Files
swift-mirror/lib/Sema/CSRanking.cpp
Slava Pestov f3e6b4ceda Sema: Disambiguate some more bidirectional conversions
This fixes an ambiguity introduced by the stdlib change in
0f99458900.

Since (borrowing T) -> () and (T) -> () both convert to
each other, we could end up with ambiguous solutions where
neither one was better than the other. Generalize the
existing trick we use for labeled vs unlabeled tuples to
also strip off ownership specifiers and @convention(...)
from function types. This fixes the regression, as well
an existing FIXME in a test I added a while ago where
the same problem arises with @convention(block).
2025-12-09 18:31:59 -05:00

1790 lines
64 KiB
C++

//===--- CSRanking.cpp - Constraint System Ranking ------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements solution ranking heuristics for the
// constraint-based type checker.
//
//===----------------------------------------------------------------------===//
#include "TypeChecker.h"
#include "swift/AST/ConformanceLookup.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/Basic/Assertions.h"
#include "swift/Sema/ConstraintSystem.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Compiler.h"
using namespace swift;
using namespace constraints;
//===----------------------------------------------------------------------===//
// Statistics
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "Constraint solver overall"
STATISTIC(NumDiscardedSolutions, "Number of solutions discarded");
/// Returns \c true if \p expr takes a code completion expression as an
/// argument.
static bool exprHasCodeCompletionAsArgument(Expr *expr, ConstraintSystem &cs) {
if (auto args = expr->getArgs()) {
for (auto arg : *args) {
if (isa<CodeCompletionExpr>(arg.getExpr())) {
return true;
}
}
}
return false;
}
static bool shouldIgnoreScoreIncreaseForCodeCompletion(
ScoreKind kind, ConstraintLocatorBuilder Locator, ConstraintSystem &cs) {
if (kind < SK_SyncInAsync) {
// We don't want to ignore score kinds that make the code invalid.
return false;
}
auto expr = Locator.trySimplifyToExpr();
if (!expr) {
return false;
}
// These are a few hand-picked examples in which we don't want to increase the
// score in code completion mode. Technically, to get all valid results, we
// would like to not increase the score if the expression contains the code
// completion token anywhere but that's not possible for performance reasons.
// Thus, just special case the most common cases.
// The code completion token itself.
if (isa<CodeCompletionExpr>(expr)) {
return true;
}
// An assignment where the LHS or RHS contains the code completion token (e.g.
// an optional conversion).
// E.g.
// x[#^COMPLETE^#] = foo
// let a = foo(#^COMPLETE^#)
if (auto assign = dyn_cast<AssignExpr>(expr)) {
if (exprHasCodeCompletionAsArgument(assign->getSrc(), cs)) {
return true;
} else if (exprHasCodeCompletionAsArgument(assign->getDest(), cs)) {
return true;
}
}
// If the function call takes the code completion token as an argument, the
// call also shouldn't increase the score.
// E.g. `foo` in
// foo(#^COMPLETE^#)
if (exprHasCodeCompletionAsArgument(expr, cs)) {
return true;
}
if (auto parent = cs.getParentExpr(expr)) {
// The sibling argument is the code completion expression, this allows e.g.
// non-default literal values in sibling arguments.
// E.g. we allow a 1 to be a double in
// foo(1, #^COMPLETE^#)
if (exprHasCodeCompletionAsArgument(parent, cs)) {
return true;
}
// If we are completing a member of a literal, consider completion results
// for all possible literal types. E.g. show completion results for `let a:
// Double = 1.#^COMPLETE^#
if (isa_and_nonnull<CodeCompletionExpr>(parent) &&
kind == SK_NonDefaultLiteral) {
return true;
}
}
return false;
}
void ConstraintSystem::increaseScore(ScoreKind kind, unsigned value) {
unsigned index = static_cast<unsigned>(kind);
CurrentScore.Data[index] += value;
if (solverState && value > 0)
recordChange(SolverTrail::Change::IncreasedScore(kind, value));
}
void ConstraintSystem::increaseScore(ScoreKind kind,
ConstraintLocatorBuilder Locator,
unsigned value) {
if (isForCodeCompletion() &&
shouldIgnoreScoreIncreaseForCodeCompletion(kind, Locator, *this)) {
if (isDebugMode() && value > 0) {
if (solverState)
llvm::errs().indent(solverState->getCurrentIndent());
llvm::errs() << "(not increasing '" << Score::getNameFor(kind)
<< "' score by " << value
<< " because of proximity to code completion token";
Locator.dump(&getASTContext().SourceMgr, llvm::errs());
llvm::errs() << ")\n";
}
return;
}
if (isDebugMode() && value > 0) {
if (solverState)
llvm::errs().indent(solverState->getCurrentIndent());
llvm::errs() << "(increasing '" << Score::getNameFor(kind) << "' score by "
<< value << " @ ";
Locator.dump(&getASTContext().SourceMgr, llvm::errs());
llvm::errs() << ")\n";
}
increaseScore(kind, value);
}
void ConstraintSystem::replayScore(const Score &score) {
if (solverState) {
for (unsigned i = 0; i < NumScoreKinds; ++i) {
if (unsigned value = score.Data[i])
recordChange(
SolverTrail::Change::IncreasedScore(ScoreKind(i), value));
}
}
CurrentScore += score;
}
void ConstraintSystem::clearScore() {
for (unsigned i = 0; i < NumScoreKinds; ++i) {
if (unsigned value = CurrentScore.Data[i]) {
recordChange(
SolverTrail::Change::DecreasedScore(ScoreKind(i), value));
}
}
CurrentScore = Score();
}
bool ConstraintSystem::worseThanBestSolution() const {
if (!solverState || !solverState->BestScore ||
CurrentScore <= *solverState->BestScore)
return false;
if (isDebugMode()) {
llvm::errs().indent(solverState->getCurrentIndent())
<< "(solution is worse than the best solution)\n";
}
return true;
}
llvm::raw_ostream &constraints::operator<<(llvm::raw_ostream &out,
const Score &score) {
for (unsigned i = 0; i != NumScoreKinds; ++i) {
if (i) out << ' ';
out << score.Data[i];
}
return out;
}
///\ brief Compare two declarations for equality when they are used.
///
static bool sameDecl(Decl *decl1, Decl *decl2) {
if (decl1 == decl2)
return true;
// All types considered identical.
// FIXME: This is a hack. What we really want is to have substituted the
// base type into the declaration reference, so that we can compare the
// actual types to which two type declarations resolve. If those types are
// equivalent, then it doesn't matter which declaration is chosen.
if (isa<TypeDecl>(decl1) && isa<TypeDecl>(decl2))
return true;
if (decl1->getKind() != decl2->getKind())
return false;
return false;
}
/// Compare two overload choices for equality.
static bool sameOverloadChoice(const OverloadChoice &x,
const OverloadChoice &y) {
if (x.getKind() != y.getKind())
return false;
switch (x.getKind()) {
case OverloadChoiceKind::KeyPathApplication:
// FIXME: Compare base types after substitution?
return true;
case OverloadChoiceKind::Decl:
case OverloadChoiceKind::DeclViaDynamic:
case OverloadChoiceKind::DeclViaBridge:
case OverloadChoiceKind::DeclViaUnwrappedOptional:
case OverloadChoiceKind::DynamicMemberLookup:
case OverloadChoiceKind::KeyPathDynamicMemberLookup:
return sameDecl(x.getDecl(), y.getDecl());
case OverloadChoiceKind::TupleIndex:
return x.getTupleIndex() == y.getTupleIndex();
case OverloadChoiceKind::MaterializePack:
case OverloadChoiceKind::ExtractFunctionIsolation:
return true;
}
llvm_unreachable("Unhandled OverloadChoiceKind in switch.");
}
namespace {
/// Describes the relationship between the context types for two declarations.
enum class SelfTypeRelationship {
/// The types are unrelated; ignore the bases entirely.
