Files
swift-mirror/stdlib/private/StdlibUnittest/RaceTest.swift
Saleem Abdulrasool 2fc5cbdc14 stdlib: remove swiftMSVCRT, replace with swiftCRT on Windows
This replaces swiftMSVCRT with swiftCRT.  The big difference here is
that the `visualc` module is no longer imported nor exported.  The
`visualc` module remains in use for a singular test wrt availability,
but this should effectively remove the need for the `visualc` module.

The difference between the MSVCRT and ucrt module was not well
understood by most.  MSVCRT provided ucrt AND visualc, combining pieces
of the old MSVCRT and the newer ucrt.  The ucrt module is what you
really wanted most of the time, however, would need to use MSVCRT for
the convenience aliases for type-generic math and the deprecated math
constants.

Unfortunately, we cannot shadow the `ucrt` module and create a Swift SDK
overlay for ucrt as that seems to result in circular dependencies when
processing the `_Concurrency` module.

Although this makes using the C library easier for most people, it has a
more important subtle change: it cleaves the dependency on visualc.
This means that this enables use of Swift without Visual Studio for the
singular purpose of providing 3 header files.  Additionally, it removes
the need for the installation of 2 of the 4 support files.  This greatly
simplifies the deployment process on Windows.
2020-10-15 16:02:01 -07:00

759 lines
21 KiB
Swift

//===--- RaceTest.swift ---------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// This file implements support for race tests.
///
/// Race test harness executes the given operation in multiple threads over a
/// set of shared data, trying to ensure that executions overlap in time.
///
/// The name "race test" does not imply that the race actually happens in the
/// harness or in the operation being tested. The harness contains all the
/// necessary synchronization for its own data, and for publishing test data to
/// threads. But if the operation under test is, in fact, racy, it should be
/// easier to discover the bug in this environment.
///
/// Every execution of a race test is called a trial. During a single trial
/// the operation under test is executed multiple times in each thread over
/// different data items (`RaceData` instances). Different threads process
/// data in different order. Choosing an appropriate balance between the
/// number of threads and data items, the harness uses the birthday paradox to
/// increase the probability of "collisions" between threads.
///
/// After performing the operation under test, the thread should observe the
/// data in a test-dependent way to detect if presence of other concurrent
/// actions disturbed the result. The observation should be as short as
/// possible, and the results should be returned as `Observation`. Evaluation
/// (cross-checking) of observations is deferred until the end of the trial.
///
//===----------------------------------------------------------------------===//
import SwiftPrivate
import SwiftPrivateLibcExtras
import SwiftPrivateThreadExtras
#if canImport(Darwin)
import Darwin
#elseif canImport(Glibc)
import Glibc
#elseif os(Windows)
import CRT
import WinSDK
#endif
#if _runtime(_ObjC)
import ObjectiveC
#else
func autoreleasepool(invoking code: () -> Void) {
// Native runtime does not have autorelease pools. Execute the code
// directly.
code()
}
#endif
/// Race tests that need a fresh set of data for every trial should implement
/// this protocol.
///
/// All racing threads execute the same operation, `thread1`.
///
/// Types conforming to this protocol should be structs. (The type
/// should be a struct to reduce unnecessary reference counting during
/// the test.) The types should be stateless.
public protocol RaceTestWithPerTrialData {
/// Input for threads.
///
/// This type should be a class. (The harness will not pass struct instances
/// between threads correctly.)
associatedtype RaceData : AnyObject
/// Type of thread-local data.
///
/// Thread-local data is newly created for every trial.
associatedtype ThreadLocalData
/// Results of the observation made after performing an operation.
associatedtype Observation
init()
/// Creates a fresh instance of `RaceData`.
func makeRaceData() -> RaceData
/// Creates a fresh instance of `ThreadLocalData`.
func makeThreadLocalData() -> ThreadLocalData
/// Performs the operation under test and makes an observation.
func thread1(
_ raceData: RaceData, _ threadLocalData: inout ThreadLocalData) -> Observation
/// Evaluates the observations made by all threads for a particular instance
/// of `RaceData`.
func evaluateObservations(
_ observations: [Observation],
_ sink: (RaceTestObservationEvaluation) -> Void)
}
/// The result of evaluating observations.
