Files
swift-mirror/lib/AST/Expr.cpp
Doug Gregor f1be1ed572 Implement super mesage sends for @objc property and subscript getters/setters.
Fixes <rdar://problem/15933008>.


Swift SVN r13100
2014-01-29 07:45:53 +00:00

414 lines
13 KiB
C++

//===--- Expr.cpp - Swift Language Expression ASTs ------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the Expr class and subclasses.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Expr.h"
#include "swift/AST/Decl.h" // FIXME: Bad dependency
#include "swift/AST/Stmt.h"
#include "swift/AST/AST.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/TypeLoc.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Twine.h"
using namespace swift;
//===----------------------------------------------------------------------===//
// Expr methods.
//===----------------------------------------------------------------------===//
// Only allow allocation of Stmts using the allocator in ASTContext.
void *Expr::operator new(size_t Bytes, ASTContext &C,
unsigned Alignment) {
return C.Allocate(Bytes, Alignment);
}
StringRef Expr::getKindName(ExprKind K) {
switch (K) {
#define EXPR(Id, Parent) case ExprKind::Id: return #Id;
#include "swift/AST/ExprNodes.def"
}
}
// Helper functions to verify statically whether the getSourceRange()
// function has been overridden.
typedef const char (&TwoChars)[2];
template<typename Class>
inline char checkSourceRangeType(SourceRange (Class::*)() const);
inline TwoChars checkSourceRangeType(SourceRange (Expr::*)() const);
SourceRange Expr::getSourceRange() const {
switch (getKind()) {
#define EXPR(ID, PARENT) \
case ExprKind::ID: \
static_assert(sizeof(checkSourceRangeType(&ID##Expr::getSourceRange)) == 1, \
#ID "Expr is missing getSourceRange()"); \
return cast<ID##Expr>(this)->getSourceRange();
#include "swift/AST/ExprNodes.def"
}
llvm_unreachable("expression type not handled!");
}
/// getLoc - Return the caret location of the expression.
SourceLoc Expr::getLoc() const {
switch (getKind()) {
#define EXPR(ID, PARENT) \
case ExprKind::ID: \
if (&Expr::getLoc != &ID##Expr::getLoc) \
return cast<ID##Expr>(this)->getLoc(); \
break;
#include "swift/AST/ExprNodes.def"
}
return getStartLoc();
}
Expr *Expr::getSemanticsProvidingExpr() {
if (ParenExpr *PE = dyn_cast<ParenExpr>(this))
return PE->getSubExpr()->getSemanticsProvidingExpr();
if (DefaultValueExpr *DE = dyn_cast<DefaultValueExpr>(this))
return DE->getSubExpr()->getSemanticsProvidingExpr();
return this;
}
Expr *Expr::getValueProvidingExpr() {
// For now, this is totally equivalent to the above.
// TODO:
// - tuple literal projection, which may become interestingly idiomatic
return getSemanticsProvidingExpr();
}
Initializer *Expr::findExistingInitializerContext() {
struct FindExistingInitializer : ASTWalker {
Initializer *TheInitializer = nullptr;
std::pair<bool,Expr*> walkToExprPre(Expr *E) override {
assert(!TheInitializer && "continuing to walk after finding context?");
if (auto closure = dyn_cast<AbstractClosureExpr>(E)) {
TheInitializer = cast<Initializer>(closure->getParent());
return { false, nullptr };
}
return { true, E };
}
} finder;
walk(finder);
return finder.TheInitializer;
}
//===----------------------------------------------------------------------===//
// Support methods for Exprs.