Unrelated,
/// The types are equivalent.
Equivalent,
/// The first type is a subclass of the second.
Subclass,
/// The second type is a subclass of the first.
Superclass,
/// The first type conforms to the second
ConformsTo,
/// The second type conforms to the first.
ConformedToBy
};
} // end anonymous namespace
/// Determines whether the first type is nominally a superclass of the second
/// type, ignore generic arguments.
static bool isNominallySuperclassOf(Type type1, Type type2) {
auto nominal1 = type1->getAnyNominal();
if (!nominal1)
return false;
for (auto super2 = type2; super2; super2 = super2->getSuperclass()) {
if (super2->getAnyNominal() == nominal1)
return true;
}
return false;
}
/// Determine the relationship between the self types of the given declaration
/// contexts..
static std::pair<SelfTypeRelationship, ProtocolConformanceRef>
computeSelfTypeRelationship(DeclContext *dc, ValueDecl *decl1,
ValueDecl *decl2) {
// If both declarations are operators, even through they
// might have Self such types are unrelated.
if (decl1->isOperator() && decl2->isOperator())
return {SelfTypeRelationship::Unrelated, ProtocolConformanceRef()};
auto *dc1 = decl1->getDeclContext();
auto *dc2 = decl2->getDeclContext();
// If at least one of the contexts is a non-type context, the two are
// unrelated.
if (!dc1->isTypeContext() || !dc2->isTypeContext())
return {SelfTypeRelationship::Unrelated, ProtocolConformanceRef()};
Type type1 = dc1->getDeclaredInterfaceType();
Type type2 = dc2->getDeclaredInterfaceType();
// If the types are equal, the answer is simple.
if (type1->isEqual(type2))
return {SelfTypeRelationship::Equivalent, ProtocolConformanceRef()};
// If both types can have superclasses, which whether one is a superclass
// of the other. The subclass is the common base type.
if (type1->mayHaveSuperclass() && type2->mayHaveSuperclass()) {
if (isNominallySuperclassOf(type1, type2))
return {SelfTypeRelationship::Superclass, ProtocolConformanceRef()};
if (isNominallySuperclassOf(type2, type1))
return {SelfTypeRelationship::Subclass, ProtocolConformanceRef()};
return {SelfTypeRelationship::Unrelated, ProtocolConformanceRef()};
}
// If neither or both are protocol types, consider the bases unrelated.
bool isProtocol1 = isa<ProtocolDecl>(dc1);
bool isProtocol2 = isa<ProtocolDecl>(dc2);
if (isProtocol1 == isProtocol2)
return {SelfTypeRelationship::Unrelated, ProtocolConformanceRef()};
// Just one of the two is a protocol. Check whether the other conforms to
// that protocol.
Type protoTy = isProtocol1? type1 : type2;
Type modelTy = isProtocol1? type2 : type1;
auto proto = protoTy->castTo<ProtocolType>()->getDecl();
// If the model type does not conform to the protocol, the bases are
// unrelated.
auto conformance = lookupConformance(modelTy, proto);
if (conformance.isInvalid())
return {SelfTypeRelationship::Unrelated, conformance};
if (isProtocol1)
return {SelfTypeRelationship::ConformedToBy, conformance};
return {SelfTypeRelationship::ConformsTo, conformance};
}
/// Given two generic function declarations, signal if the first is more
/// "constrained" than the second by comparing the number of constraints
/// applied to each type parameter.
/// Note that this is not a subtype or conversion check - that takes place
/// in isDeclAsSpecializedAs.
static bool isDeclMoreConstrainedThan(ValueDecl *decl1, ValueDecl *decl2) {
if (decl1->getKind() != decl2->getKind() || isa<TypeDecl>(decl1))
return false;
bool bothGeneric = false;
GenericSignature sig1, sig2;
auto func1 = dyn_cast<FuncDecl>(decl1);
auto func2 = dyn_cast<FuncDecl>(decl2);
if (func1 && func2) {
bothGeneric = func1->hasGenericParamList() && func2->hasGenericParamList();
sig1 = func1->getGenericSignature();
sig2 = func2->getGenericSignature();
}
auto subscript1 = dyn_cast<SubscriptDecl>(decl1);
auto subscript2 = dyn_cast<SubscriptDecl>(decl2);
if (subscript1 && subscript2) {
bothGeneric =
subscript1->hasGenericParamList() && subscript2->hasGenericParamList();
sig1 = subscript1->getGenericSignature();
sig2 = subscript2->getGenericSignature();
}
if (bothGeneric) {
auto params1 = sig1.getInnermostGenericParams();
auto params2 = sig2.getInnermostGenericParams();
if (params1.size() == params2.size()) {
for (size_t i = 0; i < params1.size(); i++) {
auto p1 = params1[i];
auto p2 = params2[i];
int np1 =
llvm::count_if(sig1->getRequiredProtocols(p1), [](const auto *P) {
return !P->getInvertibleProtocolKind();
});
int np2 =
llvm::count_if(sig2->getRequiredProtocols(p2), [](const auto *P) {
return !P->getInvertibleProtocolKind();
});
int aDelta = np1 - np2;
if (aDelta)
return aDelta > 0;
}
}
}
return false;
}
/// Determine whether one protocol extension is at least as specialized as
/// another.
static bool isProtocolExtensionAsSpecializedAs(DeclContext *dc1,
DeclContext *dc2) {
assert(dc1->getExtendedProtocolDecl());
assert(dc2->getExtendedProtocolDecl());
// If one of the protocols being extended inherits the other, prefer the
// more specialized protocol.
auto proto1 = dc1->getExtendedProtocolDecl();
auto proto2 = dc2->getExtendedProtocolDecl();
if (proto1 != proto2) {
if (proto1->inheritsFrom(proto2))
return true;
if (proto2->inheritsFrom(proto1))
return false;
}
// If the two generic signatures are identical, neither is as specialized
// as the other.
GenericSignature sig1 = dc1->getGenericSignatureOfContext();
GenericSignature sig2 = dc2->getGenericSignatureOfContext();
if (sig1.getCanonicalSignature() == sig2.getCanonicalSignature())
return false;
// Form a constraint system where we've opened up all of the requirements of
// the second protocol extension.
ConstraintSystem cs(dc1, std::nullopt);
SmallVector<OpenedType, 4> replacements;
cs.openGeneric(dc2, sig2, ConstraintLocatorBuilder(nullptr), replacements,
/*preparedOverload=*/nullptr);
// Bind the 'Self' type from the first extension to the type parameter from
// opening 'Self' of the second extension.
Type selfType1 = sig1.getGenericParams()[0];
Type selfType2 = sig2.getGenericParams()[0];
ASSERT(selfType1->isEqual(selfType2));
ASSERT(replacements[0].first->isEqual(selfType2));
cs.addConstraint(ConstraintKind::Bind,
replacements[0].second,
dc1->mapTypeIntoEnvironment(selfType1),
nullptr);
// Solve the system. If the first extension is at least as specialized as the
// second, we're done.
return cs.solveSingle().has_value();
}
/// Retrieve the adjusted parameter type for overloading purposes.
static Type getAdjustedParamType(const AnyFunctionType::Param &param) {
auto type = param.getOldType();
if (param.isAutoClosure())
return type->castTo<FunctionType>()->getResult();
return type;
}
// Is a particular parameter of a function or subscript declaration
// declared to be an IUO?
static bool paramIsIUO(const ValueDecl *decl, int paramNum) {
return swift::getParameterAt(decl, paramNum)
->isImplicitlyUnwrappedOptional();
}
/// Determine whether the first declaration is as "specialized" as
/// the second declaration.