///
/// Case payloads can carry test-specific data. Results will be grouped
/// according to it.
public enum RaceTestObservationEvaluation : Equatable, CustomStringConvertible {
/// Normal 'pass'.
case pass
/// An unusual 'pass'.
case passInteresting(String)
/// A failure.
case failure
case failureInteresting(String)
public var description: String {
switch self {
case .pass:
return "Pass"
case .passInteresting(let s):
return "Pass(\(s))"
case .failure:
return "Failure"
case .failureInteresting(let s):
return "Failure(\(s))"
}
}
}
public func == (
lhs: RaceTestObservationEvaluation, rhs: RaceTestObservationEvaluation
) -> Bool {
switch (lhs, rhs) {
case (.pass, .pass),
(.failure, .failure):
return true
case (.passInteresting(let s1), .passInteresting(let s2)):
return s1 == s2
default:
return false
}
}
/// An observation result that consists of one `UInt`.
public struct Observation1UInt : Equatable, CustomStringConvertible {
public var data1: UInt
public init(_ data1: UInt) {
self.data1 = data1
}
public var description: String {
return "(\(data1))"
}
}
public func == (lhs: Observation1UInt, rhs: Observation1UInt) -> Bool {
return lhs.data1 == rhs.data1
}
/// An observation result that consists of four `UInt`s.
public struct Observation4UInt : Equatable, CustomStringConvertible {
public var data1: UInt
public var data2: UInt
public var data3: UInt
public var data4: UInt
public init(_ data1: UInt, _ data2: UInt, _ data3: UInt, _ data4: UInt) {
self.data1 = data1
self.data2 = data2
self.data3 = data3
self.data4 = data4
}
public var description: String {
return "(\(data1), \(data2), \(data3), \(data4))"
}
}
public func == (lhs: Observation4UInt, rhs: Observation4UInt) -> Bool {
return
lhs.data1 == rhs.data1 &&
lhs.data2 == rhs.data2 &&
lhs.data3 == rhs.data3 &&
lhs.data4 == rhs.data4
}
/// An observation result that consists of three `Int`s.
public struct Observation3Int : Equatable, CustomStringConvertible {
public var data1: Int
public var data2: Int
public var data3: Int
public init(_ data1: Int, _ data2: Int, _ data3: Int) {
self.data1 = data1
self.data2 = data2
self.data3 = data3
}
public var description: String {
return "(\(data1), \(data2), \(data3))"
}
}
public func == (lhs: Observation3Int, rhs: Observation3Int) -> Bool {
return
lhs.data1 == rhs.data1 &&
lhs.data2 == rhs.data2 &&
lhs.data3 == rhs.data3
}
/// An observation result that consists of four `Int`s.
public struct Observation4Int : Equatable, CustomStringConvertible {
public var data1: Int
public var data2: Int
public var data3: Int
public var data4: Int
public init(_ data1: Int, _ data2: Int, _ data3: Int, _ data4: Int) {
self.data1 = data1
self.data2 = data2
self.data3 = data3
self.data4 = data4
}
public var description: String {
return "(\(data1), \(data2), \(data3), \(data4))"
}
}
public func == (lhs: Observation4Int, rhs: Observation4Int) -> Bool {
return
lhs.data1 == rhs.data1 &&
lhs.data2 == rhs.data2 &&
lhs.data3 == rhs.data3 &&
lhs.data4 == rhs.data4
}
/// An observation result that consists of five `Int`s.
public struct Observation5Int : Equatable, CustomStringConvertible {
public var data1: Int
public var data2: Int
public var data3: Int
public var data4: Int
public var data5: Int
public init(
_ data1: Int, _ data2: Int, _ data3: Int, _ data4: Int, _ data5: Int
) {
self.data1 = data1
self.data2 = data2
self.data3 = data3
self.data4 = data4
self.data5 = data5
}
public var description: String {
return "(\(data1), \(data2), \(data3), \(data4), \(data5))"
}
}
public func == (lhs: Observation5Int, rhs: Observation5Int) -> Bool {
return
lhs.data1 == rhs.data1 &&
lhs.data2 == rhs.data2 &&
lhs.data3 == rhs.data3 &&
lhs.data4 == rhs.data4 &&
lhs.data5 == rhs.data5
}
/// An observation result that consists of nine `Int`s.
public struct Observation9Int : Equatable, CustomStringConvertible {
public var data1: Int
public var data2: Int
public var data3: Int
public var data4: Int
public var data5: Int
public var data6: Int
public var data7: Int
public var data8: Int
public var data9: Int
public init(
_ data1: Int, _ data2: Int, _ data3: Int, _ data4: Int,
_ data5: Int, _ data6: Int, _ data7: Int, _ data8: Int,
_ data9: Int
) {
self.data1 = data1
self.data2 = data2
self.data3 = data3
self.data4 = data4
self.data5 = data5
self.data6 = data6
self.data7 = data7
self.data8 = data8
self.data9 = data9
}
public var description: String {
return "(\(data1), \(data2), \(data3), \(data4), \(data5), \(data6), \(data7), \(data8), \(data9))"
}
}
public func == (lhs: Observation9Int, rhs: Observation9Int) -> Bool {
return
lhs.data1 == rhs.data1 &&
lhs.data2 == rhs.data2 &&
lhs.data3 == rhs.data3 &&
lhs.data4 == rhs.data4 &&
lhs.data5 == rhs.data5 &&
lhs.data6 == rhs.data6 &&
lhs.data7 == rhs.data7 &&
lhs.data8 == rhs.data8 &&
lhs.data9 == rhs.data9
}
/// A helper that is useful to implement
/// `RaceTestWithPerTrialData.evaluateObservations()` in race tests.
