
|
CanType type = subscripts.getType();
|
|
SmallVector<ManagedValue, 4> values;
|
|
std::move(subscripts).getAll(values);
|
|
subscripts = RValue::withPreExplodedElements(values, type);
|
|
borrowedSubscripts = RValue::withPreExplodedElements(values, type);
|
|
optSubscripts = &borrowedSubscripts;
|
|
}
|
|
return new GetterSetterComponent(decl, IsSuper, IsDirectAccessorUse,
|
|
substitutions, baseFormalType,
|
|
getTypeData(), subscriptIndexExpr,
|
|
optSubscripts);
|
|
}());
|
|
|
|
SILDeclRef materializeForSet =
|
|
SGF.getMaterializeForSetDeclRef(decl, IsDirectAccessorUse);
|
|
|
|
MaterializedLValue materialized;
|
|
{
|
|
FormalEvaluationScope Scope(SGF);
|
|
|
|
// If the base is a +1 r-value, just borrow it for materializeForSet.
|
|
// prepareAccessorArgs will copy it if necessary.
|
|
ManagedValue borrowedBase =
|
|
base ? base.formalAccessBorrow(SGF, loc) : ManagedValue();
|
|
|
|
auto args = std::move(*this).prepareAccessorArgs(SGF, loc, borrowedBase,
|
|
materializeForSet);
|
|
materialized = SGF.emitMaterializeForSetAccessor(
|
|
loc, materializeForSet, substitutions, std::move(args.base),
|
|
IsSuper, IsDirectAccessorUse, std::move(args.subscripts), buffer,
|
|
callbackStorage);
|
|
|
|
// Mark a value-dependence on the base. We do this regardless
|
|
// of whether the base is trivial because even a trivial base
|
|
// may be value-dependent on something non-trivial.
|
|
if (base) {
|
|
SILValue temporary = materialized.temporary.getValue();
|
|
materialized.temporary = ManagedValue::forUnmanaged(
|
|
SGF.B.createMarkDependence(loc, temporary, base.getValue()));
|
|
}
|
|
}
|
|
|
|
// TODO: maybe needsWriteback should be a thin function pointer
|
|
// to which we pass the base? That would let us use direct
|
|
// access for stored properties with didSet.
|
|
pushWriteback(SGF, loc, std::move(clonedComponent), base, materialized);
|
|
|
|
return ManagedValue::forLValue(materialized.temporary.getValue());
|
|
}
|
|
|
|
void writeback(SILGenFunction &SGF, SILLocation loc,
|
|
ManagedValue base, MaterializedLValue materialized,
|
|
bool isFinal) override {
|
|
// If we don't have a callback, we don't have to conditionalize
|
|
// the writeback.
|
|
if (!materialized.callback) {
|
|
LogicalPathComponent::writeback(SGF, loc,
|
|
base, materialized,
|
|
isFinal);
|
|
return;
|
|
}
|
|
|
|
// Otherwise, 'materialized' holds an optional callback and the
|
|
// callback storage.
|
|
|
|
// Mark the writeback as auto-generated so that we don't get
|
|
// warnings if we manage to devirtualize materializeForSet.
|
|
loc.markAutoGenerated();
|
|
|
|
SILModule &M = SGF.SGM.M;
|
|
ASTContext &ctx = SGF.getASTContext();
|
|
|
|
SILBasicBlock *contBB = SGF.createBasicBlock();
|
|
SILBasicBlock *writebackBB = SGF.createBasicBlock(SGF.B.getInsertionBB());
|
|
|
|
SGF.B.createSwitchEnum(loc, materialized.callback, /*defaultDest*/ nullptr,
|
|
{ { ctx.getOptionalSomeDecl(), writebackBB },
|
|
{ ctx.getOptionalNoneDecl(), contBB } });
|
|
|
|
// The writeback block.
|
|
SGF.B.setInsertionPoint(writebackBB); {
|
|
FullExpr scope(SGF.Cleanups, CleanupLocation::get(loc));
|
|
|
|
auto emptyTupleTy =
|
|
SILType::getPrimitiveObjectType(TupleType::getEmpty(ctx));
|
|
auto rawPointerTy = SILType::getRawPointerType(ctx);
|
|
|
|
// The callback is a BB argument from the switch_enum.
|
|
SILValue callback = writebackBB->createPHIArgument(
|
|
rawPointerTy, ValueOwnershipKind::Trivial);
|
|
|
|
// Cast the callback to the correct polymorphic function type.
|
|
SILFunctionTypeRepresentation rep;
|
|
if (isa<ProtocolDecl>(decl->getDeclContext()))
|
|
rep = SILFunctionTypeRepresentation::WitnessMethod;
|
|
else
|
|
rep = SILFunctionTypeRepresentation::Method;
|
|
|
|
auto origCallbackFnType = SGF.SGM.Types.getMaterializeForSetCallbackType(
|
|
decl, materialized.genericSig, materialized.origSelfType, rep);
|
|
auto origCallbackType = SILType::getPrimitiveObjectType(origCallbackFnType);
|
|
callback = SGF.B.createPointerToThinFunction(loc, callback, origCallbackType);
|
|
|
|
auto substCallbackFnType = origCallbackFnType->substGenericArgs(
|
|
M, substitutions);
|
|
auto substCallbackType = SILType::getPrimitiveObjectType(substCallbackFnType);
|
|
auto metatypeType =
|
|
SGF.getSILType(substCallbackFnType->getParameters().back());
|
|
|
|
// We need to borrow the base here. We can't just consume it
|
|
// because we're in conditionally-executed code (and because
|
|
// this might be a non-final use). We also need to pass it
|
|
// indirectly.
|
|
SILValue baseAddress;
|
|
SILValue baseMetatype;
|
|
if (base) {
|
|
if (base.getType().isAddress()) {
|
|
baseAddress = base.getValue();
|
|
} else {
|
|
AbstractionPattern origSelfType(materialized.genericSig,
|
|
materialized.origSelfType);
|
|
base = SGF.emitSubstToOrigValue(loc, base, origSelfType,
|
|
baseFormalType);
|
|
|
|
baseAddress = SGF.emitTemporaryAllocation(loc, base.getType());
|
|
if (base.getOwnershipKind() == ValueOwnershipKind::Guaranteed) {
|
|
SGF.B.createStoreBorrow(loc, base.getValue(), baseAddress);
|
|
} else {
|
|
SGF.B.emitStoreValueOperation(loc, base.getValue(), baseAddress,
|
|
StoreOwnershipQualifier::Init);
|
|
}
|
|
}
|
|
baseMetatype = SGF.B.createMetatype(loc, metatypeType);
|
|
|
|
// Otherwise, we have to pass something; use an empty tuple
|
|
// and an undef metatype.
|
|
} else {
|
|
baseAddress = SILUndef::get(emptyTupleTy.getAddressType(), M);
|
|
baseMetatype = SILUndef::get(metatypeType, M);
|
|
}
|
|
|
|
SILValue temporaryPointer =
|
|
SGF.B.createAddressToPointer(loc,
|
|
materialized.temporary.getValue(),
|
|
rawPointerTy);
|
|
|
|
// Apply the callback.
|
|
SGF.B.createApply(loc, callback, substCallbackType,
|
|
emptyTupleTy, substitutions, {
|
|
temporaryPointer,
|
|
materialized.callbackStorage,
|
|
baseAddress,
|
|
baseMetatype
|
|
}, false);
|
|
}
|
|
|
|
// Continue.
|
|
SGF.B.emitBlock(contBB, loc);
|
|
}
|
|
|
|
RValue get(SILGenFunction &SGF, SILLocation loc,
|
|
ManagedValue base, SGFContext c) && override {
|
|
SILDeclRef getter = SGF.getGetterDeclRef(decl, IsDirectAccessorUse);
|
|
|
|
FormalEvaluationScope scope(SGF);
|
|
|
|
auto args =
|
|
std::move(*this).prepareAccessorArgs(SGF, loc, base, getter);
|
|
|
|
return SGF.emitGetAccessor(loc, getter, substitutions,
|
|
std::move(args.base), IsSuper,
|
|
IsDirectAccessorUse,
|
|
std::move(args.subscripts), c);
|
|
}
|
|
|
|
std::unique_ptr<LogicalPathComponent>
|
|
clone(SILGenFunction &SGF, SILLocation loc) const override {
|
|
LogicalPathComponent *clone = new GetterSetterComponent(*this, SGF, loc);
|
|
return std::unique_ptr<LogicalPathComponent>(clone);
|
|
}
|
|
|
|
void print(raw_ostream &OS) const override {
|
|
printBase(OS, "GetterSetterComponent");
|
|
}
|
|
|
|
/// Compare 'this' lvalue and the 'rhs' lvalue (which is guaranteed to have
|
|
/// the same dynamic PathComponent type as the receiver) to see if they are
|
|
/// identical. If so, there is a conflicting writeback happening, so emit a
|
|
/// diagnostic.
|
|
void diagnoseWritebackConflict(LogicalPathComponent *RHS,
|
|
SILLocation loc1, SILLocation loc2,
|
|
SILGenFunction &SGF) override {
|
|
auto &rhs = (GetterSetterComponent&)*RHS;
|
|
|
|
// If the decls match, then this could conflict.
|
|
if (decl != rhs.decl || IsSuper != rhs.IsSuper) return;
|
|
|
|
// If the decl is monomorphically a stored property, allow aliases.
|
|
// It could be overridden by a computed property in a subclass, but
|
|
// that's not likely enough to be worth the strictness here.
|
|
if (auto storage = dyn_cast<AbstractStorageDecl>(decl)) {
|
|
switch (storage->getStorageKind()) {
|
|
case AbstractStorageDecl::Stored:
|
|
case AbstractStorageDecl::StoredWithTrivialAccessors:
|
|
case AbstractStorageDecl::Addressed:
|
|
case AbstractStorageDecl::AddressedWithTrivialAccessors:
|
|
return;
|
|
// TODO: Stored properties with didSet accessors that don't look at the
|
|
// oldValue could also be addressed.
|
|
case AbstractStorageDecl::StoredWithObservers:
|
|
case AbstractStorageDecl::AddressedWithObservers:
|
|
break;
|
|
|
|
case AbstractStorageDecl::InheritedWithObservers:
|
|
case AbstractStorageDecl::Computed:
|
|
case AbstractStorageDecl::ComputedWithMutableAddress:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If the property is a generic requirement, allow aliases, because
|
|
// it may be conformed to using a stored property.
|
|
if (isa<ProtocolDecl>(decl->getDeclContext()))
|
|
return;
|
|
|
|
// If this is a simple property access, then we must have a conflict.
|
|
if (!subscripts) {
|
|
assert(isa<VarDecl>(decl));
|
|
SGF.SGM.diagnose(loc1, diag::writeback_overlap_property,decl->getName())
|
|
.highlight(loc1.getSourceRange());
|
|
SGF.SGM.diagnose(loc2, diag::writebackoverlap_note)
|
|
.highlight(loc2.getSourceRange());
|
|
return;
|
|
}
|
|
|
|
// Otherwise, it is a subscript, check the index values.
|
|
|
|
// If the indices are literally identical SILValue's, then there is
|
|
// clearly a conflict.
|
|
if (!subscripts.isObviouslyEqual(rhs.subscripts)) {
|
|
// If the index value doesn't lower to literally the same SILValue's,
|
|
// do some fuzzy matching to catch the common case.
|
|
if (!subscriptIndexExpr ||
|
|
!rhs.subscriptIndexExpr ||
|
|
!areCertainlyEqualIndices(subscriptIndexExpr,
|
|
rhs.subscriptIndexExpr))
|
|
return;
|
|
}
|
|
|
|
// The locations for the subscripts are almost certainly SubscriptExprs.
