mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
Storing this separately is unnecessary since we already serialize the enum element's interface type. Also, this eliminates one of the few remaining cases where we serialize archetypes during AST serialization.
562 lines
21 KiB
C++
562 lines
21 KiB
C++
//===--- RCIdentityAnalysis.cpp -------------------------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/SILOptimizer/Analysis/RCIdentityAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
|
|
#include "swift/SIL/SILInstruction.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
|
|
using namespace swift;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utility
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Returns true if V is an enum without a payload.
|
|
///
|
|
/// We perform this computation by checking if V is an enum instruction without
|
|
/// an argument. I am using a helper here in case I find more cases where I need
|
|
/// to expand it.
|
|
static bool isNoPayloadEnum(SILValue V) {
|
|
auto *EI = dyn_cast<EnumInst>(V);
|
|
if (!EI)
|
|
return false;
|
|
|
|
return !EI->hasOperand();
|
|
}
|
|
|
|
/// RC identity is more than a guarantee that references refer to the same
|
|
/// object. It also means that reference counting operations on those references
|
|
/// have the same semantics. If the types on either side of a cast do not have
|
|
/// equivalent reference counting semantics, then the source and destination
|
|
/// values are not RC identical. For example, unchecked_addr_cast does not
|
|
/// necessarily preserve RC identity because it may cast from a
|
|
/// reference-counted type to a non-reference counted type, or from a larger to
|
|
/// a smaller struct with fewer references.
|
|
static bool isRCIdentityPreservingCast(ValueKind Kind) {
|
|
switch (Kind) {
|
|
case ValueKind::UpcastInst:
|
|
case ValueKind::UncheckedRefCastInst:
|
|
case ValueKind::UnconditionalCheckedCastInst:
|
|
case ValueKind::InitExistentialRefInst:
|
|
case ValueKind::OpenExistentialRefInst:
|
|
case ValueKind::RefToBridgeObjectInst:
|
|
case ValueKind::BridgeObjectToRefInst:
|
|
case ValueKind::ConvertFunctionInst:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RC Identity Root Instruction Casting
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static SILValue stripRCIdentityPreservingInsts(SILValue V) {
|
|
// First strip off RC identity preserving casts.
|
|
if (isRCIdentityPreservingCast(V->getKind()))
|
|
return cast<SILInstruction>(V)->getOperand(0);
|
|
|
|
// Then if we have a struct_extract that is extracting a non-trivial member
|
|
// from a struct with no other non-trivial members, a ref count operation on
|
|
// the struct is equivalent to a ref count operation on the extracted
|
|
// member. Strip off the extract.
|
|
if (auto *SEI = dyn_cast<StructExtractInst>(V))
|
|
if (SEI->isFieldOnlyNonTrivialField())
|
|
return SEI->getOperand();
|
|
|
|
// If we have a struct instruction with only one non-trivial stored field, the
|
|
// only reference count that can be modified is the non-trivial field. Return
|
|
// the non-trivial field.
|
|
if (auto *SI = dyn_cast<StructInst>(V))
|
|
if (SILValue NewValue = SI->getUniqueNonTrivialFieldValue())
|
|
return NewValue;
|
|
|
|
// If we have an unchecked_enum_data, strip off the unchecked_enum_data.
|
|
if (auto *UEDI = dyn_cast<UncheckedEnumDataInst>(V))
|
|
return UEDI->getOperand();
|
|
|
|
// If we have an enum instruction with a payload, strip off the enum to
|
|
// expose the enum's payload.
|
|
if (auto *EI = dyn_cast<EnumInst>(V))
|
|
if (EI->hasOperand())
|
|
return EI->getOperand();
|
|
|
|
// If we have a tuple_extract that is extracting the only non trivial member
|
|
// of a tuple, a retain_value on the tuple is equivalent to a retain_value on
|
|
// the extracted value.
|
|
if (auto *TEI = dyn_cast<TupleExtractInst>(V))
|
|
if (TEI->isEltOnlyNonTrivialElt())
|
|
return TEI->getOperand();
|
|
|
|
// If we are forming a tuple and the tuple only has one element with reference
|
|
// semantics, a retain_value on the tuple is equivalent to a retain value on
|
|
// the tuple operand.
