Files
swift-mirror/lib/SIL/Verifier/SILOwnershipVerifier.cpp
Andrew Trick f6ba6332a6 Allow SIL convention overriding in operand ownership verification
This lets the SILBuilder's verification continue to run during
address lowering before the SIL stage has been updated.
2022-02-15 13:28:47 -08:00

883 lines
34 KiB
C++

//===--- SILOwnershipVerifier.cpp -----------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-ownership-verifier"
#include "LinearLifetimeCheckerPrivate.h"
#include "ReborrowVerifierPrivate.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/AnyFunctionRef.h"
#include "swift/AST/Decl.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/Module.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Range.h"
#include "swift/Basic/STLExtras.h"
#include "swift/ClangImporter/ClangModule.h"
#include "swift/SIL/BasicBlockUtils.h"
#include "swift/SIL/Dominance.h"
#include "swift/SIL/DynamicCasts.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/OwnershipUtils.h"
#include "swift/SIL/PrettyStackTrace.h"
#include "swift/SIL/Projection.h"
#include "swift/SIL/SILBuiltinVisitor.h"
#include "swift/SIL/SILDebugScope.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILVTable.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/SIL/TypeLowering.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include <algorithm>
using namespace swift;
// This is an option to put the SILOwnershipVerifier in testing mode. This
// causes the following:
//
// 1. Instead of printing an error message and aborting, the verifier will print
// the message and continue. This allows for FileCheck testing of the verifier.
//
// 2. SILInstruction::verifyOperandOwnership() is disabled. This is used for
// verification in SILBuilder. This causes errors to be printed twice, once when
// we build the IR and a second time when we perform a full verification of the
// IR. For testing purposes, we just want the later.
llvm::cl::opt<bool> IsSILOwnershipVerifierTestingEnabled(
"sil-ownership-verifier-enable-testing",
llvm::cl::desc("Put the sil ownership verifier in testing mode. See "
"comment in SILOwnershipVerifier.cpp above option for more "
"information."));
/// This is an option to turn off ownership verification on a specific file. We
/// still emit code as if we are in ownership mode, but we do not verify. This
/// is useful for temporarily turning off verification on tests.
static llvm::cl::opt<bool>
DisableOwnershipVerification("disable-sil-ownership-verification");
//===----------------------------------------------------------------------===//
// SILValueOwnershipChecker
//===----------------------------------------------------------------------===//
namespace swift {
// TODO: This class uses a bunch of global state like variables. It should be
// refactored into a large state object that is used by functions.
class SILValueOwnershipChecker {
/// The result of performing the check.
Optional<bool> result;
/// A cache of dead-end basic blocks that we use to determine if we can
/// ignore "leaks".
DeadEndBlocks &deadEndBlocks;
/// The value whose ownership we will check.
SILValue value;
/// The builder that the checker uses to emit error messages, crash if asked
/// for, or supply back interesting info to the caller.
LinearLifetimeChecker::ErrorBuilder &errorBuilder;
/// The list of lifetime ending users that we found. Only valid if check is
/// successful.
SmallVector<Operand *, 16> lifetimeEndingUsers;
/// The list of non lifetime ending users that we found. Only valid if check
/// is successful.