|
|
// If so, dig into them to produce better location info in the
|
|
// diagnostics and be able to do more precise analysis.
|
|
auto expr1 = loc1.getAsASTNode<SubscriptExpr>();
|
|
auto expr2 = loc2.getAsASTNode<SubscriptExpr>();
|
|
|
|
if (expr1 && expr2) {
|
|
SGF.SGM.diagnose(loc1, diag::writeback_overlap_subscript)
|
|
.highlight(expr1->getBase()->getSourceRange());
|
|
|
|
SGF.SGM.diagnose(loc2, diag::writebackoverlap_note)
|
|
.highlight(expr2->getBase()->getSourceRange());
|
|
|
|
} else {
|
|
SGF.SGM.diagnose(loc1, diag::writeback_overlap_subscript)
|
|
.highlight(loc1.getSourceRange());
|
|
SGF.SGM.diagnose(loc2, diag::writebackoverlap_note)
|
|
.highlight(loc2.getSourceRange());
|
|
}
|
|
}
|
|
};
|
|
|
|
class UnpinPseudoComponent : public WritebackPseudoComponent {
|
|
public:
|
|
UnpinPseudoComponent(const LValueTypeData &typeData)
|
|
: WritebackPseudoComponent(typeData) {}
|
|
|
|
private:
|
|
void writeback(SILGenFunction &SGF, SILLocation loc,
|
|
ManagedValue base,
|
|
MaterializedLValue materialized,
|
|
bool isFinal) override {
|
|
// If this is final, we can consume the owner (stored as
|
|
// 'base'). If it isn't, we actually need to retain it, because
|
|
// we've still got a release active.
|
|
SILValue baseValue = (isFinal ? base.forward(SGF) : base.getValue());
|
|
if (!isFinal)
|
|
baseValue = SGF.B.createCopyValue(loc, baseValue);
|
|
|
|
SGF.B.createStrongUnpin(loc, baseValue, SGF.B.getDefaultAtomicity());
|
|
}
|
|
|
|
void print(raw_ostream &OS) const override {
|
|
OS << "UnpinPseudoComponent";
|
|
}
|
|
};
|
|
|
|
/// A physical component which involves calling addressors.
|
|
class AddressorComponent
|
|
: public AccessorBasedComponent<PhysicalPathComponent> {
|
|
SILType SubstFieldType;
|
|
public:
|
|
AddressorComponent(AbstractStorageDecl *decl,
|
|
bool isSuper, bool isDirectAccessorUse,
|
|
SubstitutionList substitutions,
|
|
CanType baseFormalType, LValueTypeData typeData,
|
|
SILType substFieldType,
|
|
Expr *subscriptIndexExpr = nullptr,
|
|
RValue *subscriptIndex = nullptr)
|
|
: AccessorBasedComponent(AddressorKind, decl, isSuper,
|
|
isDirectAccessorUse, substitutions,
|
|
baseFormalType, typeData, subscriptIndexExpr,
|
|
subscriptIndex),
|
|
SubstFieldType(substFieldType)
|
|
{
|
|
}
|
|
|
|
SILDeclRef getAccessor(SILGenFunction &SGF,
|
|
AccessKind accessKind) const override {
|
|
return SGF.getAddressorDeclRef(decl, accessKind, IsDirectAccessorUse);
|
|
}
|
|
|
|
ManagedValue offset(SILGenFunction &SGF, SILLocation loc, ManagedValue base,
|
|
AccessKind accessKind) && override {
|
|
assert(SGF.InWritebackScope &&
|
|
"offsetting l-value for modification without writeback scope");
|
|
|
|
SILDeclRef addressor = SGF.getAddressorDeclRef(decl, accessKind,
|
|
IsDirectAccessorUse);
|
|
std::pair<ManagedValue, ManagedValue> result;
|
|
{
|
|
FormalEvaluationScope scope(SGF);
|
|
|
|
auto args =
|
|
std::move(*this).prepareAccessorArgs(SGF, loc, base, addressor);
|
|
result = SGF.emitAddressorAccessor(
|
|
loc, addressor, substitutions, std::move(args.base), IsSuper,
|
|
IsDirectAccessorUse, std::move(args.subscripts), SubstFieldType);
|
|
}
|
|
switch (cast<FuncDecl>(addressor.getDecl())->getAddressorKind()) {
|
|
case AddressorKind::NotAddressor:
|
|
llvm_unreachable("not an addressor!");
|
|
|
|
// For unsafe addressors, we have no owner pointer to manage.
|
|
case AddressorKind::Unsafe:
|
|
assert(!result.second);
|
|
return result.first;
|
|
|
|
// For owning addressors, we can just let the owner get released
|
|
// at an appropriate point.
|
|
case AddressorKind::Owning:
|
|
case AddressorKind::NativeOwning:
|
|
return result.first;
|
|
|
|
// For pinning addressors, we have to push a writeback.
|
|
case AddressorKind::NativePinning: {
|
|
std::unique_ptr<LogicalPathComponent>
|
|
component(new UnpinPseudoComponent(getTypeData()));
|
|
pushWriteback(SGF, loc, std::move(component), result.second,
|
|
MaterializedLValue());
|
|
return result.first;
|
|
}
|
|
}
|
|
llvm_unreachable("bad addressor kind");
|
|
}
|
|
|
|
void print(raw_ostream &OS) const override {
|
|
printBase(OS, "AddressorComponent");
|
|
}
|
|
};
|
|
|
|
/// A physical component which involves applying a key path.
|
|
class KeyPathApplicationComponent final : public PhysicalPathComponent {
|
|
ArgumentSource KeyPath;
|
|
public:
|
|
KeyPathApplicationComponent(LValueTypeData typeData,
|
|
ArgumentSource &&KeyPath)
|
|
: PhysicalPathComponent(typeData, KeyPathApplicationKind),
|
|
KeyPath(std::move(KeyPath))
|
|
{}
|
|
|
|
ManagedValue offset(SILGenFunction &SGF, SILLocation loc, ManagedValue base,
|
|
AccessKind accessKind) && override {
|
|
assert(SGF.InWritebackScope &&
|
|
"offsetting l-value for modification without writeback scope");
|
|
auto &C = SGF.getASTContext();
|
|
auto keyPathTy = KeyPath.getSubstType()->castTo<BoundGenericType>();
|
|
|
|
FuncDecl *projectionFunction;
|
|
if (keyPathTy->getDecl() == C.getWritableKeyPathDecl()) {
|
|
// Turn the base lvalue into a pointer to pass to the projection
|
|
// function.
|
|
// This is OK since the materialized base is exclusive-borrowed for the
|
|
// duration of the access.
|
|
auto baseRawPtr = SGF.B.createAddressToPointer(loc,
|
|
base.getValue(),
|
|
SILType::getRawPointerType(SGF.getASTContext()));
|
|
auto basePtrTy = BoundGenericType::get(C.getUnsafeMutablePointerDecl(),
|
|
nullptr,
|
|
keyPathTy->getGenericArgs()[0])
|
|
->getCanonicalType();
|
|
auto basePtr = SGF.B.createStruct(loc,
|
|
SILType::getPrimitiveObjectType(basePtrTy),
|
|
SILValue(baseRawPtr));
|
|
base = ManagedValue::forUnmanaged(basePtr);
|
|
projectionFunction = C.getProjectKeyPathWritable(nullptr);
|
|
} else if (keyPathTy->getDecl() == C.getReferenceWritableKeyPathDecl()) {
|
|
projectionFunction = C.getProjectKeyPathReferenceWritable(nullptr);
|
|
// The base value is passed indirectly +1 so needs to be
|
|
// materialized if the base we have is +0 or a loaded value.
|
|
bool isBorrowed = base.isPlusZeroRValueOrTrivial()
|
|
&& !base.getType().isTrivial(SGF.SGM.M);
|
|
if (!base.getType().isAddress() || isBorrowed) {
|
|
auto tmp = SGF.emitTemporaryAllocation(loc, base.getType());
|
|
if (isBorrowed)
|
|
base.copyInto(SGF, tmp, loc);
|
|
else
|
|
base.forwardInto(SGF, loc, tmp);
|
|
base = SGF.emitManagedBufferWithCleanup(tmp);
|
|
}
|
|
} else {
|
|
llvm_unreachable("not a writable key path type?!");
|
|
}
|
|
|
|
Substitution args[] = {
|
|
Substitution(keyPathTy->getGenericArgs()[0], {}),
|
|
Substitution(keyPathTy->getGenericArgs()[1], {}),
|
|
};
|
|
|
|
auto subMap = projectionFunction->getGenericSignature()
|
|
->getSubstitutionMap(args);
|
|
|
|
// The projection function behaves like an owning addressor, returning
|
|
// a pointer to the projected value and an owner reference that keeps
|
|
// it alive.
|
|
auto keyPathValue = std::move(KeyPath).getAsSingleValue(SGF);
|
|
auto resultTuple = SGF.emitApplyOfLibraryIntrinsic(loc,
|
|
projectionFunction,
|
|
subMap,
|
|
{base, keyPathValue},
|
|
SGFContext());
|
|
SmallVector<ManagedValue, 2> members;
|
|
std::move(resultTuple).getAll(members);
|
|
auto projectedPtr = members[0];
|
|
auto projectedOwner = members[1];
|
|
|
|
// Pass along the projected pointer.
|
|
auto rawValueField = *C.getUnsafeMutablePointerDecl()
|
|
->getStoredProperties().begin();
|
|
auto projectedRawPtr = SGF.B.createStructExtract(loc,
|
|
projectedPtr.getUnmanagedValue(),
|
|
rawValueField,
|
|
SILType::getRawPointerType(C));
|
|
SILValue projectedAddr = SGF.B.createPointerToAddress(loc,
|
|
projectedRawPtr,
|
|
getTypeOfRValue().getAddressType(),
|
|
/*strict*/ true);
|
|
// Mark the projected address's dependence on the owner.
|
|
projectedAddr = SGF.B.createMarkDependence(loc, projectedAddr,
|
|
projectedOwner.getValue());
|
|
return ManagedValue::forLValue(projectedAddr);
|
|
}
|
|
|
|
void print(raw_ostream &OS) const override {
|
|
OS << "KeyPathApplicationComponent";
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
RValue
|
|
TranslationPathComponent::get(SILGenFunction &SGF, SILLocation loc,
|
|
ManagedValue base, SGFContext c) && {
|
|
// Load the original value.
|
|
RValue baseVal(SGF, loc, getSubstFormalType(),
|
|
SGF.emitLoad(loc, base.getValue(),
|
|
SGF.getTypeLowering(base.getType()),
|
|
SGFContext(), IsNotTake));
|
|
|
|
// Map the base value to its substituted representation.
|
|
return std::move(*this).translate(SGF, loc, std::move(baseVal), c);
|
|
}
|
|
|
|
void TranslationPathComponent::set(SILGenFunction &SGF, SILLocation loc,
|
|
RValue &&value, ManagedValue base) && {
|
|
// Map the value to the original pattern.
|
|
RValue newValue = std::move(*this).untranslate(SGF, loc, std::move(value));
|
|
|
|
// Store to the base.
|
|
std::move(newValue).assignInto(SGF, loc, base.getValue());
|
|
}
|
|
|
|
namespace {
|
|
/// Remap an lvalue referencing a generic type to an lvalue of its
|
|
/// substituted type in a concrete context.