public func evaluateObservationsAllEqual<T : Equatable>(_ observations: [T])
-> RaceTestObservationEvaluation {
let first = observations.first!
for x in observations {
if x != first {
return .failure
}
}
return .pass
}
struct _RaceTestAggregatedEvaluations : CustomStringConvertible {
var passCount: Int = 0
var passInterestingCount = [String: Int]()
var failureCount: Int = 0
var failureInterestingCount = [String: Int]()
init() {}
mutating func addEvaluation(_ evaluation: RaceTestObservationEvaluation) {
switch evaluation {
case .pass:
passCount += 1
case .passInteresting(let s):
if passInterestingCount[s] == nil {
passInterestingCount[s] = 0
}
passInterestingCount[s] = passInterestingCount[s]! + 1
case .failure:
failureCount += 1
case .failureInteresting(let s):
if failureInterestingCount[s] == nil {
failureInterestingCount[s] = 0
}
failureInterestingCount[s] = failureInterestingCount[s]! + 1
}
}
var isFailed: Bool {
return failureCount != 0 || !failureInterestingCount.isEmpty
}
var description: String {
var result = ""
result += "Pass: \(passCount) times\n"
for desc in passInterestingCount.keys.sorted() {
let count = passInterestingCount[desc]!
result += "Pass \(desc): \(count) times\n"
}
result += "Failure: \(failureCount) times\n"
for desc in failureInterestingCount.keys.sorted() {
let count = failureInterestingCount[desc]!
result += "Failure \(desc): \(count) times\n"
}
return result
}
}
// FIXME: protect this class against false sharing.
class _RaceTestWorkerState<RT : RaceTestWithPerTrialData> {
// FIXME: protect every element of 'raceData' against false sharing.
var raceData: [RT.RaceData] = []
var raceDataShuffle: [Int] = []
var observations: [RT.Observation] = []
}
class _RaceTestSharedState<RT : RaceTestWithPerTrialData> {
var racingThreadCount: Int
var stopNow = _stdlib_AtomicInt(0)
var trialBarrier: _stdlib_Barrier
var trialSpinBarrier = _stdlib_AtomicInt()
var raceData: [RT.RaceData] = []
var workerStates: [_RaceTestWorkerState<RT>] = []
var aggregatedEvaluations: _RaceTestAggregatedEvaluations =
_RaceTestAggregatedEvaluations()
init(racingThreadCount: Int) {
self.racingThreadCount = racingThreadCount
self.trialBarrier = _stdlib_Barrier(threadCount: racingThreadCount + 1)
self.workerStates.reserveCapacity(racingThreadCount)
for _ in 0..<racingThreadCount {
self.workerStates.append(_RaceTestWorkerState<RT>())
}
}
}
func _masterThreadStopWorkers<RT>( _ sharedState: _RaceTestSharedState<RT>) {
// Workers are proceeding to the first barrier in _workerThreadOneTrial.
sharedState.stopNow.store(1)
// Allow workers to proceed past that first barrier. They will then see
// stopNow==true and stop.
sharedState.trialBarrier.wait()
}
func _masterThreadOneTrial<RT>(_ sharedState: _RaceTestSharedState<RT>) {
let racingThreadCount = sharedState.racingThreadCount
let raceDataCount = racingThreadCount * racingThreadCount
let rt = RT()
sharedState.raceData.removeAll(keepingCapacity: true)
sharedState.raceData.append(contentsOf: (0..<raceDataCount).lazy.map { _ in
rt.makeRaceData()
})
let identityShuffle = Array(0..<sharedState.raceData.count)
sharedState.workerStates.removeAll(keepingCapacity: true)
sharedState.workerStates.append(contentsOf: (0..<racingThreadCount).lazy.map {
_ in
let workerState = _RaceTestWorkerState<RT>()
// Shuffle the data so that threads process it in different order.