SmallVector<Operand *, 16> regularUsers;
ReborrowVerifier &reborrowVerifier;
public:
SILValueOwnershipChecker(
DeadEndBlocks &deadEndBlocks, SILValue value,
LinearLifetimeChecker::ErrorBuilder &errorBuilder,
ReborrowVerifier &reborrowVerifier)
: result(), deadEndBlocks(deadEndBlocks), value(value),
errorBuilder(errorBuilder),
reborrowVerifier(reborrowVerifier) {
assert(value && "Can not initialize a checker with an empty SILValue");
}
~SILValueOwnershipChecker() = default;
SILValueOwnershipChecker(SILValueOwnershipChecker &) = delete;
SILValueOwnershipChecker(SILValueOwnershipChecker &&) = delete;
bool check();
StringRef getFunctionName() const { return value->getFunction()->getName(); }
private:
bool checkUses();
bool isCompatibleDefUse(Operand *op, ValueOwnershipKind ownershipKind);
bool gatherUsers(SmallVectorImpl<Operand *> &lifetimeEndingUsers,
SmallVectorImpl<Operand *> &regularUsers);
bool gatherNonGuaranteedUsers(SmallVectorImpl<Operand *> &lifetimeEndingUsers,
SmallVectorImpl<Operand *> &regularUsers);
bool checkValueWithoutLifetimeEndingUses(ArrayRef<Operand *> regularUsers);
bool checkFunctionArgWithoutLifetimeEndingUses(SILFunctionArgument *arg);
bool checkYieldWithoutLifetimeEndingUses(MultipleValueInstructionResult *yield,
ArrayRef<Operand *> regularUsers);
bool isGuaranteedFunctionArgWithLifetimeEndingUses(
SILFunctionArgument *arg,
const SmallVectorImpl<Operand *> &lifetimeEndingUsers) const;
bool isSubobjectProjectionWithLifetimeEndingUses(
SILValue value,
const SmallVectorImpl<Operand *> &lifetimeEndingUsers) const;
};
} // namespace swift
bool SILValueOwnershipChecker::check() {
if (result.hasValue())
return result.getValue();
LLVM_DEBUG(llvm::dbgs() << "Verifying ownership of: " << *value);
result = checkUses();
if (!result.getValue()) {
return false;
}
SmallVector<Operand *, 32> allLifetimeEndingUsers;
llvm::copy(lifetimeEndingUsers, std::back_inserter(allLifetimeEndingUsers));
SmallVector<Operand *, 32> allRegularUsers;
llvm::copy(regularUsers, std::back_inserter(allRegularUsers));
LinearLifetimeChecker checker(deadEndBlocks);
auto linearLifetimeResult = checker.checkValue(value, allLifetimeEndingUsers,
allRegularUsers, errorBuilder);
result = !linearLifetimeResult.getFoundError();
return result.getValue();
}
bool SILValueOwnershipChecker::isCompatibleDefUse(
Operand *op, ValueOwnershipKind ownershipKind) {
auto *user = op->getUser();
// If our ownership kind doesn't match, track that we found an error, emit
// an error message optionally and then continue.
if (op->satisfiesConstraints()) {
return true;
}
auto constraint = op->getOwnershipConstraint();
errorBuilder.handleMalformedSIL([&]() {
llvm::errs() << "Have operand with incompatible ownership?!\n"
<< "Value: " << op->get() << "User: " << *user
<< "Operand Number: " << op->getOperandNumber() << '\n'
<< "Conv: " << ownershipKind << '\n'
<< "Constraint:\n"
<< constraint << '\n';
});
return false;
}
bool SILValueOwnershipChecker::gatherNonGuaranteedUsers(
SmallVectorImpl<Operand *> &lifetimeEndingUsers,
SmallVectorImpl<Operand *> &nonLifetimeEndingUsers) {
bool foundError = false;
auto ownershipKind = value.getOwnershipKind();
bool isOwned = ownershipKind == OwnershipKind::Owned;
// Since we are dealing with a non-guaranteed user, we do not have to recurse.
for (auto *op : value->getUses()) {
auto *user = op->getUser();
// For example, type dependent operands are non-use. It is not interesting
// from an ownership perspective.
if (op->getOperandOwnership() == OperandOwnership::NonUse)
continue;
// First check if this recursive use is compatible with our values ownership
// kind. If not, flag the error and continue so that we can report more
// errors.
if (!isCompatibleDefUse(op, ownershipKind)) {
foundError = true;
continue;
}
// First do a quick check if we have a consuming use. If so, stash the value
// and continue.
if (op->isLifetimeEnding()) {
LLVM_DEBUG(llvm::dbgs() << "Lifetime Ending User: " << *user);
lifetimeEndingUsers.push_back(op);
continue;
}
// Otherwise, we have a non lifetime ending user. Add it to our non lifetime
// ending user list.
