Files
swift-mirror/lib/SILPasses/Utils/Local.cpp
Mark Lacey f3b82c7bfd Remove restriction on substituting existentials during mandatory inlining.
Issues around this have now been resolved, so we should now support
anything that Sema lets through.

Fixes rdar://problem/17769717.

Swift SVN r23673
2014-12-04 01:12:42 +00:00

749 lines
26 KiB
C++

//===--- Local.cpp - Functions that perform local SIL transformations. ---===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===---------------------------------------------------------------------===//
#include "swift/SILPasses/Utils/Local.h"
#include "swift/SILAnalysis/Analysis.h"
#include "swift/SILAnalysis/DominanceAnalysis.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILModule.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/IR/Intrinsics.h"
#include <deque>
using namespace swift;
bool
swift::isSideEffectFree(BuiltinInst *FR) {
// First, check if we are dealing with a swift builtin.
const BuiltinInfo &BInfo = FR->getBuiltinInfo();
if (BInfo.ID != BuiltinValueKind::None) {
return BInfo.isReadNone();
}
// Second, specialcase llvm intrinsic.
const IntrinsicInfo & IInfo = FR->getIntrinsicInfo();
if (IInfo.ID != llvm::Intrinsic::not_intrinsic) {
return ( (IInfo.hasAttribute(llvm::Attribute::ReadNone) ||
IInfo.hasAttribute(llvm::Attribute::ReadOnly)) &&
IInfo.hasAttribute(llvm::Attribute::NoUnwind) );
}
llvm_unreachable("All cases are covered.");
}
bool swift::isReadNone(BuiltinInst *FR) {
// First, check if we are dealing with a swift builtin.
const BuiltinInfo &BInfo = FR->getBuiltinInfo();
if (BInfo.ID != BuiltinValueKind::None)
return BInfo.isReadNone();
// Second, specialcase llvm intrinsic.
const IntrinsicInfo & IInfo = FR->getIntrinsicInfo();
if (IInfo.ID != llvm::Intrinsic::not_intrinsic)
return IInfo.hasAttribute(llvm::Attribute::ReadNone) &&
IInfo.hasAttribute(llvm::Attribute::NoUnwind);
llvm_unreachable("All cases are covered.");
}
bool swift::isReadNone(FunctionRefInst *FR) {
auto *F = FR->getReferencedFunction();
if (!F)
return false;
return F->getEffectsInfo() == EffectsKind::ReadNone;
}
/// \brief Perform a fast local check to see if the instruction is dead.
///
/// This routine only examines the state of the instruction at hand.
bool
swift::isInstructionTriviallyDead(SILInstruction *I) {
if (!I->use_empty() || isa<TermInst>(I))
return false;
// We know that some calls do not have side effects.
if (const ApplyInst *AI = dyn_cast<ApplyInst>(I)) {
if (auto *FRI = dyn_cast<FunctionRefInst>(AI->getCallee()))
// If we call an apply inst to a global initializer, but the value is not
// used it is safe to remove it.
if (FRI->getReferencedFunction()->isGlobalInit())
return true;
}
if (auto *BI = dyn_cast<BuiltinInst>(I)) {
return isSideEffectFree(BI);
}
// condfail instructions that obviously can't fail are dead.
if (auto *CFI = dyn_cast<CondFailInst>(I))
if (auto *ILI = dyn_cast<IntegerLiteralInst>(CFI->getOperand()))
if (!ILI->getValue())
return true;
// mark_uninitialized is never dead.
if (isa<MarkUninitializedInst>(I))
return false;
// These invalidate enums so "write" memory, but that is not an essential
// operation so we can remove these if they are trivially dead.
if (isa<UncheckedTakeEnumDataAddrInst>(I))
return true;
if (!I->mayHaveSideEffects())
return true;
return false;
}
namespace {
using CallbackTy = std::function<void(SILInstruction *)>;
} // end anonymous namespace
bool swift::
recursivelyDeleteTriviallyDeadInstructions(ArrayRef<SILInstruction *> IA,
bool Force, CallbackTy Callback) {
// Delete these instruction and others that become dead after it's deleted.
llvm::SmallPtrSet<SILInstruction *, 8> DeadInsts;
for (auto I : IA) {
// If the instruction is not dead and force is false, do nothing.
if (Force || isInstructionTriviallyDead(I))
DeadInsts.insert(I);
}
llvm::SmallPtrSet<SILInstruction *, 8> NextInsts;
while (!DeadInsts.empty()) {
for (auto I : DeadInsts) {
// Call the callback before we mutate the to be deleted instruction in any
// way.