///
/// "Specialized" is essentially a form of subtyping, defined below.
static bool isDeclAsSpecializedAs(DeclContext *dc, ValueDecl *decl1,
ValueDecl *decl2,
bool isDynamicOverloadComparison = false,
bool allowMissingConformances = true,
bool debugMode = false) {
return evaluateOrDefault(decl1->getASTContext().evaluator,
CompareDeclSpecializationRequest{
dc, decl1, decl2, isDynamicOverloadComparison,
allowMissingConformances, debugMode},
false);
}
bool CompareDeclSpecializationRequest::evaluate(
Evaluator &eval, DeclContext *dc, ValueDecl *decl1, ValueDecl *decl2,
bool isDynamicOverloadComparison, bool allowMissingConformances,
bool debugMode) const {
auto &C = decl1->getASTContext();
ConstraintSystemOptions options;
if (debugMode)
options |= ConstraintSystemFlags::DebugConstraints;
// Construct a constraint system to compare the two declarations.
ConstraintSystem cs(dc, options);
if (cs.isDebugMode()) {
llvm::errs() << "Comparing declarations\n";
decl1->print(llvm::errs());
llvm::errs() << "\nand\n";
decl2->print(llvm::errs());
llvm::errs() << "\n(isDynamicOverloadComparison: ";
llvm::errs() << isDynamicOverloadComparison;
llvm::errs() << ")\n";
}
auto completeResult = [&cs](bool result) {
if (cs.isDebugMode()) {
llvm::errs() << "comparison result: "
<< (result ? "better" : "not better")
<< "\n";
}
return result;
};
auto *innerDC1 = decl1->getInnermostDeclContext();
auto *innerDC2 = decl2->getInnermostDeclContext();
auto *outerDC1 = decl1->getDeclContext();
auto *outerDC2 = decl2->getDeclContext();
// If the kinds are different, there's nothing we can do.
// FIXME: This is wrong for type declarations, which we're skipping
// entirely.
if (decl1->getKind() != decl2->getKind() || isa<TypeDecl>(decl1))
return completeResult(false);
// A non-generic declaration is more specialized than a generic declaration.
if (auto func1 = dyn_cast<AbstractFunctionDecl>(decl1)) {
auto func2 = cast<AbstractFunctionDecl>(decl2);
if (func1->hasGenericParamList() != func2->hasGenericParamList())
return completeResult(func2->hasGenericParamList());
}
if (auto subscript1 = dyn_cast<SubscriptDecl>(decl1)) {
auto subscript2 = cast<SubscriptDecl>(decl2);
if (subscript1->hasGenericParamList() != subscript2->hasGenericParamList())
return completeResult(subscript2->hasGenericParamList());
}
// Members of protocol extensions have special overloading rules.
ProtocolDecl *inProtocolExtension1 = outerDC1->getExtendedProtocolDecl();
ProtocolDecl *inProtocolExtension2 = outerDC2->getExtendedProtocolDecl();
if (inProtocolExtension1 && inProtocolExtension2) {
// Both members are in protocol extensions.
// Determine whether the 'Self' type from the first protocol extension
// satisfies all of the requirements of the second protocol extension.
bool better1 = isProtocolExtensionAsSpecializedAs(outerDC1, outerDC2);
bool better2 = isProtocolExtensionAsSpecializedAs(outerDC2, outerDC1);
if (better1 != better2) {
return completeResult(better1);
}
} else if (inProtocolExtension1 || inProtocolExtension2) {
// One member is in a protocol extension, the other is in a concrete type.
// Prefer the member in the concrete type.
return completeResult(inProtocolExtension2);
}
// A concrete type member is always more specialised than a protocol
// member (bearing in mind that we have already handled the case where
// exactly one member is in a protocol extension). Only apply this rule in
// Swift 5 mode to better maintain source compatibility under Swift 4
// mode.
//
// Don't apply this rule when comparing two overloads found through
// dynamic lookup to ensure we keep cases like this ambiguous:
//
// @objc protocol P {
// var i: String { get }
// }
// class C {
// @objc var i: Int { return 0 }
// }
// func foo(_ x: AnyObject) {
// x.i // ensure ambiguous.
// }
//
if (C.isLanguageModeAtLeast(5) && !isDynamicOverloadComparison) {
auto inProto1 = isa<ProtocolDecl>(outerDC1);
auto inProto2 = isa<ProtocolDecl>(outerDC2);
if (inProto1 != inProto2)
return completeResult(inProto2);
}
Type type1 = decl1->getInterfaceType();
Type type2 = decl2->getInterfaceType();
// Add curried 'self' types if necessary.
if (!decl1->hasCurriedSelf())
type1 = type1->addCurriedSelfType(outerDC1);
if (!decl2->hasCurriedSelf())
type2 = type2->addCurriedSelfType(outerDC2);
auto openType = [&](ConstraintSystem &cs, DeclContext *innerDC,
DeclContext *outerDC, Type type,
SmallVectorImpl<OpenedType> &replacements,
ConstraintLocator *locator) -> Type {
if (auto *funcType = type->getAs<AnyFunctionType>()) {
return cs.openFunctionType(funcType, locator, replacements, outerDC,
/*preparedOverload=*/nullptr);
}
cs.openGeneric(outerDC, innerDC->getGenericSignatureOfContext(), locator,
replacements, /*preparedOverload=*/nullptr);
return cs.openType(type, replacements, locator,
/*preparedOverload=*/nullptr);
};
bool knownNonSubtype = false;
auto *locator = cs.getConstraintLocator({});
// FIXME: Locator when anchored on a declaration.
// Get the type of a reference to the second declaration.
SmallVector<OpenedType, 4> unused, replacements;
auto openedType2 = openType(cs, innerDC2, outerDC2, type2, unused, locator);
auto openedType1 = openType(cs, innerDC1, outerDC1, type1, replacements, locator);
for (auto replacement : replacements) {
if (auto mapped = innerDC1->mapTypeIntoEnvironment(replacement.first)) {
cs.addConstraint(ConstraintKind::Bind, replacement.second, mapped,
locator);
}
}
// Extract the self types from the declarations, if they have them.
auto getSelfType = [](AnyFunctionType *fnType) -> Type {
auto params = fnType->getParams();
assert(params.size() == 1);
return params.front().getPlainType()->getMetatypeInstanceType();
};
Type selfTy1;
Type selfTy2;
if (outerDC1->isTypeContext()) {
auto funcTy1 = openedType1->castTo<FunctionType>();
selfTy1 = getSelfType(funcTy1);
openedType1 = funcTy1->getResult();
}
if (outerDC2->isTypeContext()) {
auto funcTy2 = openedType2->castTo<FunctionType>();
selfTy2 = getSelfType(funcTy2);
openedType2 = funcTy2->getResult();
}
// Determine the relationship between the 'self' types and add the
// appropriate constraints. The constraints themselves never fail, but
// they help deduce type variables that were opened.
auto selfTypeRelationship = computeSelfTypeRelationship(dc, decl1, decl2);
auto relationshipKind = selfTypeRelationship.first;
auto conformance = selfTypeRelationship.second;
(void)conformance;
switch (relationshipKind) {
case SelfTypeRelationship::Unrelated:
// Skip the self types parameter entirely.