LLVM_DEBUG(llvm::dbgs() << "Regular User: " << *user);
nonLifetimeEndingUsers.push_back(op);
// If we do not have an owned value at this point, continue, we do not have
// any further work to do.
if (!isOwned) {
continue;
}
// Otherwise, check if we have a borrow scope operand. In such a case, we
// need to add the borrow scope operand's end scope instructions as implicit
// regular users so we can ensure that the borrow scope operand's scope is
// completely within the owned value's scope. If we do not have a borrow
// scope operand, just continue, we are done.
auto initialScopedOperand = BorrowingOperand(op);
if (!initialScopedOperand) {
continue;
}
// If our scoped operand is not also a borrow introducer, then we know that
// we do not need to consider guaranteed phis and thus can just add the
// initial end scope instructions without any further work.
//
// Maybe: Is borrow scope non-local?
std::function<void(Operand *)> error = [&](Operand *op) {
errorBuilder.handleMalformedSIL([&] {
llvm::errs() << "Implicit Regular User Guaranteed Phi Cycle!\n"
<< "User: " << *op->getUser()
<< "Initial: " << *initialScopedOperand << "\n";
});
};
initialScopedOperand.getImplicitUses(nonLifetimeEndingUsers, &error);
reborrowVerifier.verifyReborrows(initialScopedOperand, value);
}
return foundError;
}
bool SILValueOwnershipChecker::gatherUsers(
SmallVectorImpl<Operand *> &lifetimeEndingUsers,
SmallVectorImpl<Operand *> &nonLifetimeEndingUsers) {
// See if Value is guaranteed. If we are guaranteed and not forwarding, then
// we need to look through subobject uses for more uses. Otherwise, if we are
// forwarding, we do not create any lifetime ending users/non lifetime ending
// users since we verify against our base.
if (value.getOwnershipKind() != OwnershipKind::Guaranteed) {
return !gatherNonGuaranteedUsers(lifetimeEndingUsers,
nonLifetimeEndingUsers);
}
// Ok, we have a value with guaranteed ownership. Before we continue, check if
// this value forwards guaranteed ownership. In such a case, we are going to
// validate it as part of the borrow introducer from which the forwarding
// value originates. So we can just return true and continue.
if (isForwardingBorrow(value))
return true;
// Ok, we have some sort of borrow introducer. We need to recursively validate
// that all of its uses (including sub-scopes) are before any end_borrows that
// may end the lifetime of the borrow introducer. With that in mind, gather up
// our initial list of users.
SmallVector<Operand *, 8> users;
llvm::copy(value->getUses(), std::back_inserter(users));
bool foundError = false;
while (!users.empty()) {
Operand *op = users.pop_back_val();
SILInstruction *user = op->getUser();
// If this op is a type dependent operand, skip it. It is not interesting
// from an ownership perspective.
if (user->isTypeDependentOperand(*op))
continue;
// First check if this recursive use is compatible with our values
// ownership kind. If not, flag the error and continue so that we can
// report more errors.
if (!isCompatibleDefUse(op, OwnershipKind::Guaranteed)) {
foundError = true;
continue;
}
// If we are visiting a non-first level user and we
// If we are guaranteed, but are not a guaranteed forwarding inst, we add
// the end scope instructions of any new sub-scopes. This ensures that the
// parent scope completely encloses the child borrow scope.
//
// Example: A guaranteed parameter of a co-routine.
// Now check if we have a non guaranteed forwarding inst...
if (op->getOperandOwnership() != OperandOwnership::ForwardingBorrow) {
// First check if we are visiting an operand that is a consuming use...
if (op->isLifetimeEnding()) {
// If its underlying value is our original value, then this is a true
// lifetime ending use. Otherwise, we have a guaranteed value that has
// an end_borrow on a forwarded value which is not supported in any
// case, so emit an error.
if (op->get() != value) {
errorBuilder.handleMalformedSIL([&] {
llvm::errs() << "Invalid End Borrow!\n"
<< "Original Value: " << value
<< "End Borrow: " << *op->getUser() << "\n";
});
foundError = true;
continue;
}
// Otherwise, track this as a lifetime ending use of our underlying
// value and continue.