Callback(I);
// Check if any of the operands will become dead as well.
MutableArrayRef<Operand> Ops = I->getAllOperands();
for (Operand &Op : Ops) {
SILValue OpVal = Op.get();
if (!OpVal)
continue;
// Remove the reference from the instruction being deleted to this
// operand.
Op.drop();
// If the operand is an instruction that is only used by the instruction
// being deleted, delete it.
if (SILInstruction *OpValInst = dyn_cast<SILInstruction>(OpVal))
if (!DeadInsts.count(OpValInst) &&
isInstructionTriviallyDead(OpValInst))
NextInsts.insert(OpValInst);
}
// If we have a function ref inst, we need to especially drop its function
// argument so that it gets a proper ref decement.
auto *FRI = dyn_cast<FunctionRefInst>(I);
if (FRI && FRI->getReferencedFunction())
FRI->dropReferencedFunction();
}
for (auto I : DeadInsts) {
// This will remove this instruction and all its uses.
I->eraseFromParent();
}
NextInsts.swap(DeadInsts);
NextInsts.clear();
}
return true;
}
/// \brief If the given instruction is dead, delete it along with its dead
/// operands.
///
/// \param I The instruction to be deleted.
/// \param Force If Force is set, don't check if the top level instruction is
/// considered dead - delete it regardless.
/// \return Returns true if any instructions were deleted.
bool swift::recursivelyDeleteTriviallyDeadInstructions(SILInstruction *I,
bool Force,
CallbackTy Callback) {
ArrayRef<SILInstruction *> AI = ArrayRef<SILInstruction *>(I);
return recursivelyDeleteTriviallyDeadInstructions(AI, Force, Callback);
}
void swift::eraseUsesOfInstruction(SILInstruction *Inst) {
for (auto UI : Inst->getUses()) {
auto *User = UI->getUser();
// If the instruction itself has any uses, recursively zap them so that
// nothing uses this instruction.
eraseUsesOfInstruction(User);
// Walk through the operand list and delete any random instructions that
// will become trivially dead when this instruction is removed.
for (auto &Op : User->getAllOperands()) {
if (auto *OpI = dyn_cast<SILInstruction>(Op.get())) {
// Don't recursively delete the pointer we're getting in.
if (OpI != Inst) {
Op.drop();
recursivelyDeleteTriviallyDeadInstructions(OpI);
}
}
}
User->eraseFromParent();
}
}
void swift::replaceWithSpecializedFunction(ApplyInst *AI, SILFunction *NewF) {
SILLocation Loc = AI->getLoc();
ArrayRef<Substitution> Subst;
SmallVector<SILValue, 4> Arguments;
for (auto &Op : AI->getArgumentOperands()) {
Arguments.push_back(Op.get());
}
SILBuilderWithScope<2> Builder(AI);
FunctionRefInst *FRI = Builder.createFunctionRef(Loc, NewF);
ApplyInst *NAI =
Builder.createApply(Loc, FRI, Arguments, AI->isTransparent());
AI->replaceAllUsesWith(NAI);
recursivelyDeleteTriviallyDeadInstructions(AI, true);
}
bool swift::hasUnboundGenericTypes(TypeSubstitutionMap &SubsMap) {
// Check whether any of the substitutions are dependent.
for (auto &entry : SubsMap)
if (entry.second->getCanonicalType()->hasArchetype())
return true;
return false;
}
bool swift::hasUnboundGenericTypes(ArrayRef<Substitution> Subs) {
// Check whether any of the substitutions are dependent.