|
|
class OrigToSubstComponent : public TranslationPathComponent {
|
|
AbstractionPattern OrigType;
|
|
|
|
public:
|
|
OrigToSubstComponent(AbstractionPattern origType,
|
|
CanType substFormalType,
|
|
SILType loweredSubstType)
|
|
: TranslationPathComponent({ AbstractionPattern(substFormalType),
|
|
substFormalType, loweredSubstType },
|
|
OrigToSubstKind),
|
|
OrigType(origType)
|
|
{}
|
|
|
|
RValue untranslate(SILGenFunction &SGF, SILLocation loc,
|
|
RValue &&rv, SGFContext c) && override {
|
|
return SGF.emitSubstToOrigValue(loc, std::move(rv), OrigType,
|
|
getSubstFormalType(), c);
|
|
}
|
|
|
|
RValue translate(SILGenFunction &SGF, SILLocation loc,
|
|
RValue &&rv, SGFContext c) && override {
|
|
return SGF.emitOrigToSubstValue(loc, std::move(rv), OrigType,
|
|
getSubstFormalType(), c);
|
|
}
|
|
|
|
std::unique_ptr<LogicalPathComponent>
|
|
clone(SILGenFunction &SGF, SILLocation loc) const override {
|
|
LogicalPathComponent *clone
|
|
= new OrigToSubstComponent(OrigType, getSubstFormalType(),
|
|
getTypeOfRValue());
|
|
return std::unique_ptr<LogicalPathComponent>(clone);
|
|
}
|
|
|
|
void print(raw_ostream &OS) const override {
|
|
OS << "OrigToSubstComponent("
|
|
<< getOrigFormalType() << ", "
|
|
<< getSubstFormalType() << ", "
|
|
<< getTypeOfRValue() << ")\n";
|
|
}
|
|
};
|
|
|
|
/// Remap an lvalue referencing a concrete type to an lvalue of a
|
|
/// generically-reabstracted type.
|
|
class SubstToOrigComponent : public TranslationPathComponent {
|
|
public:
|
|
SubstToOrigComponent(AbstractionPattern origType,
|
|
CanType substFormalType,
|
|
SILType loweredSubstType)
|
|
: TranslationPathComponent({ origType, substFormalType, loweredSubstType },
|
|
SubstToOrigKind)
|
|
{}
|
|
|
|
RValue untranslate(SILGenFunction &SGF, SILLocation loc,
|
|
RValue &&rv, SGFContext c) && override {
|
|
return SGF.emitOrigToSubstValue(loc, std::move(rv), getOrigFormalType(),
|
|
getSubstFormalType(), c);
|
|
}
|
|
|
|
RValue translate(SILGenFunction &SGF, SILLocation loc,
|
|
RValue &&rv, SGFContext c) && override {
|
|
return SGF.emitSubstToOrigValue(loc, std::move(rv), getOrigFormalType(),
|
|
getSubstFormalType(), c);
|
|
}
|
|
|
|
std::unique_ptr<LogicalPathComponent>
|
|
clone(SILGenFunction &SGF, SILLocation loc) const override {
|
|
LogicalPathComponent *clone
|
|
= new SubstToOrigComponent(getOrigFormalType(), getSubstFormalType(),
|
|
getTypeOfRValue());
|
|
return std::unique_ptr<LogicalPathComponent>(clone);
|
|
}
|
|
|
|
void print(raw_ostream &OS) const override {
|
|
OS << "SubstToOrigComponent("
|
|
<< getOrigFormalType() << ", "
|
|
<< getSubstFormalType() << ", "
|
|
<< getTypeOfRValue() << ")\n";
|
|
}
|
|
};
|
|
|
|
/// Remap a weak value to Optional<T>*, or unowned pointer to T*.
|
|
class OwnershipComponent : public LogicalPathComponent {
|
|
public:
|
|
OwnershipComponent(LValueTypeData typeData)
|
|
: LogicalPathComponent(typeData, OwnershipKind) {
|
|
}
|
|
|
|
AccessKind getBaseAccessKind(SILGenFunction &SGF,
|
|
AccessKind kind) const override {
|
|
// Always use the same access kind for the base.
|
|
return kind;
|
|
}
|
|
|
|
void diagnoseWritebackConflict(LogicalPathComponent *RHS,
|
|
SILLocation loc1, SILLocation loc2,
|
|
SILGenFunction &SGF) override {
|
|
// no useful writeback diagnostics at this point
|
|
}
|
|
|
|
RValue get(SILGenFunction &SGF, SILLocation loc,
|
|
ManagedValue base, SGFContext c) && override {
|
|
assert(base && "ownership component must not be root of lvalue path");
|
|
auto &TL = SGF.getTypeLowering(getTypeOfRValue());
|
|
|
|
// Load the original value.
|
|
ManagedValue result = SGF.emitLoad(loc, base.getValue(), TL,
|
|
SGFContext(), IsNotTake);
|
|
return RValue(SGF, loc, getSubstFormalType(), result);
|
|
}
|
|
|
|
void set(SILGenFunction &SGF, SILLocation loc,
|
|
RValue &&value, ManagedValue base) && override {
|
|
assert(base && "ownership component must not be root of lvalue path");
|
|
auto &TL = SGF.getTypeLowering(base.getType());
|
|
|
|
SGF.emitSemanticStore(loc,
|
|
std::move(value).forwardAsSingleValue(SGF, loc),
|
|
base.getValue(), TL, IsNotInitialization);
|
|
}
|
|
|
|
std::unique_ptr<LogicalPathComponent>
|
|
clone(SILGenFunction &SGF, SILLocation loc) const override {
|
|
LogicalPathComponent *clone = new OwnershipComponent(getTypeData());
|
|
return std::unique_ptr<LogicalPathComponent>(clone);
|
|
}
|
|
|
|
void print(raw_ostream &OS) const override {
|
|
OS << "OwnershipComponent(...)\n";
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
LValue LValue::forValue(ManagedValue value,
|
|
CanType substFormalType) {
|
|
assert(value.getType().isObject());
|
|
LValueTypeData typeData = getValueTypeData(substFormalType,
|
|
value.getValue());
|
|
|
|
LValue lv;
|
|
lv.add<ValueComponent>(value, None, typeData, /*isRValue=*/true);
|
|
return lv;
|
|
}
|
|
|
|
LValue LValue::forAddress(ManagedValue address,
|
|
Optional<SILAccessEnforcement> enforcement,
|
|
AbstractionPattern origFormalType,
|
|
CanType substFormalType) {
|
|
assert(address.isLValue());
|
|
LValueTypeData typeData = {
|
|
origFormalType, substFormalType, address.getType().getObjectType()
|
|
};
|
|
|
|
LValue lv;
|
|
lv.add<ValueComponent>(address, enforcement, typeData);
|
|
return lv;
|
|
}
|
|
|
|
void LValue::addMemberComponent(SILGenFunction &SGF, SILLocation loc,
|
|
AbstractStorageDecl *storage,
|
|
SubstitutionList subs,
|
|
bool isSuper,
|
|
AccessKind accessKind,
|
|
AccessSemantics accessSemantics,
|
|
AccessStrategy accessStrategy,
|
|
CanType formalRValueType,
|
|
RValue &&indices) {
|
|
if (auto var = dyn_cast<VarDecl>(storage)) {
|
|
assert(!indices);
|
|
addMemberVarComponent(SGF, loc, var, subs, isSuper,
|
|
accessKind, accessSemantics, accessStrategy,
|
|
formalRValueType);
|
|
} else {
|
|
auto subscript = cast<SubscriptDecl>(storage);
|
|
addMemberSubscriptComponent(SGF, loc, subscript, subs, isSuper,
|
|
accessKind, accessSemantics, accessStrategy,
|
|
formalRValueType, std::move(indices));
|
|
}
|
|
}
|
|
|
|
void LValue::addOrigToSubstComponent(SILType loweredSubstType) {
|
|
loweredSubstType = loweredSubstType.getObjectType();
|
|
assert(getTypeOfRValue() != loweredSubstType &&
|
|
"reabstraction component is unnecessary!");
|
|
|
|
// Peephole away complementary reabstractions.
|
|
assert(!Path.empty() && "adding translation component to empty l-value");
|
|
if (Path.back()->getKind() == PathComponent::SubstToOrigKind) {
|
|
// But only if the lowered type matches exactly.
|
|
if (Path[Path.size()-2]->getTypeOfRValue() == loweredSubstType) {
|
|
Path.pop_back();
|
|
return;
|
|
}
|
|
// TODO: combine reabstractions; this doesn't matter all that much
|
|
// for most things, but it can be dramatically better for function
|
|
// reabstraction.
|
|
}
|
|
add<OrigToSubstComponent>(getOrigFormalType(), getSubstFormalType(),
|
|
loweredSubstType);
|
|
}
|
|
|
|
void LValue::addSubstToOrigComponent(AbstractionPattern origType,
|
|
SILType loweredSubstType) {
|
|
loweredSubstType = loweredSubstType.getObjectType();
|
|
assert(getTypeOfRValue() != loweredSubstType &&
|
|
"reabstraction component is unnecessary!");
|
|
|
|
// Peephole away complementary reabstractions.
|
|
assert(!Path.empty() && "adding translation component to empty l-value");
|
|
if (Path.back()->getKind() == PathComponent::OrigToSubstKind) {
|
|
// But only if the lowered type matches exactly.
|
|
if (Path[Path.size()-2]->getTypeOfRValue() == loweredSubstType) {
|
|
Path.pop_back();
|
|
return;
|
|
}
|
|
// TODO: combine reabstractions; this doesn't matter all that much
|
|
// for most things, but it can be dramatically better for function
|
|
// reabstraction.
|
|
}
|
|
|
|
add<SubstToOrigComponent>(origType, getSubstFormalType(), loweredSubstType);
|
|
}
|
|
|
|
void LValue::dump() const {
|
|
print(llvm::errs());
|
|
}
|
|
|
|
void LValue::print(raw_ostream &OS) const {
|
|
for (const auto &component : *this) {
|
|
component->print(OS);
|
|
}
|
|
}
|
|
|
|
LValue SILGenFunction::emitLValue(Expr *e, AccessKind accessKind) {
|
|
// Some lvalue nodes (namely BindOptionalExprs) require immediate evaluation
|
|
// of their subexpression, so we must have a writeback scope open while
|
|
// building an lvalue.
|
|
assert(InWritebackScope && "must be in a writeback scope");
|
|
|
|
LValue r = SILGenLValue(*this).visit(e, accessKind);
|
|
// If the final component has an abstraction change, introduce a
|
|
// reabstraction component.
|
|
auto substFormalType = r.getSubstFormalType();
|
|
auto loweredSubstType = getLoweredType(substFormalType);
|
|
if (r.getTypeOfRValue() != loweredSubstType.getObjectType()) {
|
|
// Logical components always re-abstract back to the substituted
|
|
// type.
|
|
assert(r.isLastComponentPhysical());
|
|
r.addOrigToSubstComponent(loweredSubstType);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
LValue SILGenLValue::visitRec(Expr *e, AccessKind accessKind,
|
|
AbstractionPattern orig) {
|
|
// Non-lvalue types (references, values, metatypes, etc) form the root of a
|
|
// logical l-value.
|
|
if (!e->getType()->is<LValueType>() && !e->getType()->is<InOutType>()) {
|
|
// Decide if we can evaluate this expression at +0 for the rest of the
|
|
// lvalue.
|
|
SGFContext Ctx;
|
|
ManagedValue rv;
|
|
|
|
// Calls through opaque protocols can be done with +0 rvalues. This allows
|
|
// us to avoid materializing copies of existentials.