LLVM_DEBUG(llvm::dbgs() << "Lifetime Ending User: " << *user);
lifetimeEndingUsers.push_back(op);
continue;
}
// Ok, our operand does not consume guaranteed values. Check if it is a
// BorrowScopeOperand and if so, add its end scope instructions as
// implicit regular users of our value.
if (auto scopedOperand = BorrowingOperand(op)) {
assert(!scopedOperand.isReborrow());
std::function<void(Operand *)> onError = [&](Operand *op) {
errorBuilder.handleMalformedSIL([&] {
llvm::errs() << "Implicit Regular User Guaranteed Phi Cycle!\n"
<< "User: " << *op->getUser()
<< "Initial: " << *scopedOperand << "\n";
});
};
scopedOperand.getImplicitUses(nonLifetimeEndingUsers, &onError);
reborrowVerifier.verifyReborrows(scopedOperand, value);
}
// Next see if our use is an interior pointer operand. If we have an
// interior pointer, we need to add all of its address uses as "implicit
// regular users" of our consumed value.
if (auto interiorPointerOperand = InteriorPointerOperand::get(op)) {
std::function<void(Operand *)> onError = [&](Operand *op) {
errorBuilder.handleMalformedSIL([&] {
llvm::errs() << "Could not recognize address user of interior "
"pointer operand!\n"
<< "Interior Pointer Operand: "
<< *interiorPointerOperand.operand->getUser()
<< "Address User: " << *op->getUser();
});
};
foundError |= (interiorPointerOperand.findTransitiveUses(
&nonLifetimeEndingUsers, &onError)
== AddressUseKind::Unknown);
}
// Finally add the op to the non lifetime ending user list.
LLVM_DEBUG(llvm::dbgs() << "Regular User: " << *user);
nonLifetimeEndingUsers.push_back(op);
continue;
}
// At this point since we have a forwarded subobject, we know this is a non
// lifetime ending user.
LLVM_DEBUG(llvm::dbgs() << "Regular User: " << *user);
nonLifetimeEndingUsers.push_back(op);
// At this point, we know that we must have a forwarded subobject. Since
// the base type is guaranteed, we know that the subobject is either
// guaranteed or trivial. We now split into two cases, if the user is a
// terminator or not. If we do not have a terminator, then just add the
// uses of all of User's results to the worklist.
if (user->getResults().size()) {
for (SILValue result : user->getResults()) {
if (result.getOwnershipKind() == OwnershipKind::None) {
continue;
}
// Now, we /must/ have a guaranteed subobject, so let's assert that
// the user is actually guaranteed and add the subobject's users to
// our worklist.
assert(result.getOwnershipKind() == OwnershipKind::Guaranteed &&
"Our value is guaranteed and this is a forwarding instruction. "
"Should have guaranteed ownership as well.");
llvm::copy(result->getUses(), std::back_inserter(users));
}
continue;
}
assert(user->getResults().empty());
auto *ti = dyn_cast<TermInst>(user);
if (!ti) {
continue;
}
// At this point, the only type of thing we could have is a transformation
// terminator since all forwarding terminators are transformation
// terminators.
assert(ti->isTransformationTerminator() &&
"Out of sync with isTransformationTerminator()");
for (auto *succBlock : ti->getSuccessorBlocks()) {
// If we do not have any arguments, then continue.
if (succBlock->args_empty())
continue;
// Otherwise, make sure that all arguments are trivial or guaranteed.
// If we fail, emit an error.
//
// TODO: We could ignore this error and emit a more specific error on
// the actual terminator.
for (auto *succArg : succBlock->getSILPhiArguments()) {
// *NOTE* We do not emit an error here since we want to allow for
// more specific errors to be found during use_verification.
//
// TODO: Add a flag that associates the terminator instruction with
// needing to be verified. If it isn't verified appropriately,
// assert when the verifier is destroyed.
auto succArgOwnershipKind = succArg->getOwnershipKind();
if (!succArgOwnershipKind.isCompatibleWith(OwnershipKind::Guaranteed)) {
// This is where the error would go.
continue;
}
// If we have an any value, just continue.
if (succArgOwnershipKind == OwnershipKind::None)
continue;
// Otherwise add all users of this BBArg to the worklist to visit
// recursively.
llvm::copy(succArg->getUses(), std::back_inserter(users));
}
}
}
// Return true if we did not have an error and false if we did find an error.
//
// The reason why we use this extra variable is to make sure that when we are
// testing, we print out all mismatching pairs rather than just the first.
return !foundError;
}
bool SILValueOwnershipChecker::checkFunctionArgWithoutLifetimeEndingUses(
SILFunctionArgument *arg) {
switch (arg->getOwnershipKind()) {
case OwnershipKind::Any:
llvm_unreachable("Value can not have any ownership kind?!");
case OwnershipKind::Guaranteed:
case OwnershipKind::Unowned:
case OwnershipKind::None:
return true;
case OwnershipKind::Owned:
break;
}
if (deadEndBlocks.isDeadEnd(arg->getParent()))
return true;
return !errorBuilder.handleMalformedSIL([&] {
llvm::errs() << "Owned function parameter without life ending uses!\n"
<< "Value: " << *arg << '\n';
});
}
bool SILValueOwnershipChecker::checkYieldWithoutLifetimeEndingUses(
MultipleValueInstructionResult *yield, ArrayRef<Operand *> regularUses) {
switch (yield->getOwnershipKind()) {
case OwnershipKind::Any:
llvm_unreachable("value with any ownership kind?!");
case OwnershipKind::Unowned:
case OwnershipKind::None:
return true;
case OwnershipKind::Owned:
if (deadEndBlocks.isDeadEnd(yield->getParent()->getParent()))
return true;
return !errorBuilder.handleMalformedSIL([&] {
llvm::errs() << "Owned yield without life ending uses!\n"
<< "Value: " << *yield << '\n';
});
case OwnershipKind::Guaranteed:
// NOTE: If we returned false here, we would catch any error caught below as
// an out of lifetime use of the yielded value. That being said, that would
// be confusing from a code perspective since we would be validating
// something that did not have a /real/ lifetime ending use (one could
// consider the end_apply to be a pseudo-lifetime ending uses) along a code
// path that is explicitly trying to do that.
break;
}
// If we have a guaranteed value, make sure that all uses are before our
// end_yield.
SmallVector<Operand *, 4> coroutineEndUses;
for (auto *use : yield->getParent<BeginApplyInst>()->
getTokenResult()->getUses()) {
coroutineEndUses.push_back(use);
}
LinearLifetimeChecker checker(deadEndBlocks);
auto linearLifetimeResult =
checker.checkValue(yield, coroutineEndUses, regularUses, errorBuilder);
if (linearLifetimeResult.getFoundError()) {
// We return true here even if we find an error since we want to only emit
// this error for the value rather than continue and go down the "has
// consuming use" path. This is to work around any confusion that maybe
// caused by end_apply/abort_apply acting as a pseudo-ending lifetime use.
result = true;
return true;
}
// Otherwise, we do not set result to have a value and return since all of our
// guaranteed value's uses are appropriate.
return true;
}
bool SILValueOwnershipChecker::checkValueWithoutLifetimeEndingUses(
ArrayRef<Operand *> regularUses) {
LLVM_DEBUG(llvm::dbgs() << "No lifetime ending users?! Bailing early.\n");
if (auto *arg = dyn_cast<SILFunctionArgument>(value)) {
if (checkFunctionArgWithoutLifetimeEndingUses(arg)) {
return true;
}
}
if (auto *yield = isaResultOf<BeginApplyInst>(value)) {
return checkYieldWithoutLifetimeEndingUses(yield, regularUses);
}
// Check if we are a guaranteed subobject. In such a case, we should never
// have lifetime ending uses, since our lifetime is guaranteed by our
// operand, so there is nothing further to do. So just return true.
if (value.getOwnershipKind() == OwnershipKind::Guaranteed
&& isForwardingBorrow(value))
return true;
// If we have an unowned value, then again there is nothing left to do.
if (value.getOwnershipKind() == OwnershipKind::Unowned)
return true;
if (auto *parentBlock = value->getParentBlock()) {
if (deadEndBlocks.isDeadEnd(parentBlock)) {
LLVM_DEBUG(llvm::dbgs() << "Ignoring transitively unreachable value "
<< "without users!\n"
<< " Value: " << *value << '\n');
return true;
}
}
if (!isValueAddressOrTrivial(value)) {
return !errorBuilder.handleMalformedSIL([&] {
if (value.getOwnershipKind() == OwnershipKind::Owned) {
llvm::errs() << "Error! Found a leaked owned value that was never "
"consumed.\n";
} else {
llvm::errs() << "Non trivial values, non address values, and non "
"guaranteed function args must have at least one "
"lifetime ending use?!\n";
}
llvm::errs() << "Value: " << *value << '\n';
});
}
return true;
}
bool SILValueOwnershipChecker::isGuaranteedFunctionArgWithLifetimeEndingUses(
SILFunctionArgument *arg,
const llvm::SmallVectorImpl<Operand *> &lifetimeEndingUsers) const {
if (arg->getOwnershipKind() != OwnershipKind::Guaranteed)
return true;
return errorBuilder.handleMalformedSIL([&] {
llvm::errs() << "Guaranteed function parameter with life ending uses!\n"
<< "Value: " << *arg;
for (const auto *use : lifetimeEndingUsers) {
llvm::errs() << "Lifetime Ending User: " << *use->getUser();
}
llvm::errs() << '\n';
});
}
bool SILValueOwnershipChecker::isSubobjectProjectionWithLifetimeEndingUses(
SILValue value,
const llvm::SmallVectorImpl<Operand *> &lifetimeEndingUsers) const {
return errorBuilder.handleMalformedSIL([&] {
llvm::errs() << "Subobject projection with life ending uses!\n"
<< "Value: " << *value;
for (const auto *use : lifetimeEndingUsers) {
llvm::errs() << "Lifetime Ending User: " << *use->getUser();
}
llvm::errs() << '\n';
});
}
bool SILValueOwnershipChecker::checkUses() {
LLVM_DEBUG(llvm::dbgs() << " Gathering and classifying uses!\n");
// First go through V and gather up its uses. While we do this we:
//
// 1. Verify that none of the uses are in the same block. This would be an
// overconsume so in this case we assert.
// 2. Verify that the uses are compatible with our ownership convention.
if (!gatherUsers(lifetimeEndingUsers, regularUsers)) {
// Silently return false if this fails.
//
// If the user pass in a ErrorBehaviorKind that will assert, we
// will have asserted in gatherUsers(). If we get here the user
// asked us to optionally print out a message and indicate that
// the verification failed.
return false;
}
// We can only have no lifetime ending uses if we have:
//
// 1. A trivial typed value.
// 2. An address type value.
// 3. A guaranteed function argument.
// 4. A yielded guaranteed value.
//
// In the first two cases, it is easy to see that there is nothing further to
// do but return false.
//
// In the case of a function argument, one must think about the issues a bit
// more. Specifically, we should have /no/ lifetime ending uses of a
// guaranteed function argument, since a guaranteed function argument should
// outlive the current function always.
//
// In the case of a yielded guaranteed value, we need to validate that all
// regular uses of the value are within the co
if (lifetimeEndingUsers.empty()) {
if (checkValueWithoutLifetimeEndingUses(regularUsers))
return false;
return true;
}
LLVM_DEBUG(llvm::dbgs() << " Found lifetime ending users! Performing "
"initial checks\n");
// See if we have a guaranteed function address. Guaranteed function addresses
// should never have any lifetime ending uses.
if (auto *arg = dyn_cast<SILFunctionArgument>(value)) {
if (!isGuaranteedFunctionArgWithLifetimeEndingUses(arg,
lifetimeEndingUsers)) {
return false;
}
}
// Check if we are an instruction that forwards forwards guaranteed
// ownership. In such a case, we are a subobject projection. We should not
// have any lifetime ending uses.
if (value.getOwnershipKind() == OwnershipKind::Guaranteed
&& isForwardingBorrow(value)) {
if (!isSubobjectProjectionWithLifetimeEndingUses(value,
lifetimeEndingUsers)) {
return false;
}
}
return true;
}
//===----------------------------------------------------------------------===//
// Top Level Entrypoints
//===----------------------------------------------------------------------===//
void SILInstruction::verifyOperandOwnership(
SILModuleConventions *silConv) const {
if (DisableOwnershipVerification)
return;
if (isStaticInitializerInst())
return;
#ifdef NDEBUG
// When compiling without asserts enabled, only verify ownership if
// -sil-verify-all is set.
if (!getModule().getOptions().VerifyAll)
return;
#endif
// If SILOwnership is not enabled, do not perform verification.
if (!getModule().getOptions().VerifySILOwnership)
return;
// If the given function has unqualified ownership or we have been asked by
// the user not to verify this function, there is nothing to verify.
if (!getFunction()->hasOwnership() ||
!getFunction()->shouldVerifyOwnership())
return;
// If we are testing the verifier, bail so we only print errors once when
// performing a full verification, instead of additionally in the SILBuilder.
if (IsSILOwnershipVerifierTestingEnabled)
return;
// If this is a terminator instruction, do not verify in SILBuilder. This is
// because when building a new function, one must create the destination block
// first which is an unnatural pattern and pretty brittle.
if (isa<TermInst>(this))
return;
using BehaviorKind = LinearLifetimeChecker::ErrorBehaviorKind;
Optional<LinearLifetimeChecker::ErrorBuilder> errorBuilder;
if (IsSILOwnershipVerifierTestingEnabled) {
errorBuilder.emplace(*getFunction(),
BehaviorKind::PrintMessageAndReturnFalse);
} else {
errorBuilder.emplace(*getFunction(), BehaviorKind::PrintMessageAndAssert);
}
for (const Operand &op : getAllOperands()) {
// Skip type dependence operands.
if (isTypeDependentOperand(op))
continue;
if (!checkOperandOwnershipInvariants(&op, silConv)) {
errorBuilder->handleMalformedSIL([&] {
llvm::errs() << "Found an operand with invalid invariants.\n";
llvm::errs() << "Value: " << op.get();
llvm::errs() << "Instruction:\n";
printInContext(llvm::errs());
llvm::errs() << "OperandOwnership: " << op.getOperandOwnership()
<< "\n";
});
}
if (!op.satisfiesConstraints(silConv)) {
auto constraint = op.getOwnershipConstraint(silConv);
SILValue opValue = op.get();
auto valueOwnershipKind = opValue.getOwnershipKind();
errorBuilder->handleMalformedSIL([&] {
llvm::errs() << "Found an operand with a value that is not compatible "
"with the operand's operand ownership kind map.\n";
llvm::errs() << "Value: " << opValue;
llvm::errs() << "Value Ownership Kind: " << valueOwnershipKind << "\n";
llvm::errs() << "Instruction:\n";
printInContext(llvm::errs());
llvm::errs() << "Constraint: " << constraint << "\n";
});
}
}
}
static void
verifySILValueHelper(const SILFunction *f, SILValue value,
LinearLifetimeChecker::ErrorBuilder &errorBuilder,
DeadEndBlocks *deadEndBlocks,
ReborrowVerifier &reborrowVerifier) {
assert(!isa<SILUndef>(value) &&
"We assume we are always passed arguments or instruction results");
// If the given function has unqualified ownership or we have been asked by
// the user not to verify this function, there is nothing to verify.