|
|
if (auto *TI = dyn_cast<TupleInst>(V))
|
|
if (SILValue NewValue = TI->getUniqueNonTrivialElt())
|
|
return NewValue;
|
|
|
|
// Any SILArgument with a single predecessor from a "phi" perspective is
|
|
// dead. In such a case, the SILArgument must be rc-identical.
|
|
//
|
|
// This is the easy case. The difficult case is when you have an argument with
|
|
// /multiple/ predecessors.
|
|
//
|
|
// We do not need to insert this SILArgument into the visited SILArgument set
|
|
// since we will only visit it twice if we go around a back edge due to a
|
|
// different SILArgument that is actually being used for its phi node like
|
|
// purposes.
|
|
if (auto *A = dyn_cast<SILPHIArgument>(V))
|
|
if (SILValue Result = A->getSingleIncomingValue())
|
|
return Result;
|
|
|
|
return SILValue();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RC Identity Dominance Argument Analysis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Returns true if FirstIV is a SILArgument or SILInstruction in a BB that
|
|
/// dominates the BB of A.
|
|
static bool dominatesArgument(DominanceInfo *DI, SILArgument *A,
|
|
SILValue FirstIV) {
|
|
SILBasicBlock *OtherBB = FirstIV->getParentBlock();
|
|
if (!OtherBB || OtherBB == A->getParent())
|
|
return false;
|
|
return DI->dominates(OtherBB, A->getParent());
|
|
}
|
|
|
|
/// V is the incoming value for the SILArgument A on at least one path. Find a
|
|
/// value that is trivially RC-identical to V and dominates the argument's
|
|
/// block. If such a value exists, it is a candidate for RC-identity with the
|
|
/// argument itself--the caller must verify this after evaluating all paths.
|
|
SILValue RCIdentityFunctionInfo::stripOneRCIdentityIncomingValue(SILArgument *A,
|
|
SILValue V) {
|
|
// Strip off any non-argument instructions from IV. We know that this will
|
|
// always result in RCIdentical values without additional analysis.
|
|
while (SILValue NewIV = stripRCIdentityPreservingInsts(V))
|
|
V = NewIV;
|
|
|
|
// Then make sure that this incoming value is from a BB which is different
|
|
// from our BB and dominates our BB. Otherwise, return SILValue() to bail.
|
|
DominanceInfo *DI = DA->get(A->getFunction());
|
|
if (!dominatesArgument(DI, A, V))
|
|
return SILValue();
|
|
|
|
// In the future attempt to recursively strip here. We are being more
|
|
// conservative than most likely necessary.
|
|
return V;
|
|
}
|
|
|
|
/// Returns true if we proved that RCIdentity has a non-payloaded enum case,
|
|
/// false if RCIdentity has a payloaded enum case, and None if we failed to find
|
|
/// anything.
|
|
static llvm::Optional<bool> proveNonPayloadedEnumCase(SILBasicBlock *BB,
|
|
SILValue RCIdentity) {
|
|
// Then see if BB has one predecessor... if it does not, return None so we
|
|
// keep searching up the domtree.
|
|
SILBasicBlock *SinglePred = BB->getSinglePredecessorBlock();
|
|
if (!SinglePred)
|
|
return None;
|
|
|
|
// Check if SinglePred has a switch_enum terminator switching on
|
|
// RCIdentity... If it does not, return None so we keep searching up the
|
|
// domtree.
|
|
auto *SEI = dyn_cast<SwitchEnumInst>(SinglePred->getTerminator());
|
|
if (!SEI || SEI->getOperand() != RCIdentity)
|
|
return None;
|
|
|
|
// Then return true if along the edge from the SEI to BB, RCIdentity has a
|
|
// non-payloaded enum value.