break;
case SelfTypeRelationship::Equivalent:
cs.addConstraint(ConstraintKind::Bind, selfTy1, selfTy2, locator);
break;
case SelfTypeRelationship::Subclass:
cs.addConstraint(ConstraintKind::Subtype, selfTy1, selfTy2, locator);
break;
case SelfTypeRelationship::Superclass:
cs.addConstraint(ConstraintKind::Subtype, selfTy2, selfTy1, locator);
break;
case SelfTypeRelationship::ConformsTo:
assert(conformance);
cs.addConstraint(ConstraintKind::ConformsTo, selfTy1,
cast<ProtocolDecl>(outerDC2)->getDeclaredInterfaceType(),
locator);
break;
case SelfTypeRelationship::ConformedToBy:
assert(conformance);
cs.addConstraint(ConstraintKind::ConformsTo, selfTy2,
cast<ProtocolDecl>(outerDC1)->getDeclaredInterfaceType(),
locator);
break;
}
bool fewerEffectiveParameters = false;
if (!decl1->hasParameterList() && !decl2->hasParameterList()) {
// If neither decl has a parameter list, simply check whether the first
// type is a subtype of the second.
cs.addConstraint(ConstraintKind::Subtype, openedType1, openedType2,
locator);
} else if (decl1->hasParameterList() && decl2->hasParameterList()) {
// Otherwise, check whether the first function type's input is a subtype
// of the second type's inputs, i.e., can we forward the arguments?
auto funcTy1 = openedType1->castTo<FunctionType>();
auto funcTy2 = openedType2->castTo<FunctionType>();
auto params1 = funcTy1->getParams();
auto params2 = funcTy2->getParams();
// TODO: We should consider merging these two branches together in
// the future instead of re-implementing `matchCallArguments`.
if (containsPackExpansionType(params1) ||
containsPackExpansionType(params2)) {
ParameterListInfo paramListInfo(params2, decl2, decl2->hasCurriedSelf());
MatchCallArgumentListener listener;
SmallVector<AnyFunctionType::Param> args(params1);
auto matching = matchCallArguments(
args, params2, paramListInfo, std::nullopt,
/*allowFixes=*/false, listener, TrailingClosureMatching::Forward);
if (!matching)
return completeResult(false);
for (unsigned paramIdx = 0,
numParams = matching->parameterBindings.size();
paramIdx != numParams; ++paramIdx) {
const auto &param = params2[paramIdx];
auto paramTy = param.getOldType();
auto argIndices = matching->parameterBindings[paramIdx];
if (argIndices.empty())
continue;
if (paramListInfo.isVariadicGenericParameter(paramIdx) &&
isPackExpansionType(paramTy) &&
(argIndices.size() > 1 ||
!isPackExpansionType(args[argIndices.front()].getOldType()))) {
SmallVector<Type, 2> argTypes;
for (auto argIdx : argIndices) {
// Don't prefer `T...` over `repeat each T`.
if (args[argIdx].isVariadic())
return completeResult(false);
argTypes.push_back(args[argIdx].getPlainType());
}
auto *argPack = PackType::get(cs.getASTContext(), argTypes);
cs.addConstraint(ConstraintKind::Subtype,
PackExpansionType::get(argPack, argPack), paramTy,
locator);
continue;
}
for (auto argIdx : argIndices) {
const auto &arg = args[argIdx];
// Always prefer non-variadic version when possible.
if (arg.isVariadic())
return completeResult(false);
cs.addConstraint(ConstraintKind::Subtype, arg.getOldType(),
paramTy, locator);
}
}
} else {
unsigned numParams1 = params1.size();
unsigned numParams2 = params2.size();
if (numParams1 > numParams2)
return completeResult(false);
// If they both have trailing closures, compare those separately.
bool compareTrailingClosureParamsSeparately = false;
if (numParams1 > 0 && numParams2 > 0 &&
params1.back().getParameterType()->is<AnyFunctionType>() &&
params2.back().getParameterType()->is<AnyFunctionType>()) {
compareTrailingClosureParamsSeparately = true;
}
auto maybeAddSubtypeConstraint =
[&](const AnyFunctionType::Param &param1,
const AnyFunctionType::Param &param2) -> bool {
// If one parameter is variadic and the other is not...
if (param1.isVariadic() != param2.isVariadic()) {
// If the first parameter is the variadic one, it's not
// more specialized.
if (param1.isVariadic())
return false;
fewerEffectiveParameters = true;
}
Type paramType1 = getAdjustedParamType(param1);
Type paramType2 = getAdjustedParamType(param2);
// Check whether the first parameter is a subtype of the second.
cs.addConstraint(ConstraintKind::Subtype, paramType1, paramType2,
locator);
return true;
};
auto pairMatcher = [&](unsigned idx1, unsigned idx2) -> bool {
// Emulate behavior from when IUO was a type, where IUOs
// were considered subtypes of plain optionals, but not
// vice-versa. This wouldn't normally happen, but there are
// cases where we can rename imported APIs so that we have a
// name collision, and where the parameter type(s) are the
// same except for details of the kind of optional declared.
auto param1IsIUO = paramIsIUO(decl1, idx1);
auto param2IsIUO = paramIsIUO(decl2, idx2);
if (param2IsIUO && !param1IsIUO)
return false;
if (!maybeAddSubtypeConstraint(params1[idx1], params2[idx2]))
return false;
return true;
};
ParameterListInfo paramInfo(params2, decl2, decl2->hasCurriedSelf());
auto params2ForMatching = params2;
if (compareTrailingClosureParamsSeparately) {
--numParams1;
params2ForMatching = params2.drop_back();
}
InputMatcher IM(params2ForMatching, paramInfo);
if (IM.match(numParams1, pairMatcher) != InputMatcher::IM_Succeeded)
return completeResult(false);
fewerEffectiveParameters |= (IM.getNumSkippedParameters() != 0);
if (compareTrailingClosureParamsSeparately)
if (!maybeAddSubtypeConstraint(params1.back(), params2.back()))
knownNonSubtype = true;
}
}
if (!knownNonSubtype) {
// Solve the system.
auto solution = cs.solveSingle(FreeTypeVariableBinding::Allow);
if (solution) {
auto score = solution->getFixedScore();
// Ban value-to-optional conversions and
// missing conformances if they are disallowed.
if (score.Data[SK_ValueToOptional] == 0 &&
(allowMissingConformances ||
score.Data[SK_MissingSynthesizableConformance] == 0))
return completeResult(true);
}
}
// If the first function has fewer effective parameters than the
// second, it is more specialized.
if (fewerEffectiveParameters)
return completeResult(true);
return completeResult(false);
}
Comparison TypeChecker::compareDeclarations(DeclContext *dc,
ValueDecl *decl1,
ValueDecl *decl2){
bool decl1Better = isDeclAsSpecializedAs(dc, decl1, decl2);
bool decl2Better = isDeclAsSpecializedAs(dc, decl2, decl1);
if (decl1Better == decl2Better)
return Comparison::Unordered;
return decl1Better ? Comparison::Better : Comparison::Worse;
}
static Type getStrippedType(Type type, ASTContext &ctx) {
return type.transformRec([&](TypeBase *type) -> std::optional<Type> {
if (auto *tupleType = dyn_cast<TupleType>(type)) {
if (tupleType->getNumElements() == 1)
return tupleType->getElementType(0);
SmallVector<TupleTypeElt, 8> elts;
for (auto elt : tupleType->getElements()) {
elts.push_back(elt.getWithoutName());
}
return TupleType::get(elts, ctx);
}
if (auto *funcType = dyn_cast<FunctionType>(type)) {
auto params = funcType->getParams();
SmallVector<AnyFunctionType::Param, 4> newParams;
for (auto param : params) {
auto newParam = param;
switch (param.getParameterFlags().getOwnershipSpecifier()) {
case ParamSpecifier::Borrowing:
case ParamSpecifier::Consuming: {
auto flags = param.getParameterFlags()
.withOwnershipSpecifier(ParamSpecifier::Default);
newParams.push_back(param.withFlags(flags));
break;
}
default:
newParams.push_back(newParam);
break;
}
}
auto newExtInfo = funcType->getExtInfo().withRepresentation(
AnyFunctionType::Representation::Swift);
return FunctionType::get(newParams,
funcType->getResult(),
newExtInfo);
}
return std::nullopt;
});
}
static void addKeyPathDynamicMemberOverloads(
ArrayRef<Solution> solutions, unsigned idx1, unsigned idx2,
SmallVectorImpl<SolutionDiff::OverloadDiff> &overloadDiff) {
const auto &overloads1 = solutions[idx1].overloadChoices;
const auto &overloads2 = solutions[idx2].overloadChoices;
for (auto &entry : overloads1) {
auto *locator = entry.first;
if (!locator->isForKeyPathDynamicMemberLookup())
continue;
auto overload2 = overloads2.find(locator);
if (overload2 == overloads2.end())
continue;
auto &overloadChoice1 = entry.second.choice;
auto &overloadChoice2 = overload2->second.choice;
SmallVector<OverloadChoice, 4> choices;
choices.resize(solutions.size());
choices[idx1] = overloadChoice1;
choices[idx2] = overloadChoice2;
overloadDiff.push_back(
SolutionDiff::OverloadDiff{locator, std::move(choices)});
}
}
namespace {
/// A set of type variable bindings to compare for ranking.