|
|
if (SGF.SGM.Types.isIndirectPlusZeroSelfParameter(e->getType()))
|
|
Ctx = SGFContext::AllowGuaranteedPlusZero;
|
|
else if (auto *DRE = dyn_cast<DeclRefExpr>(e)) {
|
|
// Any reference to "self" can be done at +0 so long as it is a direct
|
|
// access, since we know it is guaranteed.
|
|
// TODO: it would be great to factor this even lower into SILGen to the
|
|
// point where we can see that the parameter is +0 guaranteed. Note that
|
|
// this handles the case in initializers where there is actually a stack
|
|
// allocation for it as well.
|
|
if (isa<ParamDecl>(DRE->getDecl()) &&
|
|
DRE->getDecl()->getName() == SGF.getASTContext().Id_self &&
|
|
DRE->getDecl()->isImplicit()) {
|
|
Ctx = SGFContext::AllowGuaranteedPlusZero;
|
|
if (SGF.SelfInitDelegationState != SILGenFunction::NormalSelf) {
|
|
// This needs to be inlined since there is a Formal Evaluation Scope
|
|
// in emitRValueForDecl that causing any borrow for this LValue to be
|
|
// popped too soon.
|
|
auto *vd = cast<ParamDecl>(DRE->getDecl());
|
|
ManagedValue selfLValue = SGF.emitLValueForDecl(
|
|
DRE, vd, DRE->getType()->getCanonicalType(), AccessKind::Read,
|
|
DRE->getAccessSemantics());
|
|
rv = SGF.emitRValueForSelfInDelegationInit(
|
|
e, DRE->getType()->getCanonicalType(),
|
|
selfLValue.getLValueAddress(), Ctx)
|
|
.getScalarValue();
|
|
}
|
|
} else if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
|
|
// All let values are guaranteed to be held alive across their lifetime,
|
|
// and won't change once initialized. Any loaded value is good for the
|
|
// duration of this expression evaluation.
|
|
if (VD->isLet())
|
|
Ctx = SGFContext::AllowGuaranteedPlusZero;
|
|
}
|
|
}
|
|
|
|
if (!rv) {
|
|
// For an rvalue base, apply the reabstraction (if any) eagerly, since
|
|
// there's no need for writeback.
|
|
if (orig.isValid())
|
|
rv = SGF.emitRValueAsOrig(e, orig,
|
|
SGF.getTypeLowering(orig, e->getType()->getRValueType()));
|
|
else
|
|
rv = SGF.emitRValueAsSingleValue(e, Ctx);
|
|
}
|
|
CanType formalType = getSubstFormalRValueType(e);
|
|
auto typeData = getValueTypeData(formalType, rv.getValue());
|
|
LValue lv;
|
|
lv.add<ValueComponent>(rv, None, typeData, /*isRValue=*/true);
|
|
return lv;
|
|
}
|
|
|
|
auto lv = visit(e, accessKind);
|
|
// If necessary, handle reabstraction with a SubstToOrigComponent that handles
|
|
// writeback in the original representation.
|
|
if (orig.isValid()) {
|
|
auto &origTL = SGF.getTypeLowering(orig, e->getType()->getRValueType());
|
|
if (lv.getTypeOfRValue() != origTL.getLoweredType().getObjectType())
|
|
lv.addSubstToOrigComponent(orig, origTL.getLoweredType().getObjectType());
|
|
}
|
|
return lv;
|
|
}
|
|
|
|
LValue SILGenLValue::visitExpr(Expr *e, AccessKind accessKind) {
|
|
e->dump(llvm::errs());
|
|
llvm_unreachable("unimplemented lvalue expr");
|
|
}
|
|
|
|
SubstitutionList
|
|
SILGenModule::getNonMemberVarDeclSubstitutions(VarDecl *var) {
|
|
SubstitutionList substitutions;
|
|
auto *dc = var->getDeclContext();
|
|
if (auto *genericEnv = dc->getGenericEnvironmentOfContext())
|
|
substitutions = genericEnv->getForwardingSubstitutions();
|
|
return substitutions;
|
|
}
|
|
|
|
// For now, we don't need either an AccessKind or an
|
|
// AccessSemantics, because addressors are always directly
|
|
// dispatched.
|
|
static void
|
|
addNonMemberVarDeclAddressorComponent(SILGenModule &SGM, VarDecl *var,
|
|
CanType formalRValueType,
|
|
LValue &lvalue) {
|
|
assert(!lvalue.isValid());
|
|
auto typeData = getPhysicalStorageTypeData(SGM, var, formalRValueType);
|
|
SILType storageType = SGM.Types.getLoweredType(var->getType()).getAddressType();
|
|
lvalue.add<AddressorComponent>(var, /*isSuper=*/ false, /*direct*/ true,
|
|
SGM.getNonMemberVarDeclSubstitutions(var),
|
|
CanType(), typeData, storageType);
|
|
}
|
|
|
|
LValue
|
|
SILGenFunction::emitLValueForAddressedNonMemberVarDecl(SILLocation loc,
|
|
VarDecl *var,
|
|
CanType formalRValueType,
|
|
AccessKind accessKind,
|
|
AccessSemantics semantics) {
|
|
LValue lv;
|
|
addNonMemberVarDeclAddressorComponent(SGM, var, formalRValueType, lv);
|
|
return lv;
|
|
}
|
|
|
|
static LValue emitLValueForNonMemberVarDecl(SILGenFunction &SGF,
|
|
SILLocation loc, VarDecl *var,
|
|
CanType formalRValueType,
|
|
AccessKind accessKind,
|
|
AccessSemantics semantics) {
|
|
LValue lv;
|
|
|
|
switch (var->getAccessStrategy(semantics, accessKind)) {
|
|
|
|
case AccessStrategy::DispatchToAccessor:
|
|
llvm_unreachable("can't polymorphically access non-member variable");
|
|
|
|
// If it's a computed variable, push a reference to the getter and setter.
|
|
case AccessStrategy::DirectToAccessor: {
|
|
auto typeData = getLogicalStorageTypeData(SGF.SGM, formalRValueType);
|
|
lv.add<GetterSetterComponent>(var, /*isSuper=*/false, /*direct*/ true,
|
|
SGF.SGM.getNonMemberVarDeclSubstitutions(var),
|
|
CanType(), typeData);
|
|
break;
|
|
}
|
|
|
|
case AccessStrategy::Addressor: {
|
|
addNonMemberVarDeclAddressorComponent(SGF.SGM, var, formalRValueType, lv);
|
|
break;
|
|
}
|
|
|
|
case AccessStrategy::Storage: {
|
|
// If it's a physical value (e.g. a local variable in memory), push its
|
|
// address.
|
|
auto address = SGF.emitLValueForDecl(loc, var, formalRValueType,
|
|
accessKind, semantics);
|
|
assert(address.isLValue() &&
|
|
"physical lvalue decl ref must evaluate to an address");
|
|
auto typeData = getPhysicalStorageTypeData(SGF.SGM, var, formalRValueType);
|
|
|
|
Optional<SILAccessEnforcement> enforcement;
|
|
if (!var->isLet()) {
|
|
if (var->getDeclContext()->isLocalContext()) {
|
|
enforcement = SGF.getUnknownEnforcement(var);
|
|
} else if (var->getDeclContext()->isModuleScopeContext()) {
|
|
enforcement = SGF.getDynamicEnforcement(var);
|
|
} else {
|
|
assert(var->getDeclContext()->isTypeContext() &&
|
|
!var->isInstanceMember());
|
|
enforcement = SGF.getDynamicEnforcement(var);
|
|
}
|
|
}
|
|
|
|
lv.add<ValueComponent>(address, enforcement, typeData);
|
|
|
|
if (address.getType().is<ReferenceStorageType>())
|
|
lv.add<OwnershipComponent>(typeData);
|
|
break;
|
|
}
|
|
|
|
case AccessStrategy::BehaviorStorage:
|
|
// TODO: Behaviors aren't supported for non-instance properties yet.
|
|
llvm_unreachable("not implemented");
|
|
}
|
|
|
|
return lv;
|
|
}
|
|
|
|
|
|
LValue SILGenLValue::visitDiscardAssignmentExpr(DiscardAssignmentExpr *e,
|
|
AccessKind accessKind) {
|
|
LValueTypeData typeData = getValueTypeData(SGF, e);
|
|
|
|
SILValue address = SGF.emitTemporaryAllocation(e, typeData.TypeOfRValue);
|
|
address = SGF.B.createMarkUninitialized(e, address,
|
|
MarkUninitializedInst::Var);
|
|
LValue lv;
|
|
lv.add<ValueComponent>(SGF.emitManagedBufferWithCleanup(address),
|
|
None, typeData);
|
|
return lv;
|
|
}
|
|
|
|
|
|
LValue SILGenLValue::visitDeclRefExpr(DeclRefExpr *e, AccessKind accessKind) {
|
|
// The only non-member decl that can be an lvalue is VarDecl.
|
|
return emitLValueForNonMemberVarDecl(SGF, e, cast<VarDecl>(e->getDecl()),
|
|
getSubstFormalRValueType(e),
|
|
accessKind,
|
|
e->getAccessSemantics());
|
|
}
|
|
|
|
LValue SILGenLValue::visitOpaqueValueExpr(OpaqueValueExpr *e,
|
|
AccessKind accessKind) {
|
|
// Handle an opaque lvalue that refers to an opened existential.
|
|
auto known = openedExistentials.find(e);
|
|
if (known != openedExistentials.end()) {
|
|
// Dig the open-existential expression out of the list.
|
|
OpenExistentialExpr *opened = known->second;
|
|
openedExistentials.erase(known);
|
|
|
|
// Do formal evaluation of the underlying existential lvalue.
|
|
LValue existentialLV = visitRec(opened->getExistentialValue(), accessKind);
|
|
|
|
ManagedValue existentialAddr
|
|
= SGF.emitAddressOfLValue(e, std::move(existentialLV), accessKind);
|
|
|
|
// Open up the existential.
|
|
LValue lv;
|
|
lv.add<ValueComponent>(existentialAddr, None, existentialLV.getTypeData());
|
|
lv.add<OpenOpaqueExistentialComponent>(
|
|
cast<ArchetypeType>(opened->getOpenedArchetype()->getCanonicalType()));
|
|
return lv;
|
|
}
|
|
|
|
assert(SGF.OpaqueValues.count(e) && "Didn't bind OpaqueValueExpr");
|
|
|
|
auto &entry = SGF.OpaqueValues.find(e)->second;
|
|
assert(!entry.HasBeenConsumed && "opaque value already consumed");
|
|
entry.HasBeenConsumed = true;
|
|
|
|
RegularLocation loc(e);
|
|
LValue lv;
|
|
lv.add<ValueComponent>(entry.Value.borrow(SGF, loc), None,
|
|
getValueTypeData(SGF, e));
|
|
return lv;
|
|
}
|
|
|
|
LValue SILGenLValue::visitDotSyntaxBaseIgnoredExpr(DotSyntaxBaseIgnoredExpr *e,
|
|
AccessKind accessKind) {
|
|
SGF.emitIgnoredExpr(e->getLHS());
|
|
return visitRec(e->getRHS(), accessKind);
|
|
}
|
|
|
|
static AccessKind getBaseAccessKindForAccessor(FuncDecl *accessor) {
|
|
if (accessor->isMutating()) {
|
|
return AccessKind::ReadWrite;
|
|
} else {
|
|
return AccessKind::Read;
|
|
}
|
|
}
|
|
|
|
/// Return the appropriate access kind for the base l-value of a
|
|
/// particular member, which is being accessed in a particular way.
|
|
static AccessKind getBaseAccessKind(AbstractStorageDecl *member,
|
|
AccessKind accessKind,
|
|
AccessStrategy strategy) {
|
|
switch (strategy) {
|
|
// Assume that the member only partially projects the enclosing value.