|
|
NullablePtr<EnumElementDecl> Decl = SEI->getUniqueCaseForDestination(BB);
|
|
if (Decl.isNull())
|
|
return None;
|
|
return !Decl.get()->getArgumentInterfaceType();
|
|
}
|
|
|
|
bool RCIdentityFunctionInfo::
|
|
findDominatingNonPayloadedEdge(SILBasicBlock *IncomingEdgeBB,
|
|
SILValue RCIdentity) {
|
|
// First grab the NonPayloadedEnumBB and RCIdentityBB. If we cannot find
|
|
// either of them, return false.
|
|
SILBasicBlock *RCIdentityBB = RCIdentity->getParentBlock();
|
|
if (!RCIdentityBB)
|
|
return false;
|
|
|
|
// Make sure that the incoming edge bb is not the RCIdentityBB. We are not
|
|
// trying to handle this case here, so simplify by just bailing if we detect
|
|
// it.
|
|
//
|
|
// I think the only way this can happen is if we have a switch_enum of some
|
|
// sort with multiple incoming values going into the destination BB. We are
|
|
// not interested in handling that case anyways.
|
|
//
|
|
// FIXME: If we ever split all critical edges, this should be relooked at.
|
|
if (IncomingEdgeBB == RCIdentityBB)
|
|
return false;
|
|
|
|
// Now we know that RCIdentityBB and IncomingEdgeBB are different. Prove that
|
|
// RCIdentityBB dominates IncomingEdgeBB.
|
|
SILFunction *F = RCIdentityBB->getParent();
|
|
|
|
// First make sure that IncomingEdgeBB dominates NonPayloadedEnumBB. If not,
|
|
// return false.
|
|
DominanceInfo *DI = DA->get(F);
|
|
if (!DI->dominates(RCIdentityBB, IncomingEdgeBB))
|
|
return false;
|
|
|
|
// Now walk up the dominator tree from IncomingEdgeBB to RCIdentityBB and see
|
|
// if we can find a use of RCIdentity that dominates IncomingEdgeBB and
|
|
// enables us to know that RCIdentity must be a no-payload enum along
|
|
// IncomingEdge. We don't care if the case or enum of RCIdentity match the
|
|
// case or enum along RCIdentityBB since a pairing of retain, release of two
|
|
// non-payloaded enums can always be eliminated (since we can always eliminate
|
|
// ref count operations on non-payloaded enums).
|
|
|
|
// RCIdentityBB must have a valid dominator tree node.
|
|
auto *EndDomNode = DI->getNode(RCIdentityBB);
|
|
if (!EndDomNode)
|
|
return false;
|
|
|
|
for (auto *Node = DI->getNode(IncomingEdgeBB); Node; Node = Node->getIDom()) {
|
|
// Search for uses of RCIdentity in Node->getBlock() that will enable us to
|
|
// know that it has a non-payloaded enum case.
|
|
SILBasicBlock *DominatingBB = Node->getBlock();
|
|
llvm::Optional<bool> Result =
|
|
proveNonPayloadedEnumCase(DominatingBB, RCIdentity);
|
|
|
|
// If we found either a signal of a payloaded or a non-payloaded enum,
|
|
// return that value.
|
|
if (Result.hasValue())
|
|
return Result.getValue();
|
|
|
|
// If we didn't reach RCIdentityBB, keep processing up the DomTree.
|
|
if (DominatingBB != RCIdentityBB)
|
|
continue;
|
|
|
|
// Otherwise, we failed to find any interesting information, return false.
|
|
return false;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static SILValue allIncomingValuesEqual(
|
|
llvm::SmallVectorImpl<std::pair<SILBasicBlock *,
|
|
SILValue >> &IncomingValues) {
|
|
SILValue First = stripRCIdentityPreservingInsts(IncomingValues[0].second);
|
|
if (std::all_of(std::next(IncomingValues.begin()), IncomingValues.end(),
|
|
[&First](std::pair<SILBasicBlock *, SILValue> P) -> bool {
|
|
return stripRCIdentityPreservingInsts(P.second) == First;
|
|
}))
|
|
return First;
|
|
return SILValue();
|
|
}
|
|
|
|
/// Return the underlying SILValue after stripping off SILArguments that cannot
|
|
/// affect RC identity.