struct TypeBindingsToCompare {
Type Type1;
Type Type2;
// These bits are used in the case where we need to compare a lone unlabeled
// parameter with a labeled parameter, and allow us to prefer the unlabeled
// one.
bool Type1WasLabeled = false;
bool Type2WasLabeled = false;
TypeBindingsToCompare(Type type1, Type type2)
: Type1(type1), Type2(type2) {}
/// Whether the type bindings to compare are known to be the same.
bool areSameTypes() const {
return !Type1WasLabeled && !Type2WasLabeled && Type1->isEqual(Type2);
}
};
} // end anonymous namespace
/// Given the bound types of two constructor overloads, returns their parameter
/// list types as tuples to compare for solution ranking, or \c None if they
/// shouldn't be compared.
static std::optional<TypeBindingsToCompare>
getConstructorParamsAsTuples(ASTContext &ctx, Type boundTy1, Type boundTy2) {
auto choiceTy1 =
boundTy1->lookThroughAllOptionalTypes()->getAs<FunctionType>();
auto choiceTy2 =
boundTy2->lookThroughAllOptionalTypes()->getAs<FunctionType>();
// If the type variables haven't been bound to functions yet, let's not try
// and rank them.
if (!choiceTy1 || !choiceTy2)
return std::nullopt;
auto initParams1 = choiceTy1->getParams();
auto initParams2 = choiceTy2->getParams();
if (initParams1.size() != initParams2.size())
return std::nullopt;
// Don't compare if there are variadic differences. This preserves the
// behavior of when we'd compare through matchTupleTypes with the parameter
// flags intact.
for (auto idx : indices(initParams1)) {
if (initParams1[idx].isVariadic() != initParams2[idx].isVariadic())
return std::nullopt;
}
// Awful hack needed to preserve source compatibility: If we have single
// variadic parameters to compare, where one has a label and the other does
// not, e.g (x: Int...) and (Int...), compare the parameter types by
// themselves, and make a note of which one has the label.
//
// This is needed because previously we would build a TupleType for a single
// unlabeled variadic parameter (Int...), which would let us compare it with
// a labeled parameter (x: Int...) and prefer the unlabeled version. With the
// parameter flags stripped however, (Int...) would become a paren type,
// which we wouldn't compare with the tuple type (x: Int...). To preserve the
// previous behavior in this case, just do a type comparison for the param
// types, and record where we stripped a label. The ranking logic can then use
// this to prefer the unlabeled variant. This is only needed in the single
// parameter case, as other cases will compare as tuples the same as before.
// In cases where variadics aren't used, we may end up trying to compare
// parens with tuples, but that's consistent with what we previously did.
//
// Note we can just do checks on initParams1, as we've already established
// sizes and variadic bits are consistent.
if (initParams1.size() == 1 && initParams1[0].isVariadic() &&
initParams1[0].hasLabel() != initParams2[0].hasLabel()) {
TypeBindingsToCompare bindings(initParams1[0].getParameterType(),
initParams2[0].getParameterType());
if (initParams1[0].hasLabel()) {
bindings.Type1WasLabeled = true;
} else {
bindings.Type2WasLabeled = true;
}
return bindings;
}
auto tuple1 = AnyFunctionType::composeTuple(
ctx, initParams1, ParameterFlagHandling::IgnoreNonEmpty);
auto tuple2 = AnyFunctionType::composeTuple(
ctx, initParams2, ParameterFlagHandling::IgnoreNonEmpty);
return TypeBindingsToCompare(tuple1, tuple2);
}
SolutionCompareResult ConstraintSystem::compareSolutions(
ConstraintSystem &cs, ArrayRef<Solution> solutions,
const SolutionDiff &diff, unsigned idx1, unsigned idx2) {
if (cs.isDebugMode()) {
llvm::errs().indent(cs.solverState->getCurrentIndent())
<< "comparing solutions " << idx1 << " and " << idx2 << "\n";
}
// Whether the solutions are identical.
bool identical = true;
// Compare the fixed scores by themselves.
if (solutions[idx1].getFixedScore() != solutions[idx2].getFixedScore()) {
return solutions[idx1].getFixedScore() < solutions[idx2].getFixedScore()
? SolutionCompareResult::Better
: SolutionCompareResult::Worse;
}
// Compute relative score.
unsigned score1 = 0;
unsigned score2 = 0;
auto foundRefinement1 = false;
auto foundRefinement2 = false;
bool isStdlibOptionalMPlusOperator1 = false;
bool isStdlibOptionalMPlusOperator2 = false;
bool isVarAndNotProtocol1 = false;
bool isVarAndNotProtocol2 = false;
auto getWeight = [&](ConstraintLocator *locator) -> unsigned {
if (auto *anchor = locator->getAnchor().dyn_cast<Expr *>()) {
auto weight = cs.getExprDepth(anchor);
if (weight)
return *weight + 1;
}
return 1;
};
SmallVector<SolutionDiff::OverloadDiff, 4> overloadDiff(diff.overloads);
// Single type of keypath dynamic member lookup could refer to different
// member overloads, we have to do a pair-wise comparison in such cases
// otherwise ranking would miss some viable information e.g.
// `_ = arr[0..<3]` could refer to subscript through writable or read-only
// key path and each of them could also pick overload which returns `Slice<T>`
// or `ArraySlice<T>` (assuming that `arr` is something like `Box<[Int]>`).
addKeyPathDynamicMemberOverloads(solutions, idx1, idx2, overloadDiff);
// Compare overload sets.
for (auto &overload : overloadDiff) {
unsigned weight = getWeight(overload.locator);
auto choice1 = overload.choices[idx1];
auto choice2 = overload.choices[idx2];
// If the systems made the same choice, there's nothing interesting here.
if (sameOverloadChoice(choice1, choice2))
continue;
// If constraint system is underconstrained e.g. because there are
// editor placeholders, it's possible to end up with multiple solutions
// where each ambiguous declaration is going to have its own overload kind:
//
// func foo(_: Int) -> [Int] { ... }
// func foo(_: Double) -> (result: String, count: Int) { ... }
//
// _ = foo(<#arg#>).count
//
// In this case solver would produce 2 solutions: one where `count`
// is a property reference on `[Int]` and another one is tuple access
// for a `count:` element.
if (choice1.isDecl() != choice2.isDecl())
return SolutionCompareResult::Incomparable;
auto decl1 = choice1.getDecl();
auto dc1 = decl1->getDeclContext();
auto decl2 = choice2.getDecl();
auto dc2 = decl2->getDeclContext();
// The two systems are not identical. If the decls in question are distinct
// protocol members, let the checks below determine if the two choices are
// 'identical' or not. This allows us to structurally unify disparate
// protocol members during overload resolution.