let shuffle = identityShuffle.shuffled()
workerState.raceData = scatter(sharedState.raceData, shuffle)
workerState.raceDataShuffle = shuffle
workerState.observations = []
workerState.observations.reserveCapacity(sharedState.raceData.count)
return workerState
})
sharedState.trialSpinBarrier.store(0)
sharedState.trialBarrier.wait()
// Race happens.
sharedState.trialBarrier.wait()
// Collect and compare results.
for i in 0..<racingThreadCount {
let shuffle = sharedState.workerStates[i].raceDataShuffle
sharedState.workerStates[i].raceData =
gather(sharedState.workerStates[i].raceData, shuffle)
sharedState.workerStates[i].observations =
gather(sharedState.workerStates[i].observations, shuffle)
}
if true {
// FIXME: why doesn't the bracket syntax work?
// <rdar://problem/18305718> Array sugar syntax does not work when used
// with associated types
var observations: [RT.Observation] = []
observations.reserveCapacity(racingThreadCount)
for i in 0..<raceDataCount {
for j in 0..<racingThreadCount {
observations.append(sharedState.workerStates[j].observations[i])
}
let sink = { sharedState.aggregatedEvaluations.addEvaluation($0) }
rt.evaluateObservations(observations, sink)
observations.removeAll(keepingCapacity: true)
}
}
}
func _workerThreadOneTrial<RT>(
_ tid: Int, _ sharedState: _RaceTestSharedState<RT>
) -> Bool {
sharedState.trialBarrier.wait()
if sharedState.stopNow.load() == 1 {
return true
}
let racingThreadCount = sharedState.racingThreadCount
let workerState = sharedState.workerStates[tid]
let rt = RT()
var threadLocalData = rt.makeThreadLocalData()
do {
let trialSpinBarrier = sharedState.trialSpinBarrier
_ = trialSpinBarrier.fetchAndAdd(1)
while trialSpinBarrier.load() < racingThreadCount {}
}
// Perform racy operations.
// Warning: do not add any synchronization in this loop, including
// any implicit reference counting of shared data.
for raceData in workerState.raceData {
workerState.observations.append(rt.thread1(raceData, &threadLocalData))
}
sharedState.trialBarrier.wait()
return false
}
/// One-shot sleep in one thread, allowing interrupt by another.
#if os(Windows)
class _InterruptibleSleep {
let event: HANDLE?
var completed: Bool = false
init() {
self.event = CreateEventW(nil, true, false, nil)
precondition(self.event != nil)
}
deinit {
CloseHandle(self.event)
}
func sleep(durationInSeconds duration: Int) {
guard completed == false else { return }
let result: DWORD = WaitForSingleObject(event, DWORD(duration * 1000))
precondition(result == WAIT_OBJECT_0)
completed = true
}
func wake() {
guard completed == false else { return }
let result: Bool = SetEvent(self.event)
precondition(result == true)
}
}
#else
class _InterruptibleSleep {
let writeEnd: CInt
let readEnd: CInt
var completed = false
init() {
(readEnd: readEnd, writeEnd: writeEnd, _) = _stdlib_pipe()
}
deinit {
close(readEnd)
close(writeEnd)
}
/// Sleep for durationInSeconds or until another
/// thread calls wake(), whichever comes first.
func sleep(durationInSeconds duration: Int) {
if completed {
return
}
// WebAssembly/WASI on wasm32 is the only 32-bit platform with Int64 time_t,
// needs an explicit conversion to `time_t` because of this.
var timeout = timeval(tv_sec: time_t(duration), tv_usec: 0)
var readFDs = _stdlib_fd_set()
var writeFDs = _stdlib_fd_set()
var errorFDs = _stdlib_fd_set()
readFDs.set(readEnd)
let ret = _stdlib_select(&readFDs, &writeFDs, &errorFDs, &timeout)
precondition(ret >= 0)
completed = true
}
/// Wake the thread in sleep().
func wake() {
if completed { return }
let buffer: [UInt8] = [1]
let ret = write(writeEnd, buffer, 1)
precondition(ret >= 0)
}
}
#endif
#if os(Windows)
typealias ThreadHandle = HANDLE
#else
typealias ThreadHandle = pthread_t
#endif
public func runRaceTest<RT : RaceTestWithPerTrialData>(
_: RT.Type,
trials: Int,
timeoutInSeconds: Int? = nil,
threads: Int? = nil
) {
let racingThreadCount = threads ?? max(2, _stdlib_getHardwareConcurrency())
let sharedState = _RaceTestSharedState<RT>(racingThreadCount: racingThreadCount)
// Alarm thread sets timeoutReached.
// Master thread sees timeoutReached and tells worker threads to stop.
let timeoutReached = _stdlib_AtomicