Files
swift-mirror/lib/SIL/DynamicCasts.cpp
Roman Levenstein f63cae6f13 Add initial support into DynamicCasts for handling bridging between error types.
Teach it that casts between error types do not always fail and may succeed, in general.

Swift SVN r27098
2015-04-07 22:53:52 +00:00

879 lines
32 KiB
C++

//===--- DynamicCasts.cpp - Utilities for dynamic casts -------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Types.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/DynamicCasts.h"
using namespace swift;
using namespace Lowering;
static DynamicCastFeasibility weakenSuccess(DynamicCastFeasibility v) {
if (v == DynamicCastFeasibility::WillSucceed)
return DynamicCastFeasibility::MaySucceed;
return v;
}
static unsigned getAnyMetatypeDepth(CanType type) {
unsigned depth = 0;
while (auto metatype = dyn_cast<AnyMetatypeType>(type)) {
type = metatype.getInstanceType();
depth++;
}
return depth;
}
static bool
mayBridgeToObjectiveC(Module *M, CanType T) {
// If the target type is either an unknown dynamic type, or statically
// known to bridge, the cast may succeed.
// TODO: We could be more precise with the bridged-to type.
if (T->hasArchetype())
return true;
if (T->isAnyExistentialType())
return true;
if (M->getASTContext().getBridgedToObjC(M, /*inExpression*/ false,
T, nullptr))
return true;
return false;
}
static bool canClassOrSuperclassesHaveExtensions(ClassDecl *CD,
bool isWholeModuleOpts) {
while (CD) {
// Public classes can always be extended
if (CD->getEffectiveAccess() == Accessibility::Public)
return true;
// Internal classes can be extended, if we are not in a
// whole-module-optimizations mode.
if (CD->getEffectiveAccess() == Accessibility::Internal &&
!isWholeModuleOpts)
return true;
if (!CD->hasSuperclass())
break;
CD = CD->getSuperclass()->getClassOrBoundGenericClass();
}
return false;
}
/// Try to classify a conversion from non-existential type
/// into an existential type by performing a static check
/// of protocol conformances if it is possible.
static DynamicCastFeasibility
classifyDynamicCastToProtocol(CanType source,
CanType target,
bool isWholeModuleOpts) {
assert(target.isExistentialType() &&
"target should be an existential type");
if (source == target)
return DynamicCastFeasibility::WillSucceed;
auto *SourceNominalTy = source.getAnyNominal();
if (!SourceNominalTy)
return DynamicCastFeasibility::MaySucceed;
auto *TargetProtocol = target.getAnyNominal();
if (!TargetProtocol)
return DynamicCastFeasibility::MaySucceed;
auto SourceProtocols = SourceNominalTy->getProtocols();
auto SourceExtensions = SourceNominalTy->getExtensions();
// Check all protocols implemented by the type.
for (auto *Protocol : SourceProtocols) {
if (Protocol == TargetProtocol)
return DynamicCastFeasibility::WillSucceed;
}
// Check all protocols implemented by the type extensions.
for (auto *Extension : SourceExtensions) {
SourceProtocols = Extension->getProtocols();
for (auto *Protocol : SourceProtocols) {
if (Protocol == TargetProtocol)
return DynamicCastFeasibility::WillSucceed;
}
}
// If we are casting a protocol, then the cast will fail
// as we have not found any conformances and protocols cannot
// be extended currently.
// NOTE: If we allow protocol extensions in the future, this
// conditional statement should be removed.
if (isa<ProtocolType>(source)) {
return DynamicCastFeasibility::WillFail;
}
// If it is a class and it can be proven that this class and its
// superclasses cannot be extended, then it is safe to proceed.
// No need to check this for structs, as they do not have any
// superclasses.
if (auto *CD = source.getClassOrBoundGenericClass()) {
if (canClassOrSuperclassesHaveExtensions(CD, isWholeModuleOpts))
return DynamicCastFeasibility::MaySucceed;
}
// If the source type is private or target protocol is private,
// then conformances cannot be changed at run-time, because only this
// file could have implemented them, but no conformances were found.
// Therefore it is safe to make a negative decision at compile-time.
if (SourceNominalTy->getEffectiveAccess() == Accessibility::Private ||
TargetProtocol->getEffectiveAccess() == Accessibility::Private) {
// This cast is always false. Replace it with a branch to the
// failure block.
return DynamicCastFeasibility::WillFail;
}
// If we are in a whole-module compilation and
// if the source type is internal or target protocol is internal,
// then conformances cannot be changed at run-time, because only this
// module could have implemented them, but no conformances were found.
// Therefore it is safe to make a negative decision at compile-time.
if (isWholeModuleOpts &&
(SourceNominalTy->getEffectiveAccess() == Accessibility::Internal ||
TargetProtocol->getEffectiveAccess() == Accessibility::Internal)) {
return DynamicCastFeasibility::WillFail;
}
return DynamicCastFeasibility::MaySucceed;
}
/// Check if a given type conforms to _BridgedToObjectiveC protocol.
bool swift::isObjectiveCBridgeable(Module *M, CanType Ty) {
// Retrieve the _BridgedToObjectiveC protocol.
auto bridgedProto =
M->Ctx.getProtocol(KnownProtocolKind::_ObjectiveCBridgeable);
if (bridgedProto) {
// Find the conformance of the value type to _BridgedToObjectiveC.
// Check whether the type conforms to _BridgedToObjectiveC.
auto conformance = M->lookupConformance(Ty, bridgedProto, nullptr);
return (conformance.getInt() != ConformanceKind::DoesNotConform);
}
return false;
}
/// Check if a given type conforms to _Error protocol.
bool swift::isErrorType(Module *M, CanType Ty) {
// Retrieve the _ErrorType protocol.
auto errorTypeProto =
M->Ctx.getProtocol(KnownProtocolKind::_ErrorType);
if (errorTypeProto) {
// Find the conformance of the value type to _BridgedToObjectiveC.
// Check whether the type conforms to _BridgedToObjectiveC.
auto conformance = M->lookupConformance(Ty, errorTypeProto, nullptr);
return (conformance.getInt() != ConformanceKind::DoesNotConform);
}
return false;
}
/// Try to classify the dynamic-cast relationship between two types.
DynamicCastFeasibility
swift::classifyDynamicCast(Module *M,
CanType source,
CanType target,
bool isSourceTypeExact,
bool isWholeModuleOpts) {
if (source == target) return DynamicCastFeasibility::WillSucceed;
auto sourceObject = source.getAnyOptionalObjectType();
auto targetObject = target.getAnyOptionalObjectType();
// A common level of optionality doesn't affect the feasibility.
if (sourceObject && targetObject) {
return classifyDynamicCast(M, sourceObject, targetObject);
// Nor does casting to a more optional type.
} else if (targetObject) {
return classifyDynamicCast(M, source, targetObject,
/* isSourceTypeExact */ false,
isWholeModuleOpts);
// Casting to a less-optional type can always fail.
} else if (sourceObject) {
return weakenSuccess(classifyDynamicCast(M, sourceObject, target,
/* isSourceTypeExact */ false,
isWholeModuleOpts));
}
assert(!sourceObject && !targetObject);
// Assume that casts to or from existential types or involving
// dependent types can always succeed. This is over-conservative.
if (source->hasArchetype() || source.isExistentialType() ||
target->hasArchetype() || target.isExistentialType()) {
auto *SourceNominalTy = source.getAnyNominal();
// Check conversions from non-protocol types into protocol types.
if (!source.isExistentialType() &&
SourceNominalTy &&
target.isExistentialType())
return classifyDynamicCastToProtocol(source, target, isWholeModuleOpts);
// Casts from class existential into a non-class can never succeed.
if (source->isClassExistentialType() &&
!target.isAnyExistentialType() &&
!target.getClassOrBoundGenericClass() &&
!isa<ArchetypeType>(target) &&
!isObjectiveCBridgeable(M, target)) {
assert((target.getEnumOrBoundGenericEnum() ||
target.getStructOrBoundGenericStruct() ||
isa<TupleType>(target) ||
isa<SILFunctionType>(target) ||
isa<FunctionType>(target)) &&
"Target should be an enum, struct, tuple or function type");
return DynamicCastFeasibility::WillFail;
}
return DynamicCastFeasibility::MaySucceed;
}
// Metatype casts.