for (auto &sub : Subs)
if (sub.getReplacement()->getCanonicalType()->hasArchetype())
return true;
return false;
}
/// Find a new position for an ApplyInst's FuncRef so that it dominates its
/// use. Not that FuncionRefInsts may be shared by multiple ApplyInsts.
void swift::placeFuncRef(ApplyInst *AI, DominanceInfo *DT) {
FunctionRefInst *FuncRef = cast<FunctionRefInst>(AI->getCallee());
SILBasicBlock *DomBB =
DT->findNearestCommonDominator(AI->getParent(), FuncRef->getParent());
if (DomBB == AI->getParent() && DomBB != FuncRef->getParent())
// Prefer to place the FuncRef immediately before the call. Since we're
// moving FuncRef up, this must be the only call to it in the block.
FuncRef->moveBefore(AI);
else
// Otherwise, conservatively stick it at the beginning of the block.
FuncRef->moveBefore(DomBB->begin());
}
/// \brief Add an argument, \p val, to the branch-edge that is pointing into
/// block \p Dest. Return a new instruction and do not erase the old
/// instruction.
TermInst *swift::addArgumentToBranch(SILValue Val, SILBasicBlock *Dest,
TermInst *Branch) {
SILBuilderWithScope<2> Builder(Branch);
if (CondBranchInst *CBI = dyn_cast<CondBranchInst>(Branch)) {
SmallVector<SILValue, 8> TrueArgs;
SmallVector<SILValue, 8> FalseArgs;
for (auto A : CBI->getTrueArgs())
TrueArgs.push_back(A);
for (auto A : CBI->getFalseArgs())
FalseArgs.push_back(A);
if (Dest == CBI->getTrueBB()) {
TrueArgs.push_back(Val);
assert(TrueArgs.size() == Dest->getNumBBArg());
} else {
FalseArgs.push_back(Val);
assert(FalseArgs.size() == Dest->getNumBBArg());
}
return Builder.createCondBranch(CBI->getLoc(), CBI->getCondition(),
CBI->getTrueBB(), TrueArgs,
CBI->getFalseBB(), FalseArgs);
}
if (BranchInst *BI = dyn_cast<BranchInst>(Branch)) {
SmallVector<SILValue, 8> Args;
for (auto A : BI->getArgs())
Args.push_back(A);
Args.push_back(Val);
assert(Args.size() == Dest->getNumBBArg());
return Builder.createBranch(BI->getLoc(), BI->getDestBB(), Args);
}
llvm_unreachable("unsupported terminator");
}
SILLinkage swift::getSpecializedLinkage(SILLinkage L) {
switch (L) {
case SILLinkage::Public:
case SILLinkage::PublicExternal:
case SILLinkage::Shared:
case SILLinkage::SharedExternal:
case SILLinkage::Hidden:
case SILLinkage::HiddenExternal:
// Specializations of public or hidden symbols can be shared by all TUs
// that specialize the definition.
return SILLinkage::Shared;
case SILLinkage::Private:
case SILLinkage::PrivateExternal:
// Specializations of private symbols should remain so.
// TODO: maybe PrivateExternals should get SharedExternal (these are private
// functions from the stdlib which are specialized in another module).
return SILLinkage::Private;
}
}
/// Match array semantic calls.
swift::ArraySemanticsCall::ArraySemanticsCall(ValueBase *V,
StringRef SemanticStr,
bool MatchPartialName) {
if (auto AI = dyn_cast<ApplyInst>(V))
if (auto FRI = dyn_cast<FunctionRefInst>(AI->getCallee()))
if (auto FunRef = FRI->getReferencedFunction()) {
if (MatchPartialName) {
if (FunRef->hasDefinedSemantics() &&
FunRef->getSemanticsString().startswith(SemanticStr)) {
SemanticsCall = AI;
return;
}
} else {
if (FunRef->hasSemanticsString(SemanticStr)) {
SemanticsCall = AI;
return;
}
}
}
// Otherwise, this is not the semantic call we are looking for.