//===----------------------------------------------------------------------===//
static APInt getIntegerLiteralValue(bool IsNegative, StringRef Text,
unsigned BitWidth) {
llvm::APInt Value(BitWidth, 0);
// swift encodes octal differently from C
bool IsCOctal = Text.size() > 1 && Text[0] == '0' && isdigit(Text[1]);
bool Error = Text.getAsInteger(IsCOctal ? 10 : 0, Value);
assert(!Error && "Invalid IntegerLiteral formed"); (void)Error;
if (IsNegative)
Value = -Value;
if (Value.getBitWidth() != BitWidth)
Value = Value.sextOrTrunc(BitWidth);
return Value;
}
APInt IntegerLiteralExpr::getValue(StringRef Text, unsigned BitWidth) {
return getIntegerLiteralValue(/*IsNegative=*/false, Text, BitWidth);
}
APInt IntegerLiteralExpr::getValue() const {
assert(!getType().isNull() && "Semantic analysis has not completed");
assert(!getType()->is<ErrorType>() && "Should have a valid type");
return getIntegerLiteralValue(
isNegative(), getDigitsText(),
getType()->castTo<BuiltinIntegerType>()->getGreatestWidth());
}
APFloat FloatLiteralExpr::getValue(StringRef Text,
const llvm::fltSemantics &Semantics) {
APFloat Val(Semantics);
APFloat::opStatus Res =
Val.convertFromString(Text, llvm::APFloat::rmNearestTiesToEven);
assert(Res != APFloat::opInvalidOp && "Sema didn't reject invalid number");
(void)Res;
return Val;
}
llvm::APFloat FloatLiteralExpr::getValue() const {
assert(!getType().isNull() && "Semantic analysis has not completed");
return getValue(getText(),
getType()->castTo<BuiltinFloatType>()->getAPFloatSemantics());
}
void DeclRefExpr::setDeclRef(ConcreteDeclRef ref) {
if (auto spec = getSpecInfo())
spec->D = ref;
else
DOrSpecialized = ref;
}
void DeclRefExpr::setSpecialized() {
if (isSpecialized())
return;
ConcreteDeclRef ref = getDeclRef();
void *Mem = ref.getDecl()->getASTContext().Allocate(sizeof(SpecializeInfo),
alignof(SpecializeInfo));
auto Spec = new (Mem) SpecializeInfo;
Spec->D = ref;
DOrSpecialized = Spec;
}
void DeclRefExpr::setGenericArgs(ArrayRef<TypeRepr*> GenericArgs) {
ValueDecl *D = getDecl();
assert(D);
setSpecialized();
getSpecInfo()->GenericArgs = D->getASTContext().AllocateCopy(GenericArgs);
}
ConstructorDecl *OtherConstructorDeclRefExpr::getDecl() const {
return cast_or_null<ConstructorDecl>(Ctor.getDecl());
}
MemberRefExpr::MemberRefExpr(Expr *base, SourceLoc dotLoc,
ConcreteDeclRef member, SourceLoc nameLoc,
bool Implicit, bool UsesDirectPropertyAccess)
: Expr(ExprKind::MemberRef, Implicit), Base(base),
Member(member), DotLoc(dotLoc), NameLoc(nameLoc) {
MemberRefExprBits.IsDirectPropertyAccess = UsesDirectPropertyAccess;
MemberRefExprBits.IsSuper = false;
}
ExistentialMemberRefExpr::ExistentialMemberRefExpr(Expr *Base, SourceLoc DotLoc,
ConcreteDeclRef Value,
SourceLoc NameLoc)
: Expr(ExprKind::ExistentialMemberRef, /*Implicit=*/false),
Base(Base), Value(Value),
DotLoc(DotLoc), NameLoc(NameLoc) { }
ArchetypeMemberRefExpr::ArchetypeMemberRefExpr(Expr *Base, SourceLoc DotLoc,
ConcreteDeclRef Value,
SourceLoc NameLoc)
: Expr(ExprKind::ArchetypeMemberRef, /*Implicit=*/false),
Base(Base), Value(Value),
DotLoc(DotLoc), NameLoc(NameLoc) { }
ArchetypeType *ArchetypeMemberRefExpr::getArchetype() const {
Type BaseTy = getBase()->getType()->getRValueType();
if (auto Meta = BaseTy->getAs<MetatypeType>())
return Meta->getInstanceType()->castTo<ArchetypeType>();
return BaseTy->castTo<ArchetypeType>();
}
bool ArchetypeMemberRefExpr::isBaseIgnored() const {
if (isa<TypeDecl>(Value.getDecl()))
return true;
return false;
}
Type OverloadSetRefExpr::getBaseType() const {
if (isa<OverloadedDeclRefExpr>(this))
return Type();
if (auto *DRE = dyn_cast<OverloadedMemberRefExpr>(this)) {
return DRE->getBase()->getType()->getRValueType();
}
llvm_unreachable("Unhandled overloaded set reference expression");
}
bool OverloadSetRefExpr::hasBaseObject() const {
if (Type BaseTy = getBaseType())
return !BaseTy->is<MetatypeType>();
return false;
}
SequenceExpr *SequenceExpr::create(ASTContext &ctx, ArrayRef<Expr*> elements) {
void *Buffer = ctx.Allocate(sizeof(SequenceExpr) +
elements.size() * sizeof(Expr*),
alignof(SequenceExpr));
return ::new(Buffer) SequenceExpr(elements);
}
NewArrayExpr *NewArrayExpr::create(ASTContext &ctx, SourceLoc newLoc,
TypeLoc elementTy, ArrayRef<Bound> bounds,
Expr *constructionFn) {
void *buffer = ctx.Allocate(sizeof(NewArrayExpr) +
bounds.size() * sizeof(Bound),
alignof(NewArrayExpr));
NewArrayExpr *E =
::new (buffer) NewArrayExpr(newLoc, elementTy, bounds.size(),
constructionFn);
memcpy(E->getBoundsBuffer(), bounds.data(), bounds.size() * sizeof(Bound));
return E;
}
SourceRange TupleExpr::getSourceRange() const {
if (LParenLoc.isValid() && !HasTrailingClosure) {
assert(RParenLoc.isValid() && "Mismatched parens?");
return SourceRange(LParenLoc, RParenLoc);
}
if (getElements().empty())
return SourceRange();
SourceLoc Start = LParenLoc.isValid()? LParenLoc
: getElement(0)->getStartLoc();
SourceLoc End = getElement(getElements().size()-1)->getEndLoc();
return SourceRange(Start, End);
}
ArrayRef<Expr *> CollectionExpr::getElements() const {
if (auto paren = dyn_cast<ParenExpr>(SubExpr)) {
// FIXME: Hack. When this goes away, remove ParenExpr's friendship of
// CollectionExpr.
return llvm::makeArrayRef(&paren->SubExpr, 1);
}
return cast<TupleExpr>(SubExpr)->getElements();
}
ExistentialSubscriptExpr::
ExistentialSubscriptExpr(Expr *Base, Expr *Index, SubscriptDecl *D)
: Expr(ExprKind::ExistentialSubscript, /*Implicit=*/false,
D? D->getElementType() : Type()),
D(D), Base(Base), Index(Index) {
assert(Base->getType()->getRValueType()->isExistentialType() &&
"use SubscriptExpr for non-existential type subscript");
}
ArchetypeSubscriptExpr::
ArchetypeSubscriptExpr(Expr *Base, Expr *Index, SubscriptDecl *D)
: Expr(ExprKind::ArchetypeSubscript, /*Implicit=*/false,
D? D->getElementType() : Type()),
D(D), Base(Base), Index(Index) {
assert(Base->getType()->getInOutObjectType()->is<ArchetypeType>() &&
"use SubscriptExpr for non-archetype type subscript");
}
static ValueDecl *getCalledValue(Expr *E) {
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
return DRE->getDecl();
Expr *E2 = E->getValueProvidingExpr();
if (E != E2) return getCalledValue(E2);
return nullptr;
}
ValueDecl *ApplyExpr::getCalledValue() const {
return ::getCalledValue(Fn);
}
RebindSelfInConstructorExpr::RebindSelfInConstructorExpr(Expr *SubExpr,
VarDecl *Self)
: Expr(ExprKind::RebindSelfInConstructor, /*Implicit=*/true,
TupleType::getEmpty(Self->getASTContext())),
SubExpr(SubExpr), Self(Self)
{}
Type AbstractClosureExpr::getResultType() const {
if (getType()->is<ErrorType>())
return getType();
return getType()->castTo<FunctionType>()->getResult();
}
SourceRange ClosureExpr::getSourceRange() const {
return body.getPointer()->getSourceRange();
}
SourceLoc ClosureExpr::getLoc() const {
return body.getPointer()->getStartLoc();
}
Expr *ClosureExpr::getSingleExpressionBody() const {
assert(hasSingleExpressionBody() && "Not a single-expression body");
return cast<ReturnStmt>(body.getPointer()->getElements()[0].get<Stmt *>())
->getResult();
}
void ClosureExpr::setSingleExpressionBody(Expr *NewBody) {
cast<ReturnStmt>(body.getPointer()->getElements()[0].get<Stmt *>())
->setResult(NewBody);
}
SourceRange AutoClosureExpr::getSourceRange() const {
return Body->getSourceRange();
}
void AutoClosureExpr::setBody(Expr *E) {
auto &Context = getASTContext();
auto *RS = new (Context) ReturnStmt(SourceLoc(), E);
Body = BraceStmt::create(Context, E->getStartLoc(), { RS }, E->getEndLoc());
}
Expr *AutoClosureExpr::getSingleExpressionBody() const {
return cast<ReturnStmt>(Body->getElements()[0].get<Stmt *>())->getResult();
}
SourceRange AssignExpr::getSourceRange() const {
if (isFolded())
return SourceRange(Dest->getStartLoc(), Src->getEndLoc());
return EqualLoc;
}
SourceLoc UnresolvedPatternExpr::getLoc() const { return subPattern->getLoc(); }
SourceRange UnresolvedPatternExpr::getSourceRange() const {
return subPattern->getSourceRange();
}
unsigned ScalarToTupleExpr::getScalarField() const {
unsigned result = std::find(Elements.begin(), Elements.end(), Element())
- Elements.begin();
assert(result != Elements.size()
&& "Tuple elements are missing the scalar 'hole'");
return result;
}
SourceLoc MetatypeExpr::getLoc() const {
if (auto tyR = getBaseTypeRepr())
return tyR->getStartLoc();
return MetatypeLoc;
}
SourceRange MetatypeExpr::getSourceRange() const {
if (auto tyR = getBaseTypeRepr())
return tyR->getSourceRange();
if (auto base = getBase())
return SourceRange(base->getStartLoc(), MetatypeLoc);
return SourceRange(MetatypeLoc);
}
SourceRange UnresolvedMemberExpr::getSourceRange() const {
if (Argument)
return SourceRange(DotLoc, Argument->getEndLoc());
return SourceRange(DotLoc, NameLoc);
}