while (auto sourceMetatype = dyn_cast<AnyMetatypeType>(source)) {
auto targetMetatype = dyn_cast<AnyMetatypeType>(target);
if (!targetMetatype) return DynamicCastFeasibility::WillFail;
source = sourceMetatype.getInstanceType();
target = targetMetatype.getInstanceType();
if (source == target &&
targetMetatype.isAnyExistentialType() ==
sourceMetatype.isAnyExistentialType())
return DynamicCastFeasibility::WillSucceed;
if (targetMetatype.isAnyExistentialType() && isa<ProtocolType>(target)) {
auto Feasibility = classifyDynamicCastToProtocol(source,
target,
isWholeModuleOpts);
// Cast from existential metatype to existential metatype may still
// succeed, even if we cannot prove anything statically.
if (Feasibility != DynamicCastFeasibility::WillFail ||
!sourceMetatype.isAnyExistentialType())
return Feasibility;
}
// If isSourceTypeExact is true, we know we are casting the result of a
// MetatypeInst instruction.
if (isSourceTypeExact) {
// If source or target are existentials, then it can be casted
// successfully only into itself.
if ((target.isAnyExistentialType() || source.isAnyExistentialType()) &&
target != source)
return DynamicCastFeasibility::WillFail;
}
// Casts from class existential metatype into a concrete non-class metatype
// can never succeed.
if (source->isClassExistentialType() &&
!target.isAnyExistentialType() &&
!target.getClassOrBoundGenericClass())
return DynamicCastFeasibility::WillFail;
// TODO: prove that some conversions to existential metatype will
// obviously succeed/fail.
// TODO: prove that some conversions from class existential metatype
// to a concrete non-class metatype will obviously fail.
// TODO: class metatype to/from AnyObject
// TODO: protocol concrete metatype to/from ObjCProtocol
if (isa<ExistentialMetatypeType>(sourceMetatype) ||
isa<ExistentialMetatypeType>(targetMetatype))
return (getAnyMetatypeDepth(source) == getAnyMetatypeDepth(target)
? DynamicCastFeasibility::MaySucceed
: DynamicCastFeasibility::WillFail);
// If both metatypes are class metatypes, check if classes can be
// casted.
if (source.getClassOrBoundGenericClass() &&
target.getClassOrBoundGenericClass())
return classifyDynamicCast(M, source, target, false, isWholeModuleOpts);
// Different structs cannot be casted to each other.
if (source.getStructOrBoundGenericStruct() &&
target.getStructOrBoundGenericStruct() &&
source != target)
return DynamicCastFeasibility::WillFail;
// Different enums cannot be casted to each other.
if (source.getEnumOrBoundGenericEnum() &&
target.getEnumOrBoundGenericEnum() &&
source != target)
return DynamicCastFeasibility::WillFail;
// If we don't know any better, assume that the cast may succeed.
return DynamicCastFeasibility::MaySucceed;
}
// Class casts.
auto sourceClass = source.getClassOrBoundGenericClass();
auto targetClass = target.getClassOrBoundGenericClass();
if (sourceClass && targetClass) {
if (target->isSuperclassOf(source, nullptr))
return DynamicCastFeasibility::WillSucceed;
if (source->isSuperclassOf(target, nullptr))
return DynamicCastFeasibility::MaySucceed;
// FIXME: bridged types, e.g. CF <-> NS (but not for metatypes).
return DynamicCastFeasibility::WillFail;
}
// FIXME: tuple conversions?
// Check if there might be a bridging conversion.
if (source->isBridgeableObjectType() && mayBridgeToObjectiveC(M, target)) {
// Try to get the ObjC type which is bridged to target type.
assert(!target.isAnyExistentialType());
Optional<Type> ObjCTy = M->getASTContext().getBridgedToObjC(
M, /*inExpression*/ false, target, nullptr);
if (ObjCTy) {
// If the bridged ObjC type is known, check if
// source type can be casted into it.
return classifyDynamicCast(M, source,
ObjCTy.getValue().getCanonicalTypeOrNull(),
/* isSourceTypeExact */ false, isWholeModuleOpts);
}
return DynamicCastFeasibility::MaySucceed;
}
if (target->isBridgeableObjectType() && mayBridgeToObjectiveC(M, source)) {
// Try to get the ObjC type which is bridged to source type.
assert(!source.isAnyExistentialType());
Optional<Type> ObjCTy = M->getASTContext().getBridgedToObjC(
M, /*inExpression*/ false, source, nullptr);
if (ObjCTy) {
// If the bridged ObjC type is known, check if
// this type can be casted into target type.