// FIXME: Along with the FIXME below, this is a hack to work around
// problems with restating requirements in protocols.
identical = false;
if (cs.isForCodeCompletion()) {
// Don't rank based on overload choices of function calls that contain the
// code completion token.
if (auto anchor = simplifyLocatorToAnchor(overload.locator)) {
if (cs.containsIDEInspectionTarget(cs.includingParentApply(anchor)))
continue;
}
}
bool decl1InSubprotocol = false;
bool decl2InSubprotocol = false;
if (dc1->getContextKind() == DeclContextKind::GenericTypeDecl &&
dc1->getContextKind() == dc2->getContextKind()) {
auto pd1 = dyn_cast<ProtocolDecl>(dc1);
auto pd2 = dyn_cast<ProtocolDecl>(dc2);
// FIXME: This hack tells us to prefer members of subprotocols over
// those of the protocols they inherit, if all else fails.
// If we were properly handling overrides of protocol members when
// requirements get restated, it would not be necessary.
if (pd1 && pd2 && pd1 != pd2) {
identical = true;
decl1InSubprotocol = pd1->inheritsFrom(pd2);
decl2InSubprotocol = pd2->inheritsFrom(pd1);
}
}
// If the kinds of overload choice don't match...
if (choice1.getKind() != choice2.getKind()) {
identical = false;
// A declaration found directly beats any declaration found via dynamic
// lookup, bridging, or optional unwrapping.
if ((choice1.getKind() == OverloadChoiceKind::Decl) &&
(choice2.getKind() == OverloadChoiceKind::DeclViaDynamic ||
choice2.getKind() == OverloadChoiceKind::DeclViaBridge ||
choice2.getKind() == OverloadChoiceKind::DeclViaUnwrappedOptional)) {
score1 += weight;
continue;
}
if ((choice1.getKind() == OverloadChoiceKind::DeclViaDynamic ||
choice1.getKind() == OverloadChoiceKind::DeclViaBridge ||
choice1.getKind() == OverloadChoiceKind::DeclViaUnwrappedOptional) &&
choice2.getKind() == OverloadChoiceKind::Decl) {
score2 += weight;
continue;
}
if (choice1.getKind() == OverloadChoiceKind::KeyPathDynamicMemberLookup) {
if (choice2.getKind() == OverloadChoiceKind::DynamicMemberLookup)
// Dynamic member lookup through a keypath is better than one using
// string because it carries more type information.
score1 += weight;
else
// Otherwise let's prefer non-dynamic declaration.
score2 += weight;
continue;
}
if (choice2.getKind() == OverloadChoiceKind::KeyPathDynamicMemberLookup) {
if (choice1.getKind() == OverloadChoiceKind::DynamicMemberLookup)
// Dynamic member lookup through a keypath is better than one using
// string because it carries more type information.
score2 += weight;
else
// Otherwise let's prefer non-dynamic declaration.
score1 += weight;
continue;
}
continue;
}
// The kinds of overload choice match, but the contents don't.
switch (choice1.getKind()) {
case OverloadChoiceKind::TupleIndex:
case OverloadChoiceKind::MaterializePack:
case OverloadChoiceKind::ExtractFunctionIsolation:
continue;
case OverloadChoiceKind::KeyPathApplication:
llvm_unreachable("Never considered different");
case OverloadChoiceKind::DeclViaDynamic:
case OverloadChoiceKind::Decl:
case OverloadChoiceKind::DeclViaBridge:
case OverloadChoiceKind::DeclViaUnwrappedOptional:
case OverloadChoiceKind::DynamicMemberLookup:
case OverloadChoiceKind::KeyPathDynamicMemberLookup:
break;
}
// We don't apply some ranking rules to overloads found through dynamic
// lookup in order to keep a few potentially ill-formed cases ambiguous.
bool isDynamicOverloadComparison =
choice1.getKind() == OverloadChoiceKind::DeclViaDynamic &&
choice2.getKind() == OverloadChoiceKind::DeclViaDynamic;
// Determine whether one declaration is more specialized than the other.
bool firstAsSpecializedAs = false;
bool secondAsSpecializedAs = false;
if (isDeclAsSpecializedAs(cs.DC, decl1, decl2, isDynamicOverloadComparison,
/*allowMissingConformances=*/false,
cs.isDebugMode())) {
score1 += weight;
firstAsSpecializedAs = true;
}
if (isDeclAsSpecializedAs(cs.DC, decl2, decl1, isDynamicOverloadComparison,
/*allowMissingConformances=*/false,
cs.isDebugMode())) {
score2 += weight;
secondAsSpecializedAs = true;
}
// If each is as specialized as the other, and both are constructors,
// check the constructor kind.
if (firstAsSpecializedAs && secondAsSpecializedAs) {
if (auto ctor1 = dyn_cast<ConstructorDecl>(decl1)) {
if (auto ctor2 = dyn_cast<ConstructorDecl>(decl2)) {
if (ctor1->getInitKind() != ctor2->getInitKind()) {
if (ctor1->getInitKind() < ctor2->getInitKind())
score1 += weight;
else
score2 += weight;
} else if (ctor1->getInitKind() ==
CtorInitializerKind::Convenience) {
// If both are convenience initializers, and the instance type of
// one is a subtype of the other's, favor the subtype constructor.
auto resType1 = ctor1->mapTypeIntoEnvironment(
ctor1->getResultInterfaceType());
auto resType2 = ctor2->mapTypeIntoEnvironment(
ctor2->getResultInterfaceType());
if (!resType1->isEqual(resType2)) {
if (TypeChecker::isSubtypeOf(resType1, resType2, cs.DC)) {
score1 += weight;
} else if (TypeChecker::isSubtypeOf(resType2, resType1, cs.DC)) {
score2 += weight;
}
}
}
}
}
}
// If both declarations come from Clang, and one is a type and the other
// is a function, prefer the function.
if (decl1->hasClangNode() &&
decl2->hasClangNode() &&
((isa<TypeDecl>(decl1) &&
isa<AbstractFunctionDecl>(decl2)) ||
(isa<AbstractFunctionDecl>(decl1) &&
isa<TypeDecl>(decl2)))) {
if (isa<TypeDecl>(decl1))
score2 += weight;
else
score1 += weight;
}
// A class member is always better than a curried instance member.
// If the members agree on instance-ness, a property is better than a
// method (because a method is usually immediately invoked).
if (!decl1->isInstanceMember() && decl2->isInstanceMember())
score1 += weight;
else if (!decl2->isInstanceMember() && decl1->isInstanceMember())
score2 += weight;
else if (isa<VarDecl>(decl1) && isa<FuncDecl>(decl2))
score1 += weight;
else if (isa<VarDecl>(decl2) && isa<FuncDecl>(decl1))
score2 += weight;
// If both are class properties with the same name, prefer
// the one attached to the subclass because it could only be
// found if requested directly.
if (!decl1->isInstanceMember() && !decl2->isInstanceMember()) {
if (isa<VarDecl>(decl1) && isa<VarDecl>(decl2)) {
auto *nominal1 = dc1->getSelfNominalTypeDecl();
auto *nominal2 = dc2->getSelfNominalTypeDecl();
if (nominal1 && nominal2 && nominal1 != nominal2) {
auto base1 = nominal1->getDeclaredType();
auto base2 = nominal2->getDeclaredType();
if (isNominallySuperclassOf(base1, base2))
score2 += weight;
if (isNominallySuperclassOf(base2, base1))
score1 += weight;
}
}
}
// If we haven't found a refinement, record whether one overload is in
// any way more constrained than another. We'll only utilize this
// information in the case of a potential ambiguity.
if (!(foundRefinement1 && foundRefinement2)) {
if (isDeclMoreConstrainedThan(decl1, decl2)) {
foundRefinement1 = true;
}
if (isDeclMoreConstrainedThan(decl2, decl1)) {
foundRefinement2 = true;
}
}
// FIXME: The rest of the hack for restating requirements.
if (!(foundRefinement1 && foundRefinement2)) {
if (identical && decl1InSubprotocol != decl2InSubprotocol) {
foundRefinement1 = decl1InSubprotocol;
foundRefinement2 = decl2InSubprotocol;
}
}
// Swift 4.1 compatibility hack: If everything else is considered equal,
// favour a property on a concrete type over a protocol property member.
//
// This hack is required due to changes in shadowing behaviour where a
// protocol property member will no longer shadow a property on a concrete
// type, which created unintentional ambiguities in 4.2. This hack ensures
// we at least keep these cases unambiguous in Swift 5 under Swift 4
// compatibility mode. Don't however apply this hack for decls found through
// dynamic lookup, as we want the user to have to disambiguate those.
//
// This is intentionally narrow in order to best preserve source
// compatibility under Swift 4 mode by ensuring we don't introduce any new
// ambiguities. This will become a more general "is more specialised" rule
// in Swift 5 mode.
if (!cs.getASTContext().isLanguageModeAtLeast(5) &&
choice1.getKind() != OverloadChoiceKind::DeclViaDynamic &&
choice2.getKind() != OverloadChoiceKind::DeclViaDynamic &&
isa<VarDecl>(decl1) && isa<VarDecl>(decl2)) {
auto *nominal1 = dc1->getSelfNominalTypeDecl();
auto *nominal2 = dc2->getSelfNominalTypeDecl();
if (nominal1 && nominal2 && nominal1 != nominal2) {
isVarAndNotProtocol1 = !isa<ProtocolDecl>(nominal1);
isVarAndNotProtocol2 = !isa<ProtocolDecl>(nominal2);
}
}
// FIXME: Lousy hack for ?? to prefer the catamorphism (flattening)
// over the mplus (non-flattening) overload if all else is equal.
if (decl1->getBaseName() == "??") {
assert(decl2->getBaseName() == "??");
auto check = [](const ValueDecl *VD) -> bool {
if (!VD->getModuleContext()->isStdlibModule())
return false;
auto fnTy = VD->getInterfaceType()->castTo<AnyFunctionType>();
if (!fnTy->getResult()->getOptionalObjectType())
return false;
// Check that the standard library hasn't added another overload of
// the ?? operator.
auto params = fnTy->getParams();
assert(params.size() == 2);
auto param1 = params[0].getParameterType();
auto param2 = params[1].getParameterType()->castTo<AnyFunctionType>();
assert(param1->getOptionalObjectType());
assert(params[1].isAutoClosure());
assert(param2->getResult()->getOptionalObjectType());
(void) param1;
(void) param2;
return true;
};
isStdlibOptionalMPlusOperator1 = check(decl1);
isStdlibOptionalMPlusOperator2 = check(decl2);
}
}
// Compare the type variable bindings.
llvm::DenseMap<TypeVariableType *, TypeBindingsToCompare> typeDiff;
const auto &bindings1 = solutions[idx1].typeBindings;
const auto &bindings2 = solutions[idx2].typeBindings;
for (const auto &binding1 : bindings1) {
if (!binding1.second)
continue;
auto *typeVar = binding1.first;
auto *loc = typeVar->getImpl().getLocator();
// Check whether this is the overload type for a short-form init call
// 'X(...)' or 'self.init(...)' call.
auto isShortFormOrSelfDelegatingConstructorBinding = false;
if (auto initMemberTypeElt =
loc->getLastElementAs<LocatorPathElt::ConstructorMemberType>()) {
isShortFormOrSelfDelegatingConstructorBinding =
initMemberTypeElt->isShortFormOrSelfDelegatingConstructor();
}
// If the type variable isn't one for which we should be looking at the
// bindings, don't.
if (!typeVar->getImpl().prefersSubtypeBinding() &&
!isShortFormOrSelfDelegatingConstructorBinding) {
continue;
}
// If both solutions have a binding for this type variable
// let's consider it.
auto binding2 = bindings2.find(typeVar);
if (binding2 == bindings2.end())
continue;
if (!binding2->second)
continue;
TypeBindingsToCompare typesToCompare(binding1.second, binding2->second);
// For short-form and self-delegating init calls, we want to prefer
// parameter lists with subtypes over supertypes. To do this, compose tuples
// for the bound parameter lists, and compare them in the type diff. This
// logic preserves the behavior of when we used to bind the parameter list
// as a tuple to a TVO_PrefersSubtypeBinding type variable for such calls.
// FIXME: We should come up with a better way of doing this, though note we
// have some ranking and subtyping rules specific to tuples that we may need
// to preserve to avoid breaking source.
if (isShortFormOrSelfDelegatingConstructorBinding) {
auto diffs = getConstructorParamsAsTuples(
cs.getASTContext(), typesToCompare.Type1, typesToCompare.Type2);
if (!diffs)
continue;
typesToCompare = *diffs;
}
if (!typesToCompare.areSameTypes())
typeDiff.insert({typeVar, typesToCompare});
}
for (auto &binding : typeDiff) {
auto types = binding.second;
auto type1 = types.Type1;
auto type2 = types.Type2;
// If either of the types have holes or unresolved type variables, we can't
// compare them. `isSubtypeOf` cannot be used with solver-allocated types.
if (type1->hasTypeVariableOrPlaceholder() ||
type2->hasTypeVariableOrPlaceholder()) {
identical = false;
continue;
}
// If one type is a subtype of the other, but not vice-versa,
// we prefer the system with the more-constrained type.
// FIXME: Collapse this check into the second check.
auto type1Better = TypeChecker::isSubtypeOf(type1, type2, cs.DC);
auto type2Better = TypeChecker::isSubtypeOf(type2, type1, cs.DC);
if (type1Better || type2Better) {
if (type1Better)
++score1;
if (type2Better)
++score2;
// Prefer the "stripped" form of a type. See getStrippedType()
// for the definition.
auto stripped1 = getStrippedType(type1, cs.getASTContext());
auto stripped2 = getStrippedType(type2, cs.getASTContext());
if (stripped1->isEqual(stripped2)) {
if (type1->isEqual(stripped1) && !types.Type1WasLabeled) {
++score1;
continue;
}
if (type2->isEqual(stripped2) && !types.Type2WasLabeled) {
++score2;
continue;
}
}
identical = false;
continue;
}
// The systems are not considered equivalent.
identical = false;
// Archetypes are worse than concrete types
// FIXME: Total hack.
if (type1->is<ArchetypeType>() && !type2->is<ArchetypeType>()) {
++score2;
continue;
} else if (type2->is<ArchetypeType>() && !type1->is<ArchetypeType>()) {
++score1;
continue;
}
// FIXME:
// This terrible hack is in place to support equality comparisons of non-
// equatable option types to 'nil'. Until we have a way to constrain a type
// variable on "!Equatable", if all other aspects of the overload choices
// are equal, favor the overload that does not require an implicit literal
// argument conversion to 'nil'.
// Post-1.0, we'll need to remove this hack in favor of richer constraint
// declarations.
if (!(score1 || score2)) {
if (auto nominalType2 = type2->getNominalOrBoundGenericNominal()) {
if ((nominalType2->getName() ==
cs.getASTContext().Id_OptionalNilComparisonType)) {
++score2;
}
}
if (auto nominalType1 = type1->getNominalOrBoundGenericNominal()) {
if ((nominalType1->getName() ==
cs.getASTContext().Id_OptionalNilComparisonType)) {
++score1;
}
}
}
}
// All other things considered equal, if any overload choice is more
// more constrained than the other, increment the score.
if (score1 == score2) {
if (foundRefinement1) {
++score1;
}
if (foundRefinement2) {
++score2;
}
}
// FIXME: All other things being equal, prefer the catamorphism (flattening)
// overload of ?? over the mplus (non-flattening) overload.
if (score1 == score2) {
// This is correct: we want to /disprefer/ the mplus.
score2 += isStdlibOptionalMPlusOperator1;
score1 += isStdlibOptionalMPlusOperator2;
}
// All other things being equal, apply the Swift 4.1 compatibility hack for
// preferring var members in concrete types over a protocol requirement
// (see the comment above for the rationale of this hack).
if (!cs.getASTContext().isLanguageModeAtLeast(5) && score1 == score2) {
score1 += isVarAndNotProtocol1;
score2 += isVarAndNotProtocol2;
}
// FIXME: There are type variables and overloads not common to both solutions
// that haven't been considered. They make the systems different, but don't
// affect ranking. We need to handle this.
// If the scores are different, we have a winner.
if (score1 != score2) {
return score1 > score2? SolutionCompareResult::Better
: SolutionCompareResult::Worse;
}
// Neither system wins; report whether they were identical or not.
return identical? SolutionCompareResult::Identical
: SolutionCompareResult::Incomparable;
}
std::optional<unsigned>
ConstraintSystem::findBestSolution(SmallVectorImpl<Solution> &viable,
bool minimize) {
// Don't spend time filtering solutions if we already hit a threshold.
if (isTooComplex(viable))
return std::nullopt;
if (viable.empty())
return std::nullopt;
if (viable.size() == 1)
return 0;
if (isDebugMode()) {
auto indent = solverState->getCurrentIndent();
auto &log = llvm::errs();
log.indent(indent) << "Comparing " << viable.size()
<< " viable solutions\n";
for (unsigned i = 0, n = viable.size(); i != n; ++i) {
log << "\n";
log.indent(indent) << "--- Solution #" << i << " ---\n";
viable[i].dump(llvm::errs(), indent);
}
}
SolutionDiff diff(viable);
// Find a potential best.
SmallVector<bool, 16> losers(viable.size(), false);
Score bestScore = viable.front().getFixedScore();
unsigned bestIdx = 0;
for (unsigned i = 1, n = viable.size(); i != n; ++i) {
auto currScore = viable[i].getFixedScore();
if (currScore < bestScore)
bestScore = currScore;
switch (compareSolutions(*this, viable, diff, i, bestIdx)) {
case SolutionCompareResult::Identical:
// FIXME: Might want to warn about this in debug builds, so we can
// find a way to eliminate the redundancy in the search space.
case SolutionCompareResult::Incomparable:
break;
case SolutionCompareResult::Worse:
losers[i] = true;
break;
case SolutionCompareResult::Better:
losers[bestIdx] = true;
bestIdx = i;
break;
}
// Give up if we're out of time.
if (isTooComplex(/*solutions=*/{}))
return std::nullopt;
}
// Make sure that our current best is better than all of the solved systems.
bool ambiguous = false;
for (unsigned i = 0, n = viable.size(); i != n && !ambiguous; ++i) {
if (i == bestIdx)
continue;
switch (compareSolutions(*this, viable, diff, bestIdx, i)) {
case SolutionCompareResult::Identical:
// FIXME: Might want to warn about this in debug builds, so we can
// find a way to eliminate the redundancy in the search space.
break;
case SolutionCompareResult::Better:
losers[i] = true;
break;
case SolutionCompareResult::Worse:
losers[bestIdx] = true;
LLVM_FALLTHROUGH;
case SolutionCompareResult::Incomparable:
// If we're not supposed to minimize the result set, just return eagerly.
if (!minimize)
return std::nullopt;
ambiguous = true;
break;
}
// Give up if we're out of time.
if (isTooComplex(/*solutions=*/{}))
return std::nullopt;
}
// If the result was not ambiguous, we're done.
if (!ambiguous) {
NumDiscardedSolutions += viable.size() - 1;
return bestIdx;
}
if (!minimize)
return std::nullopt;
// Remove any solution that is worse than some other solution.
unsigned outIndex = 0;
for (unsigned i = 0, n = viable.size(); i != n; ++i) {
// Skip over the losing solutions.
if (viable[i].getFixedScore() > bestScore)
continue;
// If we have skipped any solutions, move this solution into the next
// open position.
if (outIndex < i)
viable[outIndex] = std::move(viable[i]);
++outIndex;
}
viable.erase(viable.begin() + outIndex, viable.end());
NumDiscardedSolutions += viable.size() - outIndex;
return std::nullopt;
}
SolutionDiff::SolutionDiff(ArrayRef<Solution> solutions) {
if (solutions.size() <= 1)
return;
// Populate the overload choices with the first solution.
llvm::DenseMap<ConstraintLocator *, SmallVector<OverloadChoice, 2>>
overloadChoices;
for (auto choice : solutions[0].overloadChoices) {
overloadChoices[choice.first].push_back(choice.second.choice);
}
// Find the type variables and overload locators common to all of the
// solutions.
for (auto &solution : solutions.slice(1)) {
// For each overload locator for which we have an overload choice in
// all of the previous solutions. Check whether we have an overload choice
// in this solution.
SmallVector<ConstraintLocator *, 4> removeOverloadChoices;
for (auto &overloadChoice : overloadChoices) {
auto known = solution.overloadChoices.find(overloadChoice.first);
if (known == solution.overloadChoices.end()) {
removeOverloadChoices.push_back(overloadChoice.first);
continue;
}
// Add this solution's overload choice to the results.
overloadChoice.second.push_back(known->second.choice);
}
// Remove those overload locators for which this solution did not have
// an overload choice.
for (auto overloadChoice : removeOverloadChoices) {
overloadChoices.erase(overloadChoice);
}
}
for (auto &overloadChoice : overloadChoices) {
OverloadChoice singleChoice = overloadChoice.second[0];
for (auto choice : overloadChoice.second) {
if (sameOverloadChoice(singleChoice, choice))
continue;
// We have a difference. Add this set of overload choices to the diff.
this->overloads.push_back(SolutionDiff::OverloadDiff{
overloadChoice.first, std::move(overloadChoice.second)});
break;
}
}
}
InputMatcher::InputMatcher(const ArrayRef<AnyFunctionType::Param> params,
const ParameterListInfo &paramInfo)
: NumSkippedParameters(0), ParamInfo(paramInfo),
Params(params) {}
InputMatcher::Result
InputMatcher::match(int numInputs,
std::function<bool(unsigned, unsigned)> pairMatcher) {
int inputIdx = 0;
int numParams = Params.size();
for (int i = 0; i < numParams; ++i) {
// If we've claimed all of the inputs, the rest of the parameters should
// be either default or variadic.
if (inputIdx == numInputs) {
if (!ParamInfo.hasDefaultArgument(i) && !Params[i].isVariadic())
return IM_HasUnmatchedParam;
++NumSkippedParameters;
continue;
}
// If there is a default for parameter, while there are still some
// input left unclaimed, it could only mean that default parameters
// are intermixed e.g.
//
// inputs: (a: Int)
// params: (q: String = "", a: Int)
//
// or
// inputs: (a: Int, c: Int)
// params: (a: Int, b: Int = 0, c: Int)
//
// and we shouldn't claim any input and just skip such parameter.
if ((numInputs - inputIdx) < (numParams - i) &&
ParamInfo.hasDefaultArgument(i)) {
++NumSkippedParameters;
continue;
}
// Call custom function to match the input-parameter pair.
if (!pairMatcher(inputIdx, i))
return IM_CustomPairMatcherFailed;
// claim the input as used.
++inputIdx;
}
if (inputIdx < numInputs)
return IM_HasUnclaimedInput;
return IM_Succeeded;
}