if (!f->hasOwnership() || !f->shouldVerifyOwnership())
return;
SILValueOwnershipChecker(*deadEndBlocks, value, errorBuilder,
reborrowVerifier)
.check();
}
void SILValue::verifyOwnership(DeadEndBlocks *deadEndBlocks) const {
if (DisableOwnershipVerification)
return;
// Do not validate SILUndef values.
if (isa<SILUndef>(*this))
return;
#ifdef NDEBUG
// When compiling without asserts enabled, only verify ownership if
// -sil-verify-all is set.
//
// NOTE: We purposely return if we do can not look up a module here to ensure
// that if we run into something that we do not understand, we do not assert
// in user code even tohugh we aren't going to actually verify (the default
// behavior when -sil-verify-all is disabled).
auto *mod = Value->getModule();
if (!mod || !mod->getOptions().VerifyAll)
return;
#endif
// Make sure that we are not a value of an instruction in a SILGlobalVariable
// block.
if (auto *definingInst = getDefiningInstruction()) {
if (definingInst->isStaticInitializerInst()) {
return;
}
}
// If we are testing the verifier, bail so we only print errors once when
// performing a full verification a function at a time by the
// OwnershipVerifierStateDumper pass, instead of additionally in the
// SILBuilder and in the actual SIL verifier that may be run by sil-opt.
if (IsSILOwnershipVerifierTestingEnabled)
return;
// Since we do not have SILUndef, we now know that getFunction() should return
// a real function. Assert in case this assumption is no longer true.
auto *f = (*this)->getFunction();
assert(f && "Instructions and arguments should have a function");
using BehaviorKind = LinearLifetimeChecker::ErrorBehaviorKind;
LinearLifetimeChecker::ErrorBuilder errorBuilder(
*f, BehaviorKind::PrintMessageAndAssert);
ReborrowVerifier reborrowVerifier(f, *deadEndBlocks, errorBuilder);
verifySILValueHelper(f, *this, errorBuilder, deadEndBlocks, reborrowVerifier);
}
void SILFunction::verifyOwnership(DeadEndBlocks *deadEndBlocks) const {
if (DisableOwnershipVerification)
return;
#ifdef NDEBUG
// When compiling without asserts enabled, only verify ownership if
// -sil-verify-all is set.
//
// NOTE: We purposely return if we do can not look up a module here to ensure
// that if we run into something that we do not understand, we do not assert
// in user code even tohugh we aren't going to actually verify (the default
// behavior when -sil-verify-all is disabled).
auto *mod = &getModule();
if (!mod || !mod->getOptions().VerifyAll)
return;
#endif
// If the given function has unqualified ownership or we have been asked by
// the user not to verify this function, there is nothing to verify.
if (!hasOwnership() || !shouldVerifyOwnership())
return;
using BehaviorKind = LinearLifetimeChecker::ErrorBehaviorKind;
unsigned errorCounter = 0;
Optional<LinearLifetimeChecker::ErrorBuilder> errorBuilder;
if (IsSILOwnershipVerifierTestingEnabled) {
errorBuilder.emplace(*this, BehaviorKind::PrintMessageAndReturnFalse,
&errorCounter);
} else {
errorBuilder.emplace(*this, BehaviorKind::PrintMessageAndAssert);
}
ReborrowVerifier reborrowVerifier(this, *deadEndBlocks, *errorBuilder);
for (auto &block : *this) {
for (auto *arg : block.getArguments()) {
LinearLifetimeChecker::ErrorBuilder newBuilder = *errorBuilder;
verifySILValueHelper(this, arg, newBuilder, deadEndBlocks,
reborrowVerifier);
}
for (auto &inst : block) {
for (auto result : inst.getResults()) {
LinearLifetimeChecker::ErrorBuilder newBuilder = *errorBuilder;
verifySILValueHelper(this, result, newBuilder, deadEndBlocks,
reborrowVerifier);
}
}
}
}