Files
swift-mirror/lib/SILAnalysis/ARCAnalysis.cpp

359 lines
12 KiB
C++

//===-------------- ARCAnalysis.cpp - SIL ARC Analysis --------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-arc-analysis"
#include "swift/SILAnalysis/ARCAnalysis.h"
#include "swift/Basic/Fallthrough.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SILAnalysis/AliasAnalysis.h"
#include "swift/SILAnalysis/ValueTracking.h"
#include "swift/SILPasses/Utils/Local.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/Debug.h"
using namespace swift;
using namespace swift::arc;
//===----------------------------------------------------------------------===//
// Decrement Analysis
//===----------------------------------------------------------------------===//
static bool isKnownToNotDecrementRefCount(FunctionRefInst *FRI) {
return llvm::StringSwitch<bool>(FRI->getReferencedFunction()->getName())
.Case("swift_keepAlive", true)
.Case("_swift_isUniquelyReferenced", true)
.Default(false);
}
static bool canApplyDecrementRefCount(ApplyInst *AI, SILValue Ptr,
AliasAnalysis *AA) {
// Ignore any thick functions for now due to us not handling the ref-counted
// nature of its context.
if (auto FTy = AI->getCallee().getType().getAs<SILFunctionType>())
if (FTy->getExtInfo().hasContext())
return true;
// If we have a builtin that is side effect free, we can commute the
// ApplyInst and the retain.
if (auto *BI = dyn_cast<BuiltinFunctionRefInst>(AI->getCallee()))
if (isSideEffectFree(BI))
return false;
// swift_keepAlive can not retain values. Remove this when we get rid of that.
if (auto *FRI = dyn_cast<FunctionRefInst>(AI->getCallee()))
if (isKnownToNotDecrementRefCount(FRI))
return false;
// Ok, this apply *MAY* decrement ref counts. Now our strategy is to attempt
// to use properties of the pointer, the function's arguments, and the
// function itself to prove that the pointer can not have its ref count be
// effected by function.
// TODO: Put in function property check section here when we get access to
// such information.
// First make sure that the underlying object of ptr is a local object which
// does not escape. This prevents the apply from indirectly via the global
// affecting the reference count of the pointer.
if (!isNonEscapingLocalObject(getUnderlyingObject(Ptr)))
return true;
// Now that we know that the function can not affect the pointer indirectly,
// make sure that the apply can not affect the pointer directly via the
// applies arguments by proving that the pointer can not alias any of the
// functions arguments.
for (auto Op : AI->getArgumentsWithoutIndirectResult()) {
for (int i = 0, e = Ptr->getNumTypes(); i < e; i++) {
if (!AA->isNoAlias(Op, SILValue(Ptr.getDef(), i)))
return true;
}
}
// Success! The apply inst can not affect the reference count of ptr!
return false;
}
/// Is the may have side effects user by the definition of its value kind unable
/// to decrement ref counts.
static bool canDecrementRefCountsByValueKind(SILInstruction *User) {
assert(User->getMemoryBehavior()
== SILInstruction::MemoryBehavior::MayHaveSideEffects &&
"Invalid argument. Function is only applicable to isntructions with "
"side effects.");
switch (User->getKind()) {
case ValueKind::DeallocStackInst:
case ValueKind::StrongRetainInst:
case ValueKind::StrongRetainAutoreleasedInst:
case ValueKind::StrongRetainUnownedInst:
case ValueKind::UnownedRetainInst:
case ValueKind::PartialApplyInst:
case ValueKind::FixLifetimeInst:
case ValueKind::CopyBlockInst:
case ValueKind::RetainValueInst:
case ValueKind::CondFailInst:
return false;
case ValueKind::CopyAddrInst: {
auto *CA = cast<CopyAddrInst>(User);
if (CA->isInitializationOfDest() == IsInitialization_t::IsInitialization)
return false;
}
SWIFT_FALLTHROUGH;
default:
return true;
}
}
bool swift::arc::canDecrementRefCount(SILInstruction *User,
SILValue Ptr, AliasAnalysis *AA) {
// If we have an instruction that does not have *pure* side effects, it can
// not affect ref counts.
