Files
swift-mirror/lib/SILOptimizer/Mandatory/AccessEnforcementSelection.cpp

410 lines
13 KiB
C++

//===--- AccessEnforcementSelection.cpp - Select access enforcement -------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// This pass eliminates 'unknown' access enforcement by selecting either
/// static or dynamic enforcement.
///
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "access-enforcement-selection"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILUndef.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
using namespace swift;
static void setStaticEnforcement(BeginAccessInst *access) {
// TODO: delete if we're not using static enforcement?
access->setEnforcement(SILAccessEnforcement::Static);
DEBUG(llvm::dbgs() << "Static Access: " << *access);
}
static void setDynamicEnforcement(BeginAccessInst *access) {
// TODO: delete if we're not using dynamic enforcement?
access->setEnforcement(SILAccessEnforcement::Dynamic);
DEBUG(llvm::dbgs() << "Dynamic Access: " << *access);
}
namespace {
class SelectEnforcement {
AllocBoxInst *Box;
/// A state for tracking escape information about a variable.
/// StateMap only has entries for blocks for which the variable
/// has potentially escaped at exit.
struct State {
bool IsInWorklist = false;
// At least one of the following must be true.
bool HasEscape = false;
bool HasPotentiallyEscapedAtEntry = false;
// In a more advanced problem, this could easily be passed a State.
bool adjustForEscapeInPredecessor() {
bool updateSuccessors = false;
if (!HasPotentiallyEscapedAtEntry) {
HasPotentiallyEscapedAtEntry = true;
updateSuccessors = !HasEscape;
}
return updateSuccessors;
}
};
llvm::DenseMap<SILBasicBlock*, State> StateMap;
/// All the accesses in the function.
SmallVector<BeginAccessInst*, 8> Accesses;
/// All the escapes in the function.
SmallPtrSet<SILInstruction*, 8> Escapes;
/// A worklist we use for various purposes.
SmallVector<SILBasicBlock*, 8> Worklist;
public:
SelectEnforcement(AllocBoxInst *box) : Box(box) {}
void run();
private:
void analyzeUsesOfBox();
void analyzeProjection(ProjectBoxInst *projection);
void propagateEscapes();
void propagateEscapesFrom(SILBasicBlock *bb);
bool hasPotentiallyEscapedAt(SILInstruction *inst);
typedef llvm::SmallSetVector<SILBasicBlock*, 8> BlockSetVector;
void findBlocksAccessedAcross(EndAccessInst *endAccess,
BlockSetVector &blocksAccessedAcross);
bool hasPotentiallyEscapedAtAnyReachableBlock(
BeginAccessInst *access, BlockSetVector &blocksAccessedAcross);
void updateAccesses();
void updateAccess(BeginAccessInst *access);
};
} // end anonymous namespace
void SelectEnforcement::run() {
// Set up the data-flow problem.
analyzeUsesOfBox();
// Run the data-flow problem.
propagateEscapes();
// Update all the accesses.
updateAccesses();
}
void SelectEnforcement::analyzeUsesOfBox() {
// Collect accesses rooted off of projections.
for (auto use : Box->getUses()) {
auto user = use->getUser();
if (auto projection = dyn_cast<ProjectBoxInst>(user)) {
analyzeProjection(projection);
continue;
}
// Ignore certain other uses that do not capture the value.
if (isa<StrongRetainInst>(user) ||
isa<StrongReleaseInst>(user) ||
isa<DestroyValueInst>(user) ||
isa<DeallocBoxInst>(user))
continue;
// Treat everything else as an escape:
// Add it to the escapes set.
Escapes.insert(user);
//
auto userBB = user->getParent();
auto &state = StateMap[userBB];
if (!state.IsInWorklist) {
state.HasEscape = true;
state.IsInWorklist = true;
Worklist.push_back(userBB);
}
assert(state.HasEscape);
assert(state.IsInWorklist);
}
assert(!Accesses.empty() && "didn't find original access!");
}
void SelectEnforcement::analyzeProjection(ProjectBoxInst *projection) {
for (auto use : projection->getUses()) {
auto user = use->getUser();
// Collect accesses.
if (auto access = dyn_cast<BeginAccessInst>(user)) {
if (access->getEnforcement() == SILAccessEnforcement::Unknown)
Accesses.push_back(access);
}
}
}
void SelectEnforcement::propagateEscapes() {
while (!Worklist.empty()) {
auto bb = Worklist.pop_back_val();
auto it = StateMap.find(bb);
assert(it != StateMap.end() &&
"block was in worklist but doesn't have a tracking state");
auto &state = it->second;
assert(state.HasEscape || state.HasPotentiallyEscapedAtEntry);
state.IsInWorklist = false;
propagateEscapesFrom(bb);
}
}
/// Given that the box potentially escaped before we exited the
/// given block, propagate that information to all of its successors.
void SelectEnforcement::propagateEscapesFrom(SILBasicBlock *bb) {
assert(StateMap.count(bb));
// Iterate over the successors of the block.
for (SILBasicBlock *succ : bb->getSuccessors()) {
auto &succState = StateMap[succ];
// If updating the successor changes it in a way that will
// require us to update its successors, add it to the worklist.
if (succState.adjustForEscapeInPredecessor()) {
if (!succState.IsInWorklist) {
succState.IsInWorklist = true;
Worklist.push_back(succ);
}
}
}
}
bool SelectEnforcement::hasPotentiallyEscapedAt(SILInstruction *point) {
auto bb = point->getParent();
// If we're not tracking anything for the whole block containing
// the instruction, we're done; it hasn't escaped here.
auto it = StateMap.find(bb);
if (it == StateMap.end())
return false;
// If the tracking information says there are escapes before entry,
// we're done; it has potentially escaped.
const auto &state = it->second;
if (state.HasPotentiallyEscapedAtEntry)
return true;
// Okay, there must be an escape within this block.
assert(state.HasEscape);
for (auto ii = point->getIterator(), ie = bb->begin(); ii != ie; ) {
auto inst = &*--ii;
// Maybe just record the first escape in the block and see if we
// come after it?
if (Escapes.count(inst))
return true;
}
return false;
}
/// Add all blocks to `Worklist` between the given `endAccess` and its
/// `begin_access` in which the access is active at the end of the block.
void SelectEnforcement::findBlocksAccessedAcross(
EndAccessInst *endAccess, BlockSetVector &blocksAccessedAcross) {
// Fast path: we're not tracking any escapes. (But the box should
// probably have been promoted to the stack in this case.)
if (StateMap.empty())
return;
SILBasicBlock *beginBB = endAccess->getBeginAccess()->getParent();
if (endAccess->getParent() == beginBB)
return;
assert(Worklist.empty());
Worklist.push_back(endAccess->getParent());
while (!Worklist.empty()) {
SILBasicBlock *bb = Worklist.pop_back_val();
for (auto *predBB : bb->getPredecessorBlocks()) {
if (!blocksAccessedAcross.insert(predBB)) continue;
if (predBB == beginBB) continue;
Worklist.push_back(predBB);
}
}
}
bool SelectEnforcement::hasPotentiallyEscapedAtAnyReachableBlock(
BeginAccessInst *access, BlockSetVector &blocksAccessedAcross) {
assert(Worklist.empty());
SmallPtrSet<SILBasicBlock*, 8> visited;
// Don't follow any paths that lead to an end_access.
for (auto endAccess : access->getEndAccesses())
visited.insert(endAccess->getParent());
/// Initialize the worklist with all blocks that exit the access path.
for (SILBasicBlock *bb : blocksAccessedAcross) {
for (SILBasicBlock *succBB : bb->getSuccessorBlocks()) {
if (blocksAccessedAcross.count(succBB)) continue;
if (visited.insert(succBB).second)
Worklist.push_back(succBB);
}
}
while (!Worklist.empty()) {
SILBasicBlock *bb = Worklist.pop_back_val();
assert(visited.count(bb));
// If we're tracking information for this block, there's an escape.
if (StateMap.count(bb))
return true;
// Add all reachable successors.
for (SILBasicBlock *succ : bb->getSuccessors()) {
if (visited.insert(succ).second)
Worklist.push_back(succ);
}
}
// No reachable block has an escape.
return false;
}
void SelectEnforcement::updateAccesses() {
for (auto access : Accesses) {
updateAccess(access);
}
}
void SelectEnforcement::updateAccess(BeginAccessInst *access) {
assert(access->getEnforcement() == SILAccessEnforcement::Unknown);
// Check whether the variable escaped before any of the end_accesses.