|
|
case AccessStrategy::Storage:
|
|
return (accessKind == AccessKind::Read
|
|
? AccessKind::Read : AccessKind::ReadWrite);
|
|
|
|
case AccessStrategy::Addressor:
|
|
return getBaseAccessKindForAccessor(
|
|
member->getAddressorForAccess(accessKind));
|
|
|
|
case AccessStrategy::DirectToAccessor:
|
|
case AccessStrategy::DispatchToAccessor:
|
|
if (accessKind == AccessKind::Read) {
|
|
return getBaseAccessKindForAccessor(member->getGetter());
|
|
} else {
|
|
return getBaseAccessKindForAccessor(member->getSetter());
|
|
}
|
|
|
|
case AccessStrategy::BehaviorStorage:
|
|
// We should only access the behavior storage for initialization purposes.
|
|
assert(accessKind == AccessKind::Write);
|
|
return AccessKind::Write;
|
|
}
|
|
llvm_unreachable("bad access strategy");
|
|
}
|
|
|
|
LValue SILGenLValue::visitMemberRefExpr(MemberRefExpr *e,
|
|
AccessKind accessKind) {
|
|
// MemberRefExpr can refer to type and function members, but the only case
|
|
// that can be an lvalue is a VarDecl.
|
|
VarDecl *var = cast<VarDecl>(e->getMember().getDecl());
|
|
AccessStrategy strategy =
|
|
var->getAccessStrategy(e->getAccessSemantics(), accessKind);
|
|
|
|
LValue lv = visitRec(e->getBase(),
|
|
getBaseAccessKind(var, accessKind, strategy));
|
|
assert(lv.isValid());
|
|
|
|
CanType substFormalRValueType = getSubstFormalRValueType(e);
|
|
lv.addMemberVarComponent(SGF, e, var, e->getMember().getSubstitutions(),
|
|
e->isSuper(), accessKind, e->getAccessSemantics(),
|
|
strategy, substFormalRValueType);
|
|
return lv;
|
|
}
|
|
|
|
void LValue::addMemberVarComponent(SILGenFunction &SGF, SILLocation loc,
|
|
VarDecl *var,
|
|
SubstitutionList subs,
|
|
bool isSuper,
|
|
AccessKind accessKind,
|
|
AccessSemantics accessSemantics,
|
|
AccessStrategy strategy,
|
|
CanType formalRValueType) {
|
|
CanType baseFormalType = getSubstFormalType();
|
|
|
|
// Use the property accessors if the variable has accessors and this isn't a
|
|
// direct access to underlying storage.
|
|
if (strategy == AccessStrategy::DirectToAccessor ||
|
|
strategy == AccessStrategy::DispatchToAccessor) {
|
|
auto typeData = getLogicalStorageTypeData(SGF.SGM, formalRValueType);
|
|
add<GetterSetterComponent>(var, isSuper,
|
|
strategy == AccessStrategy::DirectToAccessor,
|
|
subs, baseFormalType, typeData);
|
|
return;
|
|
}
|
|
|
|
assert(strategy == AccessStrategy::Addressor ||
|
|
strategy == AccessStrategy::Storage ||
|
|
strategy == AccessStrategy::BehaviorStorage);
|
|
|
|
// Otherwise, the lvalue access is performed with a fragile element reference.
|
|
// Find the substituted storage type.
|
|
SILType varStorageType =
|
|
SGF.SGM.Types.getSubstitutedStorageType(var, formalRValueType);
|
|
|
|
// For static variables, emit a reference to the global variable backing
|
|
// them.
|
|
// FIXME: This has to be dynamically looked up for classes, and
|
|
// dynamically instantiated for generics.
|
|
if (strategy == AccessStrategy::Storage && var->isStatic()) {
|
|
// FIXME: this implicitly drops the earlier components, but maybe
|
|
// we ought to evaluate them for side-effects even during the
|
|
// formal access?
|
|
*this = emitLValueForNonMemberVarDecl(SGF, loc, var,
|
|
formalRValueType,
|
|
accessKind, accessSemantics);
|
|
return;
|
|
}
|
|
|
|
auto typeData = getPhysicalStorageTypeData(SGF.SGM, var, formalRValueType);
|
|
|
|
// For behavior initializations, we should have set up a marking proxy that
|
|
// replaces the access path.
|
|
if (strategy == AccessStrategy::BehaviorStorage) {
|
|
auto addr = SGF.VarLocs.find(var);
|
|
assert(addr != SGF.VarLocs.end() && addr->second.value);
|
|
Path.clear();
|
|
add<ValueComponent>(ManagedValue::forUnmanaged(addr->second.value),
|
|
None, typeData);
|
|
// For member variables, this access is done w.r.t. a base computation that
|
|
// was already emitted. This member is accessed off of it.
|
|
} else if (strategy == AccessStrategy::Addressor) {
|
|
add<AddressorComponent>(var, isSuper, /*direct*/ true, subs,
|
|
baseFormalType, typeData, varStorageType);
|
|
} else if (baseFormalType->mayHaveSuperclass()) {
|
|
add<RefElementComponent>(var, varStorageType, typeData);
|
|
} else {
|
|
assert(baseFormalType->getStructOrBoundGenericStruct());
|
|
add<StructElementComponent>(var, varStorageType, typeData);
|
|
}
|
|
|
|
// If the member has weak or unowned storage, convert it away.
|
|
if (varStorageType.is<ReferenceStorageType>()) {
|
|
add<OwnershipComponent>(typeData);
|
|
}
|
|
}
|
|
|
|
LValue SILGenLValue::visitSubscriptExpr(SubscriptExpr *e,
|
|
AccessKind accessKind) {
|
|
auto decl = cast<SubscriptDecl>(e->getDecl().getDecl());
|
|
|
|
auto accessSemantics = e->getAccessSemantics();
|
|
auto strategy = decl->getAccessStrategy(accessSemantics, accessKind);
|
|
|
|
LValue lv = visitRec(e->getBase(),
|
|
getBaseAccessKind(decl, accessKind, strategy));
|
|
assert(lv.isValid());
|
|
|
|
Expr *indexExpr = e->getIndex();
|
|
// FIXME: This admits varargs tuples, which should only be handled as part of
|
|
// argument emission.
|
|
RValue index = SGF.emitRValue(indexExpr);
|
|
|
|
CanType formalRValueType = getSubstFormalRValueType(e);
|
|
lv.addMemberSubscriptComponent(SGF, e, decl, e->getDecl().getSubstitutions(),
|
|
e->isSuper(), accessKind, accessSemantics,
|
|
strategy, formalRValueType, std::move(index),
|
|
indexExpr);
|
|
return lv;
|
|
}
|
|
|
|
LValue SILGenLValue::visitKeyPathApplicationExpr(KeyPathApplicationExpr *e,
|
|
AccessKind accessKind) {
|
|
// Determine the base access strategy based on the strategy of this access.
|
|
auto keyPathTy = e->getKeyPath()->getType()->castTo<BoundGenericType>();
|
|
AccessKind subAccess;
|
|
if (keyPathTy->getDecl() == SGF.getASTContext().getWritableKeyPathDecl()) {
|
|
// Assume the keypath only partially projects the root value.
|
|
subAccess = (accessKind == AccessKind::Read
|
|
? AccessKind::Read : AccessKind::ReadWrite);
|
|
} else {
|
|
// The base is only ever read from a read-only or reference-writable
|
|
// keypath.
|
|
subAccess = AccessKind::Read;
|
|
}
|
|
|
|
// The base should be reabstracted to the maximal abstraction pattern.
|
|
LValue lv = visitRec(e->getBase(), subAccess,
|
|
AbstractionPattern::getOpaque());
|
|
|
|
// The result will end up projected at the maximal abstraction level too.
|
|
auto resultTy = e->getType()->getRValueType()->getCanonicalType();
|
|
auto resultSILTy = SGF.getLoweredType(AbstractionPattern::getOpaque(),
|
|
resultTy);
|
|
|
|
|
|
lv.add<KeyPathApplicationComponent>(
|
|
LValueTypeData(AbstractionPattern::getOpaque(), resultTy,
|
|
resultSILTy.getObjectType()),
|
|
ArgumentSource(e->getKeyPath()));
|
|
|
|
// Reabstract to the substituted abstraction level if necessary.
|
|
auto substResultSILTy = SGF.getLoweredType(resultTy);
|
|
if (resultSILTy.getObjectType() != substResultSILTy.getObjectType()) {
|
|
lv.addOrigToSubstComponent(substResultSILTy);
|
|
}
|
|
|
|
return lv;
|
|
}
|
|
|
|
void LValue::addMemberSubscriptComponent(SILGenFunction &SGF, SILLocation loc,
|
|
SubscriptDecl *decl,
|
|
SubstitutionList subs,
|
|
bool isSuper,
|
|
AccessKind accessKind,
|
|
AccessSemantics accessSemantics,
|
|
AccessStrategy strategy,
|
|
CanType formalRValueType,
|
|
RValue &&indices,
|
|
Expr *indexExprForDiagnostics) {
|
|
CanType baseFormalType = getSubstFormalType();
|
|
|
|
if (strategy == AccessStrategy::DirectToAccessor ||
|
|
strategy == AccessStrategy::DispatchToAccessor) {
|
|
auto typeData = getLogicalStorageTypeData(SGF.SGM, formalRValueType);
|
|
add<GetterSetterComponent>(decl, isSuper,
|
|
strategy == AccessStrategy::DirectToAccessor,
|
|
subs, baseFormalType, typeData,
|
|
indexExprForDiagnostics, &indices);
|
|
} else {
|
|
assert(strategy == AccessStrategy::Addressor);
|
|
auto typeData = getPhysicalStorageTypeData(SGF.SGM, decl, formalRValueType);
|
|
auto storageType =
|
|
SGF.SGM.Types.getSubstitutedStorageType(decl, formalRValueType);
|
|
add<AddressorComponent>(decl, isSuper, /*direct*/ true,
|
|
subs, baseFormalType, typeData, storageType,
|
|
indexExprForDiagnostics, &indices);
|
|
}
|
|
}
|
|
|
|
bool LValue::isObviouslyNonConflicting(const LValue &other,
|
|
AccessKind selfAccess,
|
|
AccessKind otherAccess) {
|
|
// Reads never conflict with reads.
|
|
if (selfAccess == AccessKind::Read && otherAccess == AccessKind::Read)
|
|
return true;
|
|
|
|
// We can cover more cases here.
|
|
return false;
|
|
}
|
|
|
|
LValue SILGenLValue::visitTupleElementExpr(TupleElementExpr *e,
|
|
AccessKind accessKind) {
|
|
unsigned index = e->getFieldNumber();
|
|
LValue lv = visitRec(e->getBase(),
|
|
accessKind == AccessKind::Read
|
|
? AccessKind::Read : AccessKind::ReadWrite);
|
|
|
|
auto baseTypeData = lv.getTypeData();
|
|
LValueTypeData typeData = {
|
|
baseTypeData.OrigFormalType.getTupleElementType(index),
|
|
cast<TupleType>(baseTypeData.SubstFormalType).getElementType(index),
|
|
baseTypeData.TypeOfRValue.getTupleElementType(index)
|
|
};
|
|
|
|
lv.add<TupleElementComponent>(index, typeData);
|
|
return lv;
|
|
}
|
|
|
|
LValue SILGenLValue::visitOpenExistentialExpr(OpenExistentialExpr *e,
|
|
AccessKind accessKind) {
|
|
// If the opaque value is not an lvalue, open the existential immediately.