//
// This distinguishes in between a "write" side effect and ref count side
// effects.
if (User->getMemoryBehavior() !=
SILInstruction::MemoryBehavior::MayHaveSideEffects)
return false;
// Ok, we know that this instruction's generic behavior is
// "MayHaveSideEffects". That is a criterion (it has effects not represented
// by use-def chains) that is broader than ours (does it effect a particular
// pointers ref counts). Thus begin by attempting to prove that the type of
// instruction that the user is by definition can not decrement ref counts.
if (!canDecrementRefCountsByValueKind(User))
return false;
// Ok, this instruction may have ref counts. If it is an apply, attempt to
// prove that the callee is unable to affect Ptr.
if (auto *AI = dyn_cast<ApplyInst>(User))
return canApplyDecrementRefCount(AI, Ptr, AA);
// We can not conservatively prove that this instruction can not decrement the
// ref count of Ptr. So assume that it does.
return true;
}
//===----------------------------------------------------------------------===//
// Use Analysis
//===----------------------------------------------------------------------===//
/// Returns true if a builtin apply can not use reference counted values.
///
/// The main case that this handles here are builtins that via read none imply
/// that they can not read globals and at the same time do not take any
/// non-trivial types via the arguments.
static bool canApplyOfBuiltinUseNonTrivialValues(ApplyInst *AI,
BuiltinFunctionRefInst *BFRI) {
SILModule &Mod = AI->getModule();
auto &II = BFRI->getIntrinsicInfo();
if (II.ID != llvm::Intrinsic::not_intrinsic) {
if (II.hasAttribute(llvm::Attribute::ReadNone)) {
for (auto &Op : AI->getArgumentOperands()) {
if (!Op.get().getType().isTrivial(Mod)) {
return false;
}
}
}
return true;
}
auto &BI = BFRI->getBuiltinInfo();
if (BI.isReadNone()) {
for (auto &Op : AI->getArgumentOperands()) {
if (!Op.get().getType().isTrivial(Mod)) {
return false;
}
}
}
return true;
}
/// Returns true if Inst is a function that we know never uses ref count values.
static bool canInstUseRefCountValues(SILInstruction *Inst) {
switch (Inst->getKind()) {
// These instructions do not use other values.
case ValueKind::FunctionRefInst:
case ValueKind::BuiltinFunctionRefInst:
case ValueKind::IntegerLiteralInst:
case ValueKind::FloatLiteralInst:
case ValueKind::StringLiteralInst:
case ValueKind::AllocStackInst:
case ValueKind::AllocRefInst:
case ValueKind::AllocRefDynamicInst:
case ValueKind::AllocBoxInst:
case ValueKind::AllocArrayInst:
case ValueKind::MetatypeInst:
case ValueKind::WitnessMethodInst:
return true;
// DeallocStackInst do not use reference counted values, only local storage
// handles.
case ValueKind::DeallocStackInst:
return true;
// Debug values do not use referenced counted values in a manner we care
// about.
case ValueKind::DebugValueInst:
case ValueKind::DebugValueAddrInst:
return true;
// Casts do not use pointers in a manner that we care about since we strip
// them during our analysis. The reason for this is if the cast is not dead
// then there must be some other use after the cast that we will protect if a
// release is not in between the cast and the use.
case ValueKind::UpcastInst:
case ValueKind::AddressToPointerInst:
case ValueKind::PointerToAddressInst:
case ValueKind::UncheckedRefCastInst:
case ValueKind::UncheckedAddrCastInst:
case ValueKind::RefToRawPointerInst:
case ValueKind::RawPointerToRefInst:
case ValueKind::UnconditionalCheckedCastInst:
return true;
// Typed GEPs do not use pointers. The user of the typed GEP may but we will
// catch that via the dataflow.