BlockSetVector blocksAccessedAcross;
for (auto endAccess : access->getEndAccesses()) {
if (hasPotentiallyEscapedAt(endAccess))
return setDynamicEnforcement(access);
// Add all blocks to blocksAccessedAcross between begin_access and this
// end_access.
findBlocksAccessedAcross(endAccess, blocksAccessedAcross);
}
assert(blocksAccessedAcross.empty()
|| blocksAccessedAcross.count(access->getParent()));
// For every path through this access that doesn't reach an end_access, check
// if any block reachable from that path can see an escaped value.
if (hasPotentiallyEscapedAtAnyReachableBlock(access, blocksAccessedAcross)) {
return setDynamicEnforcement(access);
}
// Otherwise, use static enforcement.
setStaticEnforcement(access);
}
namespace {
/// The pass.
struct AccessEnforcementSelection : SILFunctionTransform {
void run() override {
DEBUG(llvm::dbgs() << "Access Enforcement Selection in "
<< getFunction()->getName() << "\n");
for (auto &bb : *getFunction()) {
for (auto ii = bb.begin(), ie = bb.end(); ii != ie; ) {
SILInstruction *inst = &*ii;
++ii;
if (auto access = dyn_cast<BeginAccessInst>(inst))
handleAccess(access);
if (auto access = dyn_cast<BeginUnpairedAccessInst>(inst))
assert(access->getEnforcement() == SILAccessEnforcement::Dynamic);
}
}
invalidateAnalysis(SILAnalysis::InvalidationKind::Instructions);
}
void handleAccess(BeginAccessInst *access) {
if (access->getEnforcement() != SILAccessEnforcement::Unknown)
return;
auto address = access->getOperand();
assert(!isa<MarkUninitializedInst>(address) &&
"pass should be run after definite initialization");
if (auto box = dyn_cast<ProjectBoxInst>(address)) {
return handleAccessToBox(access, box);
}
if (auto arg = dyn_cast<SILFunctionArgument>(address)) {
switch (arg->getArgumentConvention()) {
case SILArgumentConvention::Indirect_Inout:
// `inout` arguments are checked on the caller side, either statically
// or dynamically if necessary. The @inout does not alias and cannot
// escape within the callee, so static enforcement is always sufficient.
setStaticEnforcement(access);
break;
case SILArgumentConvention::Indirect_InoutAliasable:
// `inout_aliasable` are not enforced on the caller side. Dynamic
// enforcement is required unless we have special knowledge of how this
// closure is used at its call-site.
//
// TODO: optimize closures passed to call sites in which the captured
// variable is not modified by any closure passed to the same call.
setDynamicEnforcement(access);
break;
default:
// @in/@in_guaranteed cannot be mutably accessed, mutably captured, or
// passed as inout.
//
// FIXME: When we have borrowed arguments, a "read" needs to be enforced
// on the caller side.
llvm_unreachable("Expecting an inout argument.");
}
return;
}
// If we're not accessing a box or argument, we must've lowered to a stack
// element. Other sources of access are either outright dynamic (GlobalAddr,
// RefElementAddr), or only exposed after mandatory inlining (nested
// dependent BeginAccess).
//
// Running before diagnostic constant propagation requires handling 'undef'.
assert(isa<AllocStackInst>(address) || isa<SILUndef>(address));
setStaticEnforcement(access);
}
void handleAccessToBox(BeginAccessInst *access, ProjectBoxInst *projection) {
// If we didn't allocate the box, assume that we need to use
// dynamic enforcement.
// TODO: use static enforcement in certain provable cases.
auto box = dyn_cast<AllocBoxInst>(projection->getOperand());
if (!box) {
setDynamicEnforcement(access);
return;
}
SelectEnforcement(box).run();
}
};
} // end anonymous namespace
SILTransform *swift::createAccessEnforcementSelection() {
return new AccessEnforcementSelection();
}