|
|
///
|
|
/// This code is meant to enable RCIdentity to be ascertained in the following
|
|
/// cases:
|
|
///
|
|
/// 1. Where we have an unneeded phi node (i.e. all incoming values are the same
|
|
/// argument). This helps to avoid phase ordering issues (simplify-cfg *should*
|
|
/// catch this).
|
|
///
|
|
/// 2. Cases where we break apart an enum and then reform it from its individual
|
|
/// cases. The main problem here is when the non-payloaded cases are created
|
|
/// with new enum instructions (which happens when casting sometimes):
|
|
///
|
|
/// bb9:
|
|
/// ...
|
|
/// switch_enum %0 : $Optional<T>, #Optional.none: bb10,
|
|
/// #Optional.some: bb11
|
|
///
|
|
/// bb10:
|
|
/// %1 = enum $Optional<U>, #Optional.none
|
|
/// br bb12(%1 : $Optional<U>)
|
|
///
|
|
/// bb11:
|
|
/// %2 = some_cast_to_u %0 : ...
|
|
/// %3 = enum $Optional<U>, #Optional.some, %2 : $U
|
|
/// br bb12(%3 : $Optional<U>)
|
|
///
|
|
/// bb12(%4 : $Optional<U>):
|
|
/// ...
|
|
///
|
|
/// In this case, we want to be able to infer that %0 and %4 have the same ref
|
|
/// count identity. The key thing we have to be careful of is that %0 must have
|
|
/// the same enum case as %1 along the edge from bb10 to bb12. Otherwise, we can
|
|
/// potentially mismatch
|
|
SILValue RCIdentityFunctionInfo::stripRCIdentityPreservingArgs(SILValue V,
|
|
unsigned RecursionDepth) {
|
|
auto *A = dyn_cast<SILPHIArgument>(V);
|
|
if (!A) {
|
|
return SILValue();
|
|
}
|
|
|
|
// If we already visited this BB, don't reprocess it since we have a cycle.
|
|
if (!VisitedArgs.insert(A).second) {
|
|
return SILValue();
|
|
}
|
|
|
|
// Ok, this is the first time that we have visited this BB. Get the
|
|
// SILArgument's incoming values. If we don't have an incoming value for each
|
|
// one of our predecessors, just return SILValue().
|
|
llvm::SmallVector<std::pair<SILBasicBlock *, SILValue>, 8> IncomingValues;
|
|
if (!A->getIncomingValues(IncomingValues) || IncomingValues.empty()) {
|
|
return SILValue();
|
|
}
|
|
|
|
unsigned IVListSize = IncomingValues.size();
|
|
|
|
assert(IVListSize != 1 && "Should have been handled in "
|
|
"stripRCIdentityPreservingInsts");
|
|
|
|
// Ok, we have multiple predecessors. See if all of them are the same
|
|
// value. If so, just return that value.
|
|
//
|
|
// This returns a SILValue to save a little bit of compile time since we
|
|
// already compute that value here.
|
|
if (SILValue V = allIncomingValuesEqual(IncomingValues))
|
|
return V;
|
|
|
|
// Ok, we have multiple predecessors. First find the first non-payloaded enum.
|
|
llvm::SmallVector<SILBasicBlock *, 8> NoPayloadEnumBBs;
|
|
unsigned i = 0;
|
|
for (; i < IVListSize && isNoPayloadEnum(IncomingValues[i].second); ++i) {
|
|
NoPayloadEnumBBs.push_back(IncomingValues[i].first);
|
|
}
|
|
|
|
// If we did not find any non-payloaded enum, there is no RC associated with
|
|
// this Phi node. Just return SILValue().
|
|
if (i == IVListSize)
|
|
return SILValue();
|
|
|
|
SILValue FirstIV =
|
|
stripOneRCIdentityIncomingValue(A, IncomingValues[i].second);
|
|
if (!FirstIV)
|
|
return SILValue();
|
|
|
|
while (i < IVListSize) {
|
|
SILBasicBlock *IVBB;
|
|
SILValue IV;
|
|
std::tie(IVBB, IV) = IncomingValues[i++];
|
|
|
|
// If IV is a no payload enum, we don't care about it. Skip it.