|
|
if (!e->getOpaqueValue()->getType()->is<LValueType>()) {
|
|
return SGF.emitOpenExistentialExpr<LValue>(e,
|
|
[&](Expr *subExpr) -> LValue {
|
|
return visitRec(subExpr,
|
|
accessKind);
|
|
});
|
|
}
|
|
|
|
// Record the fact that we're opening this existential. The actual
|
|
// opening operation will occur when we see the OpaqueValueExpr.
|
|
bool inserted = openedExistentials.insert({e->getOpaqueValue(), e}).second;
|
|
(void)inserted;
|
|
assert(inserted && "already have this opened existential?");
|
|
|
|
// Visit the subexpression.
|
|
LValue lv = visitRec(e->getSubExpr(), accessKind);
|
|
|
|
// Sanity check that we did see the OpaqueValueExpr.
|
|
assert(openedExistentials.count(e->getOpaqueValue()) == 0 &&
|
|
"opened existential not removed?");
|
|
return lv;
|
|
}
|
|
|
|
static LValueTypeData
|
|
getOptionalObjectTypeData(SILGenFunction &SGF,
|
|
const LValueTypeData &baseTypeData) {
|
|
EnumElementDecl *someDecl = SGF.getASTContext().getOptionalSomeDecl();
|
|
|
|
return {
|
|
baseTypeData.OrigFormalType.getAnyOptionalObjectType(),
|
|
baseTypeData.SubstFormalType.getAnyOptionalObjectType(),
|
|
baseTypeData.TypeOfRValue.getEnumElementType(someDecl, SGF.SGM.M),
|
|
};
|
|
}
|
|
|
|
LValue SILGenLValue::visitForceValueExpr(ForceValueExpr *e,
|
|
AccessKind accessKind) {
|
|
LValue lv = visitRec(e->getSubExpr(), accessKind);
|
|
LValueTypeData typeData = getOptionalObjectTypeData(SGF, lv.getTypeData());
|
|
lv.add<ForceOptionalObjectComponent>(typeData);
|
|
return lv;
|
|
}
|
|
|
|
LValue SILGenLValue::visitBindOptionalExpr(BindOptionalExpr *e,
|
|
AccessKind accessKind) {
|
|
// Do formal evaluation of the base l-value.
|
|
LValue optLV = visitRec(e->getSubExpr(), accessKind);
|
|
|
|
LValueTypeData optTypeData = optLV.getTypeData();
|
|
LValueTypeData valueTypeData = getOptionalObjectTypeData(SGF, optTypeData);
|
|
|
|
// The chaining operator immediately begins a formal access to the
|
|
// base l-value. In concrete terms, this means we can immediately
|
|
// evaluate the base down to an address.
|
|
ManagedValue optAddr =
|
|
SGF.emitAddressOfLValue(e, std::move(optLV), accessKind);
|
|
|
|
// Bind the value, branching to the destination address if there's no
|
|
// value there.
|
|
SGF.emitBindOptional(e, optAddr, e->getDepth());
|
|
|
|
// Project out the payload on the success branch. We can just use a
|
|
// naked ValueComponent here; this is effectively a separate l-value.
|
|
ManagedValue valueAddr =
|
|
getAddressOfOptionalValue(SGF, e, optAddr, valueTypeData);
|
|
LValue valueLV;
|
|
valueLV.add<ValueComponent>(valueAddr, None, valueTypeData);
|
|
return valueLV;
|
|
}
|
|
|
|
LValue SILGenLValue::visitInOutExpr(InOutExpr *e, AccessKind accessKind) {
|
|
return visitRec(e->getSubExpr(), accessKind);
|
|
}
|
|
|
|
/// Emit an lvalue that refers to the given property. This is
|
|
/// designed to work with ManagedValue 'base's that are either +0 or +1.
|
|
LValue SILGenFunction::emitPropertyLValue(SILLocation loc, ManagedValue base,
|
|
CanType baseFormalType,
|
|
VarDecl *ivar, AccessKind accessKind,
|
|
AccessSemantics semantics) {
|
|
SILGenLValue sgl(*this);
|
|
LValue lv;
|
|
|
|
auto baseType = base.getType().getSwiftRValueType();
|
|
auto subMap = baseType->getContextSubstitutionMap(
|
|
SGM.M.getSwiftModule(), ivar->getDeclContext());
|
|
|
|
SmallVector<Substitution, 4> subs;
|
|
if (auto *genericSig = ivar->getDeclContext()->getGenericSignatureOfContext())
|
|
genericSig->getSubstitutions(subMap, subs);
|
|
|
|
LValueTypeData baseTypeData = getValueTypeData(baseFormalType,
|
|
base.getValue());
|
|
|
|
// Refer to 'self' as the base of the lvalue.
|
|
lv.add<ValueComponent>(base, None, baseTypeData,
|
|
/*isRValue=*/!base.isLValue());
|
|
|
|
auto substFormalType = ivar->getInterfaceType().subst(subMap)
|
|
->getCanonicalType();
|
|
|
|
AccessStrategy strategy =
|
|
ivar->getAccessStrategy(semantics, accessKind);
|
|
|
|
|
|
// Use the property accessors if the variable has accessors and this
|
|
// isn't a direct access to underlying storage.
|
|
if (strategy == AccessStrategy::DirectToAccessor ||
|
|
strategy == AccessStrategy::DispatchToAccessor) {
|
|
auto typeData = getLogicalStorageTypeData(SGM, substFormalType);
|
|
lv.add<GetterSetterComponent>(ivar, /*super*/ false,
|
|
strategy == AccessStrategy::DirectToAccessor,
|
|
subs, baseFormalType, typeData);
|
|
return lv;
|
|
}
|
|
|
|
assert(strategy == AccessStrategy::Addressor ||
|
|
strategy == AccessStrategy::Storage);
|
|
|
|
// Find the substituted storage type.
|
|
SILType varStorageType =
|
|
SGM.Types.getSubstitutedStorageType(ivar, substFormalType);
|
|
|
|
auto typeData = getPhysicalStorageTypeData(SGM, ivar, substFormalType);
|
|
|
|
if (strategy == AccessStrategy::Addressor) {
|
|
lv.add<AddressorComponent>(ivar, /*super*/ false, /*direct*/ true,
|
|
subs, baseFormalType, typeData, varStorageType);
|
|
} else if (baseFormalType->hasReferenceSemantics()) {
|
|
lv.add<RefElementComponent>(ivar, varStorageType, typeData);
|
|
} else {
|
|
lv.add<StructElementComponent>(ivar, varStorageType, typeData);
|
|
}
|
|
|
|
if (varStorageType.is<ReferenceStorageType>()) {
|
|
auto formalRValueType =
|
|
ivar->getDeclContext()->mapTypeIntoContext(ivar->getInterfaceType())
|
|
->getReferenceStorageReferent()
|
|
->getCanonicalType();
|
|
auto typeData =
|
|
getPhysicalStorageTypeData(SGM, ivar, formalRValueType);
|
|
lv.add<OwnershipComponent>(typeData);
|
|
}
|
|
|
|
return lv;
|
|
}
|
|
|
|
/// Load an r-value out of the given address.
|
|
///
|
|
/// \param rvalueTL - the type lowering for the type-of-rvalue
|
|
/// of the address
|
|
/// \param isGuaranteedValid - true if the value in this address
|
|
/// is guaranteed to be valid for the duration of the current
|
|
/// evaluation (see SGFContext::AllowGuaranteedPlusZero)
|
|
ManagedValue SILGenFunction::emitLoad(SILLocation loc, SILValue addr,
|
|
const TypeLowering &rvalueTL,
|
|
SGFContext C, IsTake_t isTake,
|
|
bool isGuaranteedValid) {
|
|
// Get the lowering for the address type. We can avoid a re-lookup
|
|
// in the very common case of this being equivalent to the r-value
|
|
// type.
|
|
auto &addrTL =
|
|
(addr->getType() == rvalueTL.getLoweredType().getAddressType()
|
|
? rvalueTL : getTypeLowering(addr->getType()));
|
|
|
|
// Never do a +0 load together with a take.
|
|
bool isPlusZeroOk = (isTake == IsNotTake &&
|
|
(isGuaranteedValid ? C.isGuaranteedPlusZeroOk()
|
|
: C.isImmediatePlusZeroOk()));
|
|
|
|
if (rvalueTL.isAddressOnly() && silConv.useLoweredAddresses()) {
|
|
// If the client is cool with a +0 rvalue, the decl has an address-only
|
|
// type, and there are no conversions, then we can return this as a +0
|
|
// address RValue.
|
|
if (isPlusZeroOk && rvalueTL.getLoweredType() == addrTL.getLoweredType())
|
|
return ManagedValue::forUnmanaged(addr);
|
|
|
|
// Copy the address-only value.
|
|
return B.bufferForExpr(
|
|
loc, rvalueTL.getLoweredType(), rvalueTL, C,
|
|
[&](SILValue newAddr) {
|
|
emitSemanticLoadInto(loc, addr, addrTL, newAddr, rvalueTL,
|
|
isTake, IsInitialization);
|
|
});
|
|
}
|
|
|
|
// Ok, this is something loadable. If this is a non-take access at plus zero,
|
|
// we can perform a +0 load of the address instead of materializing a +1
|
|
// value.
|
|
if (isPlusZeroOk && addrTL.getLoweredType() == rvalueTL.getLoweredType()) {
|
|
return B.createLoadBorrow(loc, ManagedValue::forUnmanaged(addr));
|
|
}
|
|
|
|
// Load the loadable value, and retain it if we aren't taking it.
|
|
SILValue loadedV = emitSemanticLoad(loc, addr, addrTL, rvalueTL, isTake);
|
|
return emitManagedRValueWithCleanup(loadedV);
|
|
}
|
|
|
|
/// Load an r-value out of the given address.
|
|
///
|
|
/// \param rvalueTL - the type lowering for the type-of-rvalue
|
|
/// of the address
|
|
/// \param isGuaranteedValid - true if the value in this address
|
|
/// is guaranteed to be valid for the duration of the current
|
|
/// evaluation (see SGFContext::AllowGuaranteedPlusZero)
|
|
ManagedValue SILGenFunction::emitFormalAccessLoad(SILLocation loc,
|
|
SILValue addr,
|
|
const TypeLowering &rvalueTL,
|
|
SGFContext C, IsTake_t isTake,
|
|
bool isGuaranteedValid) {
|
|
// Get the lowering for the address type. We can avoid a re-lookup
|
|
// in the very common case of this being equivalent to the r-value
|
|
// type.
|
|
auto &addrTL = (addr->getType() == rvalueTL.getLoweredType().getAddressType()
|
|
? rvalueTL
|
|
: getTypeLowering(addr->getType()));
|
|
|
|
// Never do a +0 load together with a take.
|
|
bool isPlusZeroOk =
|
|
(isTake == IsNotTake && (isGuaranteedValid ? C.isGuaranteedPlusZeroOk()
|
|
: C.isImmediatePlusZeroOk()));
|
|
|
|
if (rvalueTL.isAddressOnly() && silConv.useLoweredAddresses()) {
|
|
// If the client is cool with a +0 rvalue, the decl has an address-only
|
|
// type, and there are no conversions, then we can return this as a +0
|
|
// address RValue.
|
|
if (isPlusZeroOk && rvalueTL.getLoweredType() == addrTL.getLoweredType())
|
|
return ManagedValue::forUnmanaged(addr);
|
|
|
|
// Copy the address-only value.
|
|
return B.formalAccessBufferForExpr(
|
|
loc, rvalueTL.getLoweredType(), rvalueTL, C,
|
|
[&](SILValue addressForCopy) {
|
|
emitSemanticLoadInto(loc, addr, addrTL, addressForCopy, rvalueTL,
|
|
isTake, IsInitialization);
|
|
});
|
|
}
|
|
|
|
// Ok, this is something loadable. If this is a non-take access at plus zero,
|
|
// we can perform a +0 load of the address instead of materializing a +1
|
|
// value.
|
|
if (isPlusZeroOk && addrTL.getLoweredType() == rvalueTL.getLoweredType()) {
|
|
return B.createFormalAccessLoadBorrow(loc,
|
|
ManagedValue::forUnmanaged(addr));
|
|
}
|
|
|
|
// Load the loadable value, and retain it if we aren't taking it.
|
|
SILValue loadedV = emitSemanticLoad(loc, addr, addrTL, rvalueTL, isTake);
|
|
return emitFormalAccessManagedRValueWithCleanup(loc, loadedV);
|
|
}
|
|
|
|
static void emitUnloweredStoreOfCopy(SILGenBuilder &B, SILLocation loc,
|
|
SILValue value, SILValue addr,
|
|
IsInitialization_t isInit) {
|
|
if (isInit) {
|
|
B.emitStoreValueOperation(loc, value, addr, StoreOwnershipQualifier::Init);
|
|
} else {
|
|
B.createAssign(loc, value, addr);
|
|
}
|
|
}
|
|
|
|
SILValue SILGenFunction::emitConversionToSemanticRValue(SILLocation loc,
|
|
SILValue src,
|
|
const TypeLowering &valueTL) {
|
|
// Weak storage types are handled with their underlying type.
|
|
assert(!src->getType().is<WeakStorageType>() &&
|
|
"weak pointers are always the right optional types");
|
|
|
|
// For @unowned(safe) types, we need to generate a strong retain and
|
|
// strip the unowned box.
|
|
if (auto unownedType = src->getType().getAs<UnownedStorageType>()) {
|
|
assert(unownedType->isLoadable(ResilienceExpansion::Maximal));
|
|
(void) unownedType;
|
|
|
|
B.createStrongRetainUnowned(loc, src, B.getDefaultAtomicity());
|
|
return B.createUnownedToRef(loc, src,
|
|
SILType::getPrimitiveObjectType(unownedType.getReferentType()));
|
|
}
|
|
|
|
// For @unowned(unsafe) types, we need to strip the unmanaged box
|
|
// and then do an (unsafe) retain.
|
|
if (auto unmanagedType = src->getType().getAs<UnmanagedStorageType>()) {
|
|
auto result = B.createUnmanagedToRef(loc, src,
|
|
SILType::getPrimitiveObjectType(unmanagedType.getReferentType()));
|
|
// SEMANTIC ARC TODO: Does this need a cleanup?
|
|
return B.createCopyValue(loc, result);
|
|
}
|
|
|
|
llvm_unreachable("unexpected storage type that differs from type-of-rvalue");
|
|
}
|
|
|
|
ManagedValue SILGenFunction::emitConversionToSemanticRValue(
|
|
SILLocation loc, ManagedValue src, const TypeLowering &valueTL) {
|
|
// Weak storage types are handled with their underlying type.
|
|
assert(!src.getType().is<WeakStorageType>() &&
|
|
"weak pointers are always the right optional types");
|
|
|
|
// For @unowned(safe) types, we need to generate a strong retain and
|
|
// strip the unowned box.
|
|
if (src.getType().is<UnownedStorageType>()) {
|
|
return B.createCopyUnownedValue(loc, src);
|
|
}
|
|
|
|
// For @unowned(unsafe) types, we need to strip the unmanaged box
|
|
// and then do an (unsafe) retain.
|
|
if (src.getType().is<UnmanagedStorageType>()) {
|
|
return B.createUnsafeCopyUnownedValue(loc, src);
|
|
}
|
|
|
|
llvm_unreachable("unexpected storage type that differs from type-of-rvalue");
|
|
}
|
|
|
|
/// Given that the type-of-rvalue differs from the type-of-storage,
|
|
/// and given that the type-of-rvalue is loadable, produce a +1 scalar
|
|
/// of the type-of-rvalue.
|
|
static SILValue emitLoadOfSemanticRValue(SILGenFunction &SGF,
|
|
SILLocation loc,
|
|
SILValue src,
|
|
const TypeLowering &valueTL,
|
|
IsTake_t isTake) {
|
|
SILType storageType = src->getType();
|
|
|
|
// For @weak types, we need to create an Optional<T>.
|
|
// Optional<T> is currently loadable, but it probably won't be forever.
|
|
if (storageType.is<WeakStorageType>())
|
|
return SGF.B.createLoadWeak(loc, src, isTake);
|
|
|
|
// For @unowned(safe) types, we need to strip the unowned box.
|
|
if (auto unownedType = storageType.getAs<UnownedStorageType>()) {
|
|
if (!unownedType->isLoadable(ResilienceExpansion::Maximal)) {
|
|
return SGF.B.createLoadUnowned(loc, src, isTake);
|
|
}
|
|
|
|
auto unownedValue =
|
|
SGF.B.emitLoadValueOperation(loc, src, LoadOwnershipQualifier::Take);
|
|
SGF.B.createStrongRetainUnowned(loc, unownedValue, SGF.B.getDefaultAtomicity());
|
|
if (isTake)
|
|
SGF.B.createUnownedRelease(loc, unownedValue, SGF.B.getDefaultAtomicity());
|
|
return SGF.B.createUnownedToRef(
|
|
loc, unownedValue,
|
|
SILType::getPrimitiveObjectType(unownedType.getReferentType()));
|
|
}
|
|
|
|
// For @unowned(unsafe) types, we need to strip the unmanaged box.
|
|
if (auto unmanagedType = src->getType().getAs<UnmanagedStorageType>()) {
|
|
auto value = SGF.B.createLoad(loc, src, LoadOwnershipQualifier::Trivial);
|
|
auto result = SGF.B.createUnmanagedToRef(loc, value,
|
|
SILType::getPrimitiveObjectType(unmanagedType.getReferentType()));
|
|
// SEMANTIC ARC TODO: Does this need a cleanup?
|
|
return SGF.B.createCopyValue(loc, result);
|
|
}
|
|
|
|
// NSString * must be bridged to String.
|
|
if (storageType.getSwiftRValueType() == SGF.SGM.Types.getNSStringType()) {
|
|
auto nsstr = SGF.B.createLoad(loc, src, LoadOwnershipQualifier::Copy);
|
|
auto str = SGF.emitBridgedToNativeValue(loc,
|
|
ManagedValue::forUnmanaged(nsstr),
|
|
SILFunctionTypeRepresentation::CFunctionPointer,
|
|
SGF.SGM.Types.getStringType());
|
|
return str.forward(SGF);
|
|
}
|
|
|
|
llvm_unreachable("unexpected storage type that differs from type-of-rvalue");
|
|
}
|
|
|
|
/// Given that the type-of-rvalue differs from the type-of-storage,
|
|
/// store a +1 value (possibly not a scalar) of the type-of-rvalue
|
|
/// into the given address.
|
|
static void emitStoreOfSemanticRValue(SILGenFunction &SGF,
|
|
SILLocation loc,
|
|
SILValue value,
|
|
SILValue dest,
|
|
const TypeLowering &valueTL,
|
|
IsInitialization_t isInit) {
|
|
auto storageType = dest->getType();
|
|
|
|
// For @weak types, we need to break down an Optional<T> and then
|
|
// emit the storeWeak ourselves.
|
|
if (storageType.is<WeakStorageType>()) {
|
|
SGF.B.createStoreWeak(loc, value, dest, isInit);
|
|
|
|
// store_weak doesn't take ownership of the input, so cancel it out.
|
|
SGF.B.emitDestroyValueOperation(loc, value);
|
|
return;
|
|
}
|
|
|
|
// For @unowned(safe) types, we need to enter the unowned box by
|
|
// turning the strong retain into an unowned retain.
|
|
if (auto unownedType = storageType.getAs<UnownedStorageType>()) {
|
|
// FIXME: resilience
|
|
if (!unownedType->isLoadable(ResilienceExpansion::Maximal)) {
|
|
SGF.B.createStoreUnowned(loc, value, dest, isInit);
|
|
|
|
// store_unowned doesn't take ownership of the input, so cancel it out.
|
|
SGF.B.emitDestroyValueOperation(loc, value);
|
|
return;
|
|
}
|
|
|
|
auto unownedValue =
|
|
SGF.B.createRefToUnowned(loc, value, storageType.getObjectType());
|
|
SGF.B.createUnownedRetain(loc, unownedValue, SGF.B.getDefaultAtomicity());
|
|
emitUnloweredStoreOfCopy(SGF.B, loc, unownedValue, dest, isInit);
|
|
SGF.B.emitDestroyValueOperation(loc, value);
|
|
return;
|
|
}
|
|
|
|
// For @unowned(unsafe) types, we need to enter the unmanaged box and
|
|
// release the strong retain.
|
|
if (storageType.is<UnmanagedStorageType>()) {
|
|
auto unmanagedValue =
|
|
SGF.B.createRefToUnmanaged(loc, value, storageType.getObjectType());
|
|
emitUnloweredStoreOfCopy(SGF.B, loc, unmanagedValue, dest, isInit);
|
|
SGF.B.emitDestroyValueOperation(loc, value);
|
|
return;
|
|
}
|
|
|
|
llvm_unreachable("unexpected storage type that differs from type-of-rvalue");
|
|
}
|
|
|
|
/// Load a value of the type-of-rvalue out of the given address as a
|
|
/// scalar. The type-of-rvalue must be loadable.
|
|
SILValue SILGenFunction::emitSemanticLoad(SILLocation loc,
|
|
SILValue src,
|
|
const TypeLowering &srcTL,
|
|
const TypeLowering &rvalueTL,
|
|
IsTake_t isTake) {
|
|
assert(srcTL.getLoweredType().getAddressType() == src->getType());
|
|
assert(rvalueTL.isLoadable() || !silConv.useLoweredAddresses());
|
|
|
|
// Easy case: the types match.
|
|
if (srcTL.getLoweredType() == rvalueTL.getLoweredType()) {
|
|
return srcTL.emitLoadOfCopy(B, loc, src, isTake);
|
|
}
|
|
|
|
return emitLoadOfSemanticRValue(*this, loc, src, rvalueTL, isTake);
|
|
}
|
|
|
|
/// Load a value of the type-of-reference out of the given address
|
|
/// and into the destination address.
|
|
void SILGenFunction::emitSemanticLoadInto(SILLocation loc,
|
|
SILValue src,
|
|
const TypeLowering &srcTL,
|
|
SILValue dest,
|
|
const TypeLowering &destTL,
|
|
IsTake_t isTake,
|
|
IsInitialization_t isInit) {
|
|
assert(srcTL.getLoweredType().getAddressType() == src->getType());
|
|
assert(destTL.getLoweredType().getAddressType() == dest->getType());
|
|
|
|
// Easy case: the types match.
|
|
if (srcTL.getLoweredType() == destTL.getLoweredType()) {
|
|
B.createCopyAddr(loc, src, dest, isTake, isInit);
|
|
return;
|
|
}
|
|
|
|
auto rvalue = emitLoadOfSemanticRValue(*this, loc, src, srcTL, isTake);
|
|
emitUnloweredStoreOfCopy(B, loc, rvalue, dest, isInit);
|
|
}
|
|
|
|
/// Store an r-value into the given address as an initialization.