return classifyDynamicCast(M,
ObjCTy.getValue().getCanonicalTypeOrNull(),
target,
/* isSourceTypeExact */ false, isWholeModuleOpts);
}
return DynamicCastFeasibility::MaySucceed;
}
// Check if it is a cast between bridged error types.
if (isErrorType(M, source) && isErrorType(M, target)) {
// TODO: Cast to NSError succeeds always.
return DynamicCastFeasibility::MaySucceed;
}
return DynamicCastFeasibility::WillFail;
}
static unsigned getOptionalDepth(CanType type) {
unsigned depth = 0;
while (CanType objectType = type.getAnyOptionalObjectType()) {
depth++;
type = objectType;
}
return depth;
}
namespace {
struct Source {
SILValue Value;
CanType FormalType;
CastConsumptionKind Consumption;
bool isAddress() const { return Value.getType().isAddress(); }
IsTake_t shouldTake() const {
return shouldTakeOnSuccess(Consumption);
}
Source() = default;
Source(SILValue value, CanType formalType, CastConsumptionKind consumption)
: Value(value), FormalType(formalType), Consumption(consumption) {}
};
struct Target {
SILValue Address;
SILType LoweredType;
CanType FormalType;
bool isAddress() const { return (bool) Address; }
Source asAddressSource() const {
assert(isAddress());
return { Address, FormalType, CastConsumptionKind::TakeAlways };
}
Source asScalarSource(SILValue value) const {
assert(!isAddress());
assert(!value.getType().isAddress());
return { value, FormalType, CastConsumptionKind::TakeAlways };
}
Target() = default;
Target(SILValue address, CanType formalType)
: Address(address), LoweredType(address.getType()),
FormalType(formalType) {
assert(LoweredType.isAddress());
}
Target(SILType loweredType, CanType formalType)
: Address(), LoweredType(loweredType), FormalType(formalType) {
assert(!loweredType.isAddress());
}
};
class CastEmitter {
SILBuilder &B;
SILModule &M;
ASTContext &Ctx;
SILLocation Loc;
public:
CastEmitter(SILBuilder &B, Module *swiftModule, SILLocation loc)
: B(B), M(B.getModule()), Ctx(M.getASTContext()), Loc(loc) {}
Source emitTopLevel(Source source, Target target) {
unsigned sourceOptDepth = getOptionalDepth(source.FormalType);
unsigned targetOptDepth = getOptionalDepth(target.FormalType);
assert(sourceOptDepth <= targetOptDepth);
return emitAndInjectIntoOptionals(source, target,
targetOptDepth - sourceOptDepth);
}
private:
const TypeLowering &getTypeLowering(SILType type) {
return M.Types.getTypeLowering(type);
}
SILValue getOwnedScalar(Source source, const TypeLowering &srcTL) {
assert(!source.isAddress());
if (!source.shouldTake())
srcTL.emitRetainValue(B, Loc, source.Value);
return source.Value;
}
Source putOwnedScalar(SILValue scalar, Target target) {
assert(scalar.getType() == target.LoweredType.getObjectType());
if (!target.isAddress())
return target.asScalarSource(scalar);
auto &targetTL = getTypeLowering(target.LoweredType);
targetTL.emitStoreOfCopy(B, Loc, scalar, target.Address,
IsInitialization);
return target.asAddressSource();
}
Source emitSameType(Source source, Target target) {
assert(source.FormalType == target.FormalType);
auto &srcTL = getTypeLowering(source.Value.getType());
// The destination always wants a +1 value, so make the source
// +1 if it's a scalar.
if (!source.isAddress()) {
source.Value = getOwnedScalar(source, srcTL);
source.Consumption = CastConsumptionKind::TakeAlways;
}
// If we've got a scalar and want a scalar, the source is
// exactly right.
if (!target.isAddress() && !source.isAddress())
return source;
// If the destination wants a non-address value, load
if (!target.isAddress()) {
SILValue value = srcTL.emitLoadOfCopy(B, Loc, source.Value,
source.shouldTake());
return target.asScalarSource(value);
}
if (source.isAddress()) {
srcTL.emitCopyInto(B, Loc, source.Value, target.Address,
source.shouldTake(), IsInitialization);
} else {
srcTL.emitStoreOfCopy(B, Loc, source.Value, target.Address,
IsInitialization);
}
return target.asAddressSource();
}
Source emit(Source source, Target target) {
if (source.FormalType == target.FormalType)
return emitSameType(source, target);
// Handle subtype conversions involving optionals.
OptionalTypeKind sourceOptKind;
if (auto sourceObjectType =
source.FormalType.getAnyOptionalObjectType(sourceOptKind)) {
return emitOptionalToOptional(source, sourceOptKind, sourceObjectType,
target);
}
assert(!target.FormalType.getAnyOptionalObjectType());
// The only other thing we return WillSucceed for currently is
// an upcast.
// FIXME: Upcasts between existential metatypes are not handled yet.
// We should generate for it:
// %openedSrcMetatype = open_existential srcMetatype
// init_existental dstMetatype, %openedSrcMetatype
auto &srcTL = getTypeLowering(source.Value.getType());
SILValue value;
if (source.isAddress()) {
value = srcTL.emitLoadOfCopy(B, Loc, source.Value, source.shouldTake());
} else {
value = getOwnedScalar(source, srcTL);
}
value = B.createUpcast(Loc, value, target.LoweredType.getObjectType());
return putOwnedScalar(value, target);
}
Source emitAndInjectIntoOptionals(Source source, Target target,
unsigned depth) {
if (depth == 0)
return emit(source, target);
// Recurse.
EmitSomeState state;
Target objectTarget = prepareForEmitSome(target, state);
Source objectSource =
emitAndInjectIntoOptionals(source, objectTarget, depth - 1);
return emitSome(objectSource, target, state);
}
Source emitOptionalToOptional(Source source,
OptionalTypeKind sourceOptKind,
CanType sourceObjectType,
Target target) {
// Switch on the incoming value.
SILBasicBlock *contBB = B.splitBlockForFallthrough();
SILBasicBlock *noneBB = B.splitBlockForFallthrough();
SILBasicBlock *someBB = B.splitBlockForFallthrough();
// Emit the switch.
std::pair<EnumElementDecl*, SILBasicBlock*> cases[] = {
{ Ctx.getOptionalSomeDecl(sourceOptKind), someBB },
{ Ctx.getOptionalNoneDecl(sourceOptKind), noneBB },
};
if (source.isAddress()) {
B.createSwitchEnumAddr(Loc, source.Value, /*default*/ nullptr, cases);
} else {
B.createSwitchEnum(Loc, source.Value, /*default*/ nullptr, cases);
}
// Create the Some block, which recurses.
B.setInsertionPoint(someBB);
{
auto sourceSomeDecl = Ctx.getOptionalSomeDecl(sourceOptKind);
SILType loweredSourceObjectType =
source.Value.getType().getEnumElementType(sourceSomeDecl, M);
// Form the target for the optional object.
EmitSomeState state;
Target objectTarget = prepareForEmitSome(target, state);
// Form the source value.
AllocStackInst *sourceTemp = nullptr;
Source objectSource;
if (source.isAddress()) {
// TODO: add an instruction for non-destructively getting a
// specific element's data.
SILValue sourceAddr = source.Value;
if (!source.shouldTake()) {
sourceTemp = B.createAllocStack(Loc,
sourceAddr.getType().getObjectType());
sourceAddr = sourceTemp->getAddressResult();
B.createCopyAddr(Loc, source.Value, sourceAddr, IsNotTake,
IsInitialization);
}
sourceAddr = B.createUncheckedTakeEnumDataAddr(Loc, sourceAddr,
sourceSomeDecl, loweredSourceObjectType);
objectSource = Source(sourceAddr, sourceObjectType,
CastConsumptionKind::TakeAlways);
} else {
SILValue sourceObjectValue =
new (M) SILArgument(someBB, loweredSourceObjectType);
objectSource = Source(sourceObjectValue, sourceObjectType,
source.Consumption);
}
Source resultObject = emit(objectSource, objectTarget);
// Deallocate the source temporary if we needed one.
if (sourceTemp) {
B.createDeallocStack(Loc, sourceTemp->getContainerResult());
}
Source result = emitSome(resultObject, target, state);
assert(result.isAddress() == target.isAddress());
if (target.isAddress()) {
B.createBranch(Loc, contBB);
} else {
B.createBranch(Loc, contBB, { result.Value });
}
}
// Create the None block.
B.setInsertionPoint(noneBB);
{
Source result = emitNone(target);
assert(result.isAddress() == target.isAddress());
if (target.isAddress()) {
B.createBranch(Loc, contBB);
} else {
B.createBranch(Loc, contBB, { result.Value });
}
}
// Continuation block.
B.setInsertionPoint(contBB);
if (target.isAddress()) {
return target.asAddressSource();
} else {
SILValue result = new (M) SILArgument(contBB, target.LoweredType);
return target.asScalarSource(result);
}
}
struct EmitSomeState {
EnumElementDecl *SomeDecl;
};
Target prepareForEmitSome(Target target, EmitSomeState &state) {
OptionalTypeKind optKind;
auto objectType = target.FormalType.getAnyOptionalObjectType(optKind);
assert(objectType && "emitting Some into non-optional type");
auto someDecl = Ctx.getOptionalSomeDecl(optKind);
state.SomeDecl = someDecl;
SILType loweredObjectType =
target.LoweredType.getEnumElementType(someDecl, M);
if (target.isAddress()) {
SILValue objectAddr =
B.createInitEnumDataAddr(Loc, target.Address, someDecl,
loweredObjectType);
return { objectAddr, objectType };
} else {
return { loweredObjectType, objectType };
}
}
Source emitSome(Source source, Target target, EmitSomeState &state) {
// If our target is an address, prepareForEmitSome should have set this
// up so that we emitted directly into
if (target.isAddress()) {
B.createInjectEnumAddr(Loc, target.Address, state.SomeDecl);
return target.asAddressSource();
} else {
auto &srcTL = getTypeLowering(source.Value.getType());
auto sourceObject = getOwnedScalar(source, srcTL);
auto source = B.createEnum(Loc, sourceObject, state.SomeDecl,
target.LoweredType);
return target.asScalarSource(source);
}
}
Source emitNone(Target target) {
OptionalTypeKind optKind;
auto objectType = target.FormalType.getAnyOptionalObjectType(optKind);
assert(objectType && "emitting None into non-optional type");
(void) objectType;
auto noneDecl = Ctx.getOptionalNoneDecl(optKind);
if (target.isAddress()) {
B.createInjectEnumAddr(Loc, target.Address, noneDecl);
return target.asAddressSource();
} else {
SILValue res = B.createEnum(Loc, nullptr, noneDecl, target.LoweredType);
return target.asScalarSource(res);
}
}
};
}
/// Emit an unconditional scalar cast that's known to succeed.
SILValue
swift::emitSuccessfulScalarUnconditionalCast(SILBuilder &B, Module *M,
SILLocation loc, SILValue value,
SILType loweredTargetType,
CanType sourceType,
CanType targetType,
SILInstruction *existingCast) {
assert(classifyDynamicCast(M, sourceType, targetType)
== DynamicCastFeasibility::WillSucceed);
// Casts to/from existential types cannot be further improved.
if (sourceType.isAnyExistentialType() ||
targetType.isAnyExistentialType()) {
if (existingCast)
// Indicate that the existing cast cannot be further improved.
return SILValue();
llvm_unreachable("Casts to/from existentials are not supported yet");
}
// Fast path changes that don't change the type.
if (sourceType == targetType)
return value;
Source source(value, sourceType, CastConsumptionKind::TakeAlways);
Target target(loweredTargetType, targetType);
Source result = CastEmitter(B, M, loc).emitTopLevel(source, target);
assert(!result.isAddress());
assert(result.Value.getType() == loweredTargetType);
assert(result.Consumption == CastConsumptionKind::TakeAlways);
return result.Value;
}
bool swift::emitSuccessfulIndirectUnconditionalCast(SILBuilder &B, Module *M,
SILLocation loc,
CastConsumptionKind consumption,
SILValue src,
CanType sourceType,
SILValue dest,
CanType targetType,
SILInstruction *existingCast) {
assert(classifyDynamicCast(M, sourceType, targetType)
== DynamicCastFeasibility::WillSucceed);
assert(src.getType().isAddress());
assert(dest.getType().isAddress());
// Casts from non-existentials into existentials and
// vice-versa cannot be improved yet.
// Therefore generate a simple unconditional_checked_cast_aadr.
if (src.getType().isAnyExistentialType() !=
dest.getType().isAnyExistentialType()) {
// If there is an existing cast with the same arguments,
// indicate we cannot improve it.
if (existingCast) {
auto *UCCAI = dyn_cast<UnconditionalCheckedCastAddrInst>(existingCast);
if (UCCAI && UCCAI->getSrc() == src && UCCAI->getDest() == dest &&
UCCAI->getSourceType() == sourceType &&
UCCAI->getTargetType() == targetType &&
UCCAI->getConsumptionKind() == consumption) {
// Indicate that the existing cast cannot be further improved.
return false;
}
}
B.createUnconditionalCheckedCastAddr(loc, consumption, src, sourceType,
dest, targetType);
return true;
}
Source source(src, sourceType, consumption);
Target target(dest, targetType);
Source result = CastEmitter(B, M, loc).emitTopLevel(source, target);
assert(result.isAddress());
assert(result.Value == dest);
assert(result.Consumption == CastConsumptionKind::TakeAlways);
(void) result;
return true;
}
/// Can the given cast be performed by the scalar checked-cast
/// instructions?
///
/// CAUTION: if you introduce bridging conversions to the set of
/// things handleable by the scalar checked casts --- and that's not
/// totally unreasonable --- you will need to make the scalar checked
/// casts take a cast consumption kind.
bool swift::canUseScalarCheckedCastInstructions(SILModule &M,
CanType sourceType,
CanType targetType) {
// Look through one level of optionality on the source.
auto sourceObjectType = sourceType;
if (auto type = sourceObjectType.getAnyOptionalObjectType())
sourceObjectType = type;
// Class-to-class casts can be scalar. The source can be
// anything that embeds a class reference; the destination must
// be a class type, but (for now) cannot be a class existential
// with non-ObjC protocols.
if (sourceObjectType.isAnyClassReferenceType() &&
(targetType->mayHaveSuperclass() ||
targetType.isObjCExistentialType()))
return true;
// Metatype-to-metatype casts can also be scalar. Again, for now,
// require the destination to be non-existential.
if (isa<AnyMetatypeType>(sourceObjectType) &&
isa<MetatypeType>(targetType))
return true;
// Otherwise, we need to use the general indirect-cast functions.
return false;
}
/// Carry out the operations required for an indirect conditional cast
/// using a scalar cast operation.
void swift::
emitIndirectConditionalCastWithScalar(SILBuilder &B, Module *M,
SILLocation loc,
CastConsumptionKind consumption,
SILValue src, CanType sourceType,
SILValue dest, CanType targetType,
SILBasicBlock *indirectSuccBB,
SILBasicBlock *indirectFailBB) {
assert(canUseScalarCheckedCastInstructions(B.getModule(),
sourceType, targetType));
// We only need a different failure block if the cast consumption
// requires us to destroy the source value.
SILBasicBlock *scalarFailBB;
if (!shouldDestroyOnFailure(consumption)) {
scalarFailBB = indirectFailBB;
} else {
scalarFailBB = B.splitBlockForFallthrough();
}
// We always need a different success block.
SILBasicBlock *scalarSuccBB = B.splitBlockForFallthrough();
auto &srcTL = B.getModule().Types.getTypeLowering(src.getType());
// Always take; this works under an assumption that retaining the
// result is equivalent to retaining the source. That means that
// these casts would not be appropriate for bridging-like conversions.
SILValue srcValue = srcTL.emitLoadOfCopy(B, loc, src, IsTake);
SILType targetValueType = dest.getType().getObjectType();
B.createCheckedCastBranch(loc, /*exact*/ false, srcValue, targetValueType,
scalarSuccBB, scalarFailBB);
// Emit the success block.
B.setInsertionPoint(scalarSuccBB); {
auto &targetTL = B.getModule().Types.getTypeLowering(targetValueType);
SILValue succValue =
new (B.getModule()) SILArgument(scalarSuccBB, targetValueType);
if (!shouldTakeOnSuccess(consumption))
targetTL.emitRetainValue(B, loc, succValue);
targetTL.emitStoreOfCopy(B, loc, succValue, dest, IsInitialization);
B.createBranch(loc, indirectSuccBB);
}
// Emit the failure block.
if (shouldDestroyOnFailure(consumption)) {
B.setInsertionPoint(scalarFailBB);
srcTL.emitReleaseValue(B, loc, srcValue);
B.createBranch(loc, indirectFailBB);
}
}