SemanticsCall = nullptr;
}
/// Determine which kind of array semantics call this is.
ArrayCallKind swift::ArraySemanticsCall::getKind() {
if (!SemanticsCall)
return ArrayCallKind::kNone;
auto F = cast<FunctionRefInst>(SemanticsCall->getCallee())
->getReferencedFunction();
auto Kind = llvm::StringSwitch<ArrayCallKind>(F->getSemanticsString())
.Case("array.init", ArrayCallKind::kArrayInit)
.Case("array.check_subscript", ArrayCallKind::kCheckSubscript)
.Case("array.check_index", ArrayCallKind::kCheckIndex)
.Case("array.get_count", ArrayCallKind::kGetCount)
.Case("array.get_capacity", ArrayCallKind::kGetCapacity)
.Case("array.get_element", ArrayCallKind::kGetElement)
.Case("array.make_mutable", ArrayCallKind::kMakeMutable)
.Case("array.get_element_address", ArrayCallKind::kGetElementAddress)
.Case("array.mutate_unknown", ArrayCallKind::kMutateUnknown)
.Default(ArrayCallKind::kNone);
return Kind;
}
SILValue swift::ArraySemanticsCall::getSelf() {
assert(SemanticsCall && "Must have a semantics call");
assert(SemanticsCall->getNumArguments() && "Must have arguments");
return SemanticsCall->getSelfArgument();
}
SILValue swift::ArraySemanticsCall::getIndex() {
assert(SemanticsCall && "Must have a semantics call");
assert(SemanticsCall->getNumArguments() && "Must have arguments");
assert(getKind() == ArrayCallKind::kCheckSubscript ||
getKind() == ArrayCallKind::kCheckIndex ||
getKind() == ArrayCallKind::kGetElement ||
getKind() == ArrayCallKind::kGetElementAddress);
return SemanticsCall->getArgument(0);
}
static bool canHoistArrayArgument(SILValue Arr, SILInstruction *InsertBefore,
DominanceInfo *DT) {
auto *SelfVal = Arr.getDef();
auto *SelfBB = SelfVal->getParentBB();
if (DT->dominates(SelfBB, InsertBefore->getParent()))
return true;
if (auto LI = dyn_cast<LoadInst>(SelfVal)) {
// Are we loading a value from an address in a struct defined at a point
// dominating the hoist point.
auto Val = LI->getOperand().getDef();
bool DoesNotDominate;
StructElementAddrInst *SEI;
while ((DoesNotDominate = !DT->dominates(Val->getParentBB(),
InsertBefore->getParent())) &&
(SEI = dyn_cast<StructElementAddrInst>(Val)))
Val = SEI->getOperand().getDef();
return DoesNotDominate == false;
}
return false;
}
bool swift::ArraySemanticsCall::canHoist(SILInstruction *InsertBefore,
DominanceInfo *DT) {
switch (getKind()) {
case ArrayCallKind::kCheckSubscript:
case ArrayCallKind::kCheckIndex: {
return canHoistArrayArgument(getSelf(), InsertBefore, DT);
}
default:
break;
}
return false;
}
/// Copy the array load to the insert point.
static SILValue copyArrayLoad(SILValue ArrayStructValue,
SILInstruction *InsertBefore,
DominanceInfo *DT) {
if (isa<SILArgument>(ArrayStructValue.getDef())) {
// Assume that the argument dominates the insert point.
assert(DT->dominates(ArrayStructValue.getDef()->getParentBB(),
InsertBefore->getParent()));
return ArrayStructValue;
}
auto *LI = cast<LoadInst>(ArrayStructValue.getDef());
if (DT->dominates(LI->getParent(), InsertBefore->getParent()))
return ArrayStructValue;
// Recursively move struct_element_addr.
auto *Val = LI->getOperand().getDef();
auto *InsertPt = InsertBefore;
while (!DT->dominates(Val->getParentBB(), InsertBefore->getParent())) {
auto *Inst = cast<StructElementAddrInst>(Val);
Inst->moveBefore(InsertPt);
Val = Inst->getOperand().getDef();
InsertPt = Inst;
}
return SILValue(LI->clone(InsertBefore), 0);
}
static ApplyInst *hoistOrCopyCall(ApplyInst *AI, SILInstruction *InsertBefore,
bool LeaveOriginal, DominanceInfo *DT) {
if (!LeaveOriginal) {
AI->moveBefore(InsertBefore);
} else {
// Leave the original and 'hoist' a clone.
AI = cast<ApplyInst>(AI->clone(InsertBefore));
}
placeFuncRef(AI, DT);
return AI;
}
ApplyInst *swift::ArraySemanticsCall::hoistOrCopy(SILInstruction *InsertBefore,
DominanceInfo *DT,
bool LeaveOriginal) {
auto Kind = getKind();
switch (Kind) {
case ArrayCallKind::kCheckSubscript:
case ArrayCallKind::kCheckIndex: {
auto Self = getSelf();
// We are going to have a retain, emit a matching release.
if (!LeaveOriginal)
SILBuilderWithScope<1>(SemanticsCall)
.createReleaseValue(SemanticsCall->getLoc(), Self);
// Hoist the array load, if neccessary.
SILBuilder B(InsertBefore);
auto NewArrayStructValue = copyArrayLoad(Self, InsertBefore, DT);
// Retain the array.
B.createRetainValue(SemanticsCall->getLoc(), NewArrayStructValue)
->setDebugScope(SemanticsCall->getDebugScope());
auto Call = hoistOrCopyCall(SemanticsCall, InsertBefore, LeaveOriginal, DT);
Call->setSelfArgument(NewArrayStructValue);
return Call;
}
case ArrayCallKind::kMakeMutable: {
assert(!LeaveOriginal && "Copying not yet implemented");
SemanticsCall->moveBefore(InsertBefore);
placeFuncRef(SemanticsCall, DT);
return SemanticsCall;
}
default:
llvm_unreachable("Don't know how to hoist this instruction");
break;
} // End switch.
}
void swift::ArraySemanticsCall::replaceByRetainValue() {
assert(getKind() < ArrayCallKind::kMakeMutable &&
"Must be a semantics call that passes the array by value");
SILBuilderWithScope<1>(SemanticsCall)
.createReleaseValue(SemanticsCall->getLoc(), getSelf());
SemanticsCall->eraseFromParent();
}
/// Remove all instructions in the body of \p BB in safe manner by using
/// undef.
void swift::clearBlockBody(SILBasicBlock *BB) {
// Instructions in the dead block may be used by other dead blocks. Replace
// any uses of them with undef values.
while (!BB->empty()) {
// Grab the last instruction in the BB.
auto *Inst = &BB->getInstList().back();
// Replace any non-dead results with SILUndef values.
Inst->replaceAllUsesWithUndef();
// Pop the instruction off of the back of the basic block.
BB->getInstList().pop_back();
}
}
// Handle the mechanical aspects of removing an unreachable block.
void swift::removeDeadBlock(SILBasicBlock *BB) {
// Clear the body of BB.
clearBlockBody(BB);
// Now that the BB is empty, eliminate it.
BB->eraseFromParent();
}
/// Checks operands of a string concatenation operation to see if
/// optimization is applicable.
///
/// Returns false if optimization is not possible.
/// Returns true and initializes internal fields if optimization is possible.
bool StringConcatenationOptimizer::extractStringConcatOperands() {
auto *FRI = dyn_cast<FunctionRefInst>(AI->getCallee());
if (!FRI)
return false;
auto *FRIFun = FRI->getReferencedFunction();
if (AI->getNumOperands() != 3 ||
!FRIFun->hasSemanticsString("string.concat"))
return false;
// Left and right operands of a string concatenation operation.
AILeft = dyn_cast<ApplyInst>(AI->getOperand(1));
AIRight = dyn_cast<ApplyInst>(AI->getOperand(2));
if (!AILeft || !AIRight)
return false;
FRILeft = dyn_cast<FunctionRefInst>(AILeft->getCallee());
FRIRight = dyn_cast<FunctionRefInst>(AIRight->getCallee());
if (!FRILeft || !FRIRight)
return false;
auto *FRILeftFun = FRILeft->getReferencedFunction();
auto *FRIRightFun = FRIRight->getReferencedFunction();
if (FRILeftFun->getEffectsInfo() >= EffectsKind::ReadWrite ||
FRIRightFun->getEffectsInfo() >= EffectsKind::ReadWrite)
return false;
if (!FRILeftFun->hasDefinedSemantics() ||
!FRIRightFun->hasDefinedSemantics())
return false;
auto SemanticsLeft = FRILeftFun->getSemanticsString();
auto SemanticsRight = FRIRightFun->getSemanticsString();
auto AILeftOperandsNum = AILeft->getNumOperands();
auto AIRightOperandsNum = AIRight->getNumOperands();
// makeUTF16 should have following parameters:
// (start: RawPointer, numberOfCodeUnits: Word)
// makeUTF8 should have following parameters:
// (start: RawPointer, byteSize: Word, isASCII: Int1)
if (!((SemanticsLeft == "string.makeUTF16" && AILeftOperandsNum == 4) ||
(SemanticsLeft == "string.makeUTF8" && AILeftOperandsNum == 5) ||
(SemanticsRight == "string.makeUTF16" && AIRightOperandsNum == 4) ||
(SemanticsRight == "string.makeUTF8" && AIRightOperandsNum == 5)))
return false;
SLILeft = dyn_cast<StringLiteralInst>(AILeft->getOperand(1));
SLIRight = dyn_cast<StringLiteralInst>(AIRight->getOperand(1));
if (!SLILeft || !SLIRight)
return false;
// Only UTF-8 and UTF-16 encoded string literals are supported by this
// optimization.
if (SLILeft->getEncoding() != StringLiteralInst::Encoding::UTF8 &&
SLILeft->getEncoding() != StringLiteralInst::Encoding::UTF16)
return false;
if (SLIRight->getEncoding() != StringLiteralInst::Encoding::UTF8 &&
SLIRight->getEncoding() != StringLiteralInst::Encoding::UTF16)
return false;
return true;
}
/// Ensures that both string literals to be concatenated use the same
/// UTF encoding. Converts UTF-8 into UTF-16 if required.
void StringConcatenationOptimizer::adjustEncodings() {
if (SLILeft->getEncoding() == SLIRight->getEncoding()) {
FRIConvertFromBuiltin = FRILeft;
IsTransparent = AILeft->isTransparent();
if (SLILeft->getEncoding() == StringLiteralInst::Encoding::UTF8) {
FuncResultType = AILeft->getOperand(4);
} else {
FuncResultType = AILeft->getOperand(3);
}
return;
}
// If one of the string literals is UTF8 and another one is UTF16,
// convert the UTF8-encoded string literal into UTF16-encoding first.
if (SLILeft->getEncoding() == StringLiteralInst::Encoding::UTF8 &&
SLIRight->getEncoding() == StringLiteralInst::Encoding::UTF16) {
FuncResultType = AIRight->getOperand(3);
FRIConvertFromBuiltin = FRIRight;
IsTransparent = AIRight->isTransparent();
// Convert UTF8 representation into UTF16.
SLILeft = Builder->createStringLiteral(AI->getLoc(), SLILeft->getValue(),
StringLiteralInst::Encoding::UTF16);
SLILeft->setDebugScope(AI->getDebugScope());
}
if (SLIRight->getEncoding() == StringLiteralInst::Encoding::UTF8 &&
SLILeft->getEncoding() == StringLiteralInst::Encoding::UTF16) {
FuncResultType = AILeft->getOperand(3);
FRIConvertFromBuiltin = FRILeft;
IsTransparent = AILeft->isTransparent();
// Convert UTF8 representation into UTF16.
SLIRight = Builder->createStringLiteral(AI->getLoc(), SLIRight->getValue(),
StringLiteralInst::Encoding::UTF16);
SLIRight->setDebugScope(AI->getDebugScope());
}
// It should be impossible to have two operands with different
// encodings at this point.
assert(SLILeft->getEncoding() == SLIRight->getEncoding() &&
"Both operands of string concatenation should have the same encoding");
}
/// Computes the length of a concatenated string literal.
APInt StringConcatenationOptimizer::getConcatenatedLength() {
// Real length of string literals computed based on its contents.
// Length is in code units.
auto SLILenLeft = SLILeft->getCodeUnitCount();
(void) SLILenLeft;
auto SLILenRight = SLIRight->getCodeUnitCount();
(void) SLILenRight;
// Length of string literals as reported by string.make functions.
auto *LenLeft = dyn_cast<IntegerLiteralInst>(AILeft->getOperand(2));
auto *LenRight = dyn_cast<IntegerLiteralInst>(AIRight->getOperand(2));
// Real and reported length should be the same.
assert(SLILenLeft == LenLeft->getValue() &&
"Size of string literal in @semantics(string.make) is wrong");
assert(SLILenRight == LenRight->getValue() &&
"Size of string literal in @semantics(string.make) is wrong");
// Compute length of the concatenated literal.
return LenLeft->getValue() + LenRight->getValue();
}
/// Computes the isAscii flag of a concatenated UTF8-encoded string literal.
bool StringConcatenationOptimizer::isAscii() const{
// Add the isASCII argument in case of UTF8.
// IsASCII is true only if IsASCII of both literals is true.
auto *AsciiLeft = dyn_cast<IntegerLiteralInst>(AILeft->getOperand(3));
auto *AsciiRight = dyn_cast<IntegerLiteralInst>(AIRight->getOperand(3));
auto IsAsciiLeft = AsciiLeft->getValue() == 1;
auto IsAsciiRight = AsciiRight->getValue() == 1;
return IsAsciiLeft && IsAsciiRight;
}
SILInstruction *StringConcatenationOptimizer::optimize() {
// Bail out if string literals concatenation optimization is
// not possible.
if (!extractStringConcatOperands())
return nullptr;
// Perform string literal encodings adjustments if needed.
adjustEncodings();
// Arguments of the new StringLiteralInst to be created.
SmallVector<SILValue, 4> Arguments;
// Encoding to be used for the concatenated string literal.
auto Encoding = SLILeft->getEncoding();
// Create a concatenated string literal.
auto LV = SLILeft->getValue();
auto RV = SLIRight->getValue();
auto *NewSLI = Builder->createStringLiteral(AI->getLoc(),
LV + Twine(RV),
Encoding);
NewSLI->setDebugScope(AI->getDebugScope());
Arguments.push_back(NewSLI);
// Length of the concatenated literal according to its encoding.
auto *Len = Builder->createIntegerLiteral(AI->getLoc(),
AILeft->getOperand(2).getType(),
getConcatenatedLength());
Len->setDebugScope(AI->getDebugScope());
Arguments.push_back(Len);
// isAscii flag for UTF8-encoded string literals.
if (Encoding == StringLiteralInst::Encoding::UTF8) {
bool IsAscii = isAscii();
auto ILType = AILeft->getOperand(3).getType();
auto *Ascii = Builder->createIntegerLiteral(AI->getLoc(),
ILType,
intmax_t(IsAscii));
Ascii->setDebugScope(AI->getDebugScope());
Arguments.push_back(Ascii);
}
// Type.
Arguments.push_back(FuncResultType);
auto FnTy = FRIConvertFromBuiltin->getType();
auto STResultType = FnTy.castTo<SILFunctionType>()->getResult().getSILType();
return ApplyInst::create(AI->getLoc(),
FRIConvertFromBuiltin,
FnTy,
STResultType,
ArrayRef<Substitution>(),
Arguments,
IsTransparent,
*FRIConvertFromBuiltin->getReferencedFunction());
}