|
|
void SILGenFunction::emitSemanticStore(SILLocation loc,
|
|
SILValue rvalue,
|
|
SILValue dest,
|
|
const TypeLowering &destTL,
|
|
IsInitialization_t isInit) {
|
|
assert(destTL.getLoweredType().getAddressType() == dest->getType());
|
|
|
|
// Easy case: the types match.
|
|
if (rvalue->getType() == destTL.getLoweredType()) {
|
|
assert(!silConv.useLoweredAddresses()
|
|
|| (destTL.isAddressOnly() == rvalue->getType().isAddress()));
|
|
if (rvalue->getType().isAddress()) {
|
|
B.createCopyAddr(loc, rvalue, dest, IsTake, isInit);
|
|
} else {
|
|
emitUnloweredStoreOfCopy(B, loc, rvalue, dest, isInit);
|
|
}
|
|
return;
|
|
}
|
|
|
|
auto &rvalueTL = getTypeLowering(rvalue->getType());
|
|
emitStoreOfSemanticRValue(*this, loc, rvalue, dest, rvalueTL, isInit);
|
|
}
|
|
|
|
/// Convert a semantic rvalue to a value of storage type.
|
|
SILValue SILGenFunction::emitConversionFromSemanticValue(SILLocation loc,
|
|
SILValue semanticValue,
|
|
SILType storageType) {
|
|
auto &destTL = getTypeLowering(storageType);
|
|
(void)destTL;
|
|
// Easy case: the types match.
|
|
if (semanticValue->getType() == storageType) {
|
|
return semanticValue;
|
|
}
|
|
|
|
// @weak types are never loadable, so we don't need to handle them here.
|
|
|
|
// For @unowned types, place into an unowned box.
|
|
if (auto unownedType = storageType.getAs<UnownedStorageType>()) {
|
|
assert(unownedType->isLoadable(ResilienceExpansion::Maximal));
|
|
(void) unownedType;
|
|
|
|
SILValue unowned = B.createRefToUnowned(loc, semanticValue, storageType);
|
|
B.createUnownedRetain(loc, unowned, B.getDefaultAtomicity());
|
|
B.emitDestroyValueOperation(loc, semanticValue);
|
|
return unowned;
|
|
}
|
|
|
|
// For @unmanaged types, place into an unmanaged box.
|
|
if (storageType.is<UnmanagedStorageType>()) {
|
|
SILValue unmanaged =
|
|
B.createRefToUnmanaged(loc, semanticValue, storageType);
|
|
B.emitDestroyValueOperation(loc, semanticValue);
|
|
return unmanaged;
|
|
}
|
|
|
|
llvm_unreachable("unexpected storage type that differs from type-of-rvalue");
|
|
}
|
|
|
|
static void emitTsanInoutAccess(SILGenFunction &SGF, SILLocation loc,
|
|
ManagedValue address) {
|
|
assert(address.getType().isAddress());
|
|
SILValue accessFnArgs[] = {address.getValue()};
|
|
|
|
SGF.B.createBuiltin(loc, SGF.getASTContext().getIdentifier("tsanInoutAccess"),
|
|
SGF.SGM.Types.getEmptyTupleType(), {}, accessFnArgs);
|
|
}
|
|
|
|
/// Produce a physical address that corresponds to the given l-value
|
|
/// component.
|
|
static ManagedValue drillIntoComponent(SILGenFunction &SGF,
|
|
SILLocation loc,
|
|
PathComponent &&component,
|
|
ManagedValue base,
|
|
AccessKind accessKind,
|
|
TSanKind tsanKind) {
|
|
ManagedValue addr;
|
|
if (component.isPhysical()) {
|
|
addr = std::move(component.asPhysical()).offset(SGF, loc, base, accessKind);
|
|
} else {
|
|
auto &lcomponent = component.asLogical();
|
|
addr = std::move(lcomponent).getMaterialized(SGF, loc, base, accessKind);
|
|
}
|
|
|
|
if (!SGF.getASTContext().LangOpts.DisableTsanInoutInstrumentation &&
|
|
SGF.getModule().getOptions().Sanitize == SanitizerKind::Thread &&
|
|
tsanKind == TSanKind::InoutAccess && !component.isRValue()) {
|
|
emitTsanInoutAccess(SGF, loc, addr);
|
|
}
|
|
|
|
return addr;
|
|
}
|
|
|
|
/// Find the last component of the given lvalue and derive a base
|
|
/// location for it.
|
|
static PathComponent &&
|
|
drillToLastComponent(SILGenFunction &SGF,
|
|
SILLocation loc,
|
|
LValue &&lv,
|
|
ManagedValue &addr,
|
|
AccessKind accessKind,
|
|
TSanKind tsanKind = TSanKind::None) {
|
|
assert(lv.begin() != lv.end() &&
|
|
"lvalue must have at least one component");
|
|
|
|
// Remember all the access kinds we needed along the path.
|
|
SmallVector<AccessKind, 8> pathAccessKinds;
|
|
for (auto i = lv.end(), e = lv.begin() + 1; i != e; --i) {
|
|
pathAccessKinds.push_back(accessKind);
|
|
accessKind = (*(i-1))->getBaseAccessKind(SGF, accessKind);
|
|
}
|
|
|
|
for (auto i = lv.begin(), e = lv.end() - 1; i != e; ++i) {
|
|
addr = drillIntoComponent(SGF, loc, std::move(**i), addr, accessKind,
|
|
tsanKind);
|
|
accessKind = pathAccessKinds.pop_back_val();
|
|
}
|
|
|
|
return std::move(**(lv.end() - 1));
|
|
}
|
|
|
|
RValue SILGenFunction::emitLoadOfLValue(SILLocation loc, LValue &&src,
|
|
SGFContext C, bool isGuaranteedValid) {
|
|
// Any writebacks should be scoped to after the load.
|
|
FormalEvaluationScope scope(*this);
|
|
|
|
ManagedValue addr;
|
|
PathComponent &&component =
|
|
drillToLastComponent(*this, loc, std::move(src), addr, AccessKind::Read);
|
|
|
|
// If the last component is physical, just drill down and load from it.
|
|
if (component.isPhysical()) {
|
|
addr = std::move(component.asPhysical())
|
|
.offset(*this, loc, addr, AccessKind::Read);
|
|
return RValue(*this, loc, src.getSubstFormalType(),
|
|
emitLoad(loc, addr.getValue(),
|
|
getTypeLowering(src.getTypeOfRValue()), C, IsNotTake,
|
|
isGuaranteedValid));
|
|
}
|
|
|
|
// If the last component is logical, just emit a get.
|
|
return std::move(component.asLogical()).get(*this, loc, addr, C);
|
|
}
|
|
|
|
ManagedValue SILGenFunction::emitAddressOfLValue(SILLocation loc,
|
|
LValue &&src,
|
|
AccessKind accessKind,
|
|
TSanKind tsanKind) {
|
|
ManagedValue addr;
|
|
PathComponent &&component =
|
|
drillToLastComponent(*this, loc, std::move(src), addr, accessKind,
|
|
tsanKind);
|
|
|
|
addr = drillIntoComponent(*this, loc, std::move(component), addr, accessKind,
|
|
tsanKind);
|
|
assert(addr.getType().isAddress() &&
|
|
"resolving lvalue did not give an address");
|
|
return ManagedValue::forLValue(addr.getValue());
|
|
}
|
|
|
|
void SILGenFunction::emitAssignToLValue(SILLocation loc, RValue &&src,
|
|
LValue &&dest) {
|
|
FormalEvaluationScope scope(*this);
|
|
|
|
// Peephole: instead of materializing and then assigning into a
|
|
// translation component, untransform the value first.
|
|
while (dest.isLastComponentTranslation()) {
|
|
src = std::move(dest.getLastTranslationComponent())
|
|
.untranslate(*this, loc, std::move(src));
|
|
dest.dropLastTranslationComponent();
|
|
}
|
|
|
|
// Resolve all components up to the last, keeping track of value-type logical
|
|
// properties we need to write back to.
|
|
ManagedValue destAddr;
|
|
PathComponent &&component =
|
|
drillToLastComponent(*this, loc, std::move(dest), destAddr,
|
|
AccessKind::ReadWrite);
|
|
|
|
// Write to the tail component.
|
|
if (component.isPhysical()) {
|
|
auto finalDestAddr =
|
|
std::move(component.asPhysical()).offset(*this, loc, destAddr,
|
|
AccessKind::Write);
|
|
|
|
std::move(src).assignInto(*this, loc, finalDestAddr.getValue());
|
|
} else {
|
|
std::move(component.asLogical()).set(*this, loc, std::move(src), destAddr);
|
|
}
|
|
|
|
// The writeback scope closing will propagate the value back up through the
|
|
// writeback chain.
|
|
}
|
|
|
|
void SILGenFunction::emitCopyLValueInto(SILLocation loc, LValue &&src,
|
|
Initialization *dest) {
|
|
auto skipPeephole = [&]{
|
|
auto loaded = emitLoadOfLValue(loc, std::move(src), SGFContext(dest));
|
|
if (!loaded.isInContext())
|
|
std::move(loaded).forwardInto(*this, loc, dest);
|
|
};
|
|
|
|
// If the source is a physical lvalue, the destination is a single address,
|
|
// and there's no semantic conversion necessary, do a copy_addr from the
|
|
// lvalue into the destination.
|
|
if (!src.isPhysical())
|
|
return skipPeephole();
|
|
if (!dest->canPerformInPlaceInitialization())
|
|
return skipPeephole();
|
|
auto destAddr = dest->getAddressForInPlaceInitialization(*this, loc);
|
|
assert(src.getTypeOfRValue().getSwiftRValueType()
|
|
== destAddr->getType().getSwiftRValueType());
|
|
|
|
auto srcAddr = emitAddressOfLValue(loc, std::move(src), AccessKind::Read)
|
|
.getUnmanagedValue();
|
|
B.createCopyAddr(loc, srcAddr, destAddr, IsNotTake, IsInitialization);
|
|
dest->finishInitialization(*this);
|
|
}
|
|
|
|
void SILGenFunction::emitAssignLValueToLValue(SILLocation loc, LValue &&src,
|
|
LValue &&dest) {
|
|
// Only perform the peephole if both operands are physical, there's no
|
|
// semantic conversion necessary, and exclusivity enforcement
|
|
// is not enabled. The peephole interferes with exclusivity enforcement
|
|
// because it causes the formal accesses to the source and destination to
|
|
// overlap.
|
|
bool peepholeConflict =
|
|
!src.isObviouslyNonConflicting(dest, AccessKind::Read, AccessKind::Write);
|
|
|
|
if (peepholeConflict || !src.isPhysical() || !dest.isPhysical()) {
|
|
RValue loaded = emitLoadOfLValue(loc, std::move(src), SGFContext());
|
|
emitAssignToLValue(loc, std::move(loaded), std::move(dest));
|
|
return;
|
|
}
|
|
|
|
auto srcAddr = emitAddressOfLValue(loc, std::move(src), AccessKind::Read)
|
|
.getUnmanagedValue();
|
|
auto destAddr = emitAddressOfLValue(loc, std::move(dest), AccessKind::Write)
|
|
.getUnmanagedValue();
|
|
|
|
if (srcAddr->getType() == destAddr->getType()) {
|
|
B.createCopyAddr(loc, srcAddr, destAddr, IsNotTake, IsNotInitialization);
|
|
} else {
|
|
// If there's a semantic conversion necessary, do a load then assign.
|
|
auto loaded = emitLoad(loc, srcAddr, getTypeLowering(src.getTypeOfRValue()),
|
|
SGFContext(),
|
|
IsNotTake);
|
|
loaded.assignInto(*this, loc, destAddr);
|
|
}
|
|
}
|