|
|
if (isNoPayloadEnum(IV)) {
|
|
NoPayloadEnumBBs.push_back(IVBB);
|
|
continue;
|
|
}
|
|
|
|
// Try to strip off the RCIdentityPreservingArg for IV. If it matches
|
|
// FirstIV, we may be able to succeed here.
|
|
if (FirstIV == stripOneRCIdentityIncomingValue(A, IV))
|
|
continue;
|
|
|
|
// Otherwise, just return SILValue().
|
|
return SILValue();
|
|
}
|
|
|
|
// We now know that all incoming values, other than NoPayloadEnums, are
|
|
// FirstIV after trivially stripping RCIdentical instructions. If we have no
|
|
// NoPayloadEnums, then we know that this Arg's RCIdentity must be FirstIV.
|
|
if (NoPayloadEnumBBs.empty())
|
|
return FirstIV;
|
|
|
|
// At this point, we know that we have *some* NoPayloadEnums. If FirstIV is
|
|
// not an enum, then we must bail. We do not try to analyze this case.
|
|
if (!FirstIV->getType().getEnumOrBoundGenericEnum())
|
|
return SILValue();
|
|
|
|
// Now we know that FirstIV is an enum and that all payloaded enum cases after
|
|
// just stripping off instructions are FirstIV. Now we need to make sure that
|
|
// each non-payloaded enum value is safe to ignore.
|
|
//
|
|
// Let IVE be the edge for the non-payloaded enum. It is only safe to perform
|
|
// this operation when there exists a dominating edge E' of IVE for which
|
|
// FirstIV also takes on a non-payloaded enum value.
|
|
if (std::any_of(NoPayloadEnumBBs.begin(), NoPayloadEnumBBs.end(),
|
|
[&](SILBasicBlock *BB) -> bool {
|
|
return !findDominatingNonPayloadedEdge(BB, FirstIV);
|
|
}))
|
|
return SILValue();
|
|
|
|
// Ok all our values match! Return FirstIV.
|
|
return FirstIV;
|
|
}
|
|
|
|
llvm::cl::opt<bool> StripOffArgs(
|
|
"enable-rc-identity-arg-strip", llvm::cl::init(true),
|
|
llvm::cl::desc("Should RC identity try to strip off arguments"));
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Top Level RC Identity Root Entrypoints
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SILValue RCIdentityFunctionInfo::stripRCIdentityPreservingOps(SILValue V,
|
|
unsigned RecursionDepth) {
|
|
while (true) {
|
|
// First strip off any RC identity preserving instructions. This is cheap.
|
|
if (SILValue NewV = stripRCIdentityPreservingInsts(V)) {
|
|
V = NewV;
|
|
continue;
|
|
}
|
|
|
|
if (!StripOffArgs)
|
|
break;
|
|
|
|
// Once we have done all of the easy work, try to see if we can strip off
|
|
// any RCIdentityPreserving args. This is potentially expensive since we
|
|
// need to perform additional stripping on the argument provided to this
|
|
// argument from each predecessor BB. There is a counter in
|
|
// getRCIdentityRootInner that ensures we don't do too many.
|
|
SILValue NewV = stripRCIdentityPreservingArgs(V, RecursionDepth);
|
|
if (!NewV)
|
|
break;
|
|
|
|
V = NewV;
|
|
}
|
|
|
|
return V;
|
|
}
|
|
|
|
|
|
SILValue RCIdentityFunctionInfo::getRCIdentityRootInner(SILValue V,
|
|
unsigned RecursionDepth) {
|
|
// Only allow this method to be recursed on for a limited number of times to
|
|
// make sure we don't explode compile time.
|
|
if (RecursionDepth >= MaxRecursionDepth)
|
|
return SILValue();
|
|
|
|
SILValue NewValue = stripRCIdentityPreservingOps(V, RecursionDepth);
|
|
if (!NewValue)
|
|
return SILValue();
|
|
|
|
// We can get back V if our analysis completely fails. There is no point in
|
|
// storing this value into the cache so just return it.