case ValueKind::StructExtractInst:
case ValueKind::TupleExtractInst:
case ValueKind::RefElementAddrInst:
case ValueKind::UncheckedEnumDataInst:
case ValueKind::IndexAddrInst:
case ValueKind::IndexRawPointerInst:
return true;
// Aggregate formation by themselves do not create new uses since it is their
// users that would create the appropriate uses.
case ValueKind::EnumInst:
case ValueKind::StructInst:
case ValueKind::TupleInst:
return true;
// Only uses non reference counted values.
case ValueKind::CondFailInst:
return true;
case ValueKind::ApplyInst: {
auto *AI = cast<ApplyInst>(Inst);
// Certain builtin function refs we know can never use non-trivial values.
if (auto *BFRI = dyn_cast<BuiltinFunctionRefInst>(AI->getCallee()))
return canApplyOfBuiltinUseNonTrivialValues(AI, BFRI);
return false;
}
default:
return false;
}
}
bool swift::arc::canUseValue(SILInstruction *User, SILValue Ptr,
AliasAnalysis *AA) {
// If Inst is an instruction that we know can never use values with reference
// semantics, return true.
if (canInstUseRefCountValues(User))
return false;
// If the user is a load or a store and we can prove that it does not access
// the object then return true.
// Notice that we need to check all of the values of the object.
if (isa<StoreInst>(User)) {
for (int i = 0, e = Ptr->getNumTypes(); i < e; i++) {
if (AA->mayWriteToMemory(User, SILValue(Ptr.getDef(), i)))
return true;
}
return false;
}
if (isa<LoadInst>(User) ) {
for (int i = 0, e = Ptr->getNumTypes(); i < e; i++) {
if (AA->mayReadFromMemory(User, SILValue(Ptr.getDef(), i)))
return true;
}
return false;
}
// TODO: If we add in alias analysis support here for apply inst, we will need
// to check that the pointer does not escape.
// Otherwise, assume that Inst can use Target.
return true;
}
//===----------------------------------------------------------------------===//
// Utility Methods for determining use, decrement of values in a contiguous
// instruction range in one BB.
//===----------------------------------------------------------------------===//
/// Return true if \p Op has arc uses in the instruction range [Start, End). We
/// assume that Start and End are both in the same basic block.
bool swift::arc::
valueHasARCUsesInInstructionRange(SILValue Op,
SILBasicBlock::iterator Start,
SILBasicBlock::iterator End,
AliasAnalysis *AA) {
assert(Start->getParent() == End->getParent() &&
"Start and End should be in the same basic block");
// If Start == End, then we have an empty range, return false.
if (Start == End)
return false;
// Otherwise, until Start != End.
while (Start != End) {
// Check if Start can use Op in an ARC relevant way. If so, return true.
if (canUseValue(&*Start, Op, AA))
return true;
// Otherwise, increment our iterator.
++Start;
}
// If all such instructions can not use Op, return false.
return false;
}
/// Return true if \p Op has instructions in the instruction range (Start, End]
/// which may decrement it. We assume that Start and End are both in the same
/// basic block.
bool swift::arc::
valueHasARCDecrementsInInstructionRange(SILValue Op,
SILBasicBlock::iterator Start,
SILBasicBlock::iterator End,
AliasAnalysis *AA) {
assert(Start->getParent() == End->getParent() &&
"Start and End should be in the same basic block");
// If Start == End, then we have an empty range, return false.
if (Start == End)
return false;
// Otherwise, until Start != End.
while (Start != End) {
// Check if Start can decrement Op's ref count. If so, return true.
if (canDecrementRefCount(&*Start, Op, AA))
return true;
// Otherwise, increment our iterator.
++Start;
}
// If all such instructions can not decrement Op, return false.
return false;
}