|
|
if (NewValue == V)
|
|
return V;
|
|
|
|
return NewValue;
|
|
}
|
|
|
|
SILValue RCIdentityFunctionInfo::getRCIdentityRoot(SILValue V) {
|
|
// Do we have it in the RCCache ?
|
|
auto Iter = RCCache.find(V);
|
|
if (Iter != RCCache.end())
|
|
return Iter->second;
|
|
|
|
SILValue Root = getRCIdentityRootInner(V, 0);
|
|
VisitedArgs.clear();
|
|
|
|
// If we fail to find a root, return V.
|
|
if (!Root)
|
|
return V;
|
|
|
|
// Make sure the cache does not grow too big.
|
|
if (RCCache.size() > MaxRCIdentityCacheSize)
|
|
RCCache.clear();
|
|
|
|
// Return and cache it.
|
|
return RCCache[V] = Root;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RCUser Analysis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Is this a user that represents an escape of user from ARC control. This
|
|
/// means that from an RC use perspective, the object can be ignored since it is
|
|
/// up to the frontend to communicate via fix_lifetime and mark_dependence these
|
|
/// dependencies.
|
|
static bool isNonOverlappingTrivialAccess(SILInstruction *User) {
|
|
if (auto *TEI = dyn_cast<TupleExtractInst>(User)) {
|
|
// If the tuple we are extracting from only has one non trivial element and
|
|
// we are not extracting from that element, this is an ARC escape.
|
|
return TEI->isTrivialEltOfOneRCIDTuple();
|
|
}
|
|
|
|
if (auto *SEI = dyn_cast<StructExtractInst>(User)) {
|
|
// If the struct we are extracting from only has one non trivial element and
|
|
// we are not extracting from that element, this is an ARC escape.
|
|
return SEI->isTrivialFieldOfOneRCIDStruct();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Return all recursive users of V, looking through users which propagate
|
|
/// RCIdentity. *NOTE* This ignores obvious ARC escapes where the a potential
|
|
/// user of the RC is not managed by ARC.
|
|
///
|
|
/// We only use the instruction analysis here.
|
|
void RCIdentityFunctionInfo::getRCUsers(
|
|
SILValue InputValue, llvm::SmallVectorImpl<SILInstruction *> &Users) {
|
|
// Add V to the worklist.
|
|
llvm::SmallVector<SILValue, 8> Worklist;
|
|
Worklist.push_back(InputValue);
|
|
|
|
// A set used to ensure we only visit users once.
|
|
llvm::SmallPtrSet<SILInstruction *, 8> VisitedInsts;
|
|
|
|
// Then until we finish the worklist...
|
|
while (!Worklist.empty()) {
|
|
// Pop off the top value.
|
|
SILValue V = Worklist.pop_back_val();
|
|
|
|
// For each user of V...
|
|
for (auto *Op : V->getUses()) {
|
|
SILInstruction *User = Op->getUser();
|
|
|
|
// If we have already visited this user, continue.
|
|
if (!VisitedInsts.insert(User).second)
|
|
continue;
|
|
|
|
// Otherwise attempt to strip off one layer of RC identical instructions
|
|
// from User.
|
|
SILValue StrippedRCID = stripRCIdentityPreservingInsts(User);
|
|
|
|
// If StrippedRCID is not V, then we know that User's result is
|
|
// conservatively not RCIdentical to V.
|
|
if (StrippedRCID != V) {
|
|
// If the user is extracting a trivial field of an aggregate structure
|
|
// that does not overlap with the ref counted part of the aggregate, we
|
|
// can ignore it.
|
|
if (isNonOverlappingTrivialAccess(User))
|
|
continue;
|
|
|
|
// Otherwise, it is an RC user that our user wants.
|
|
Users.push_back(User);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, add all of User's uses to our list to continue searching.
|
|
Worklist.push_back(User);
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Main Entry Point
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void RCIdentityAnalysis::initialize(SILPassManager *PM) {
|
|
DA = PM->getAnalysis<DominanceAnalysis>();
|
|
}
|
|
|
|
SILAnalysis *swift::createRCIdentityAnalysis(SILModule *M) {
|
|
return new RCIdentityAnalysis(M);
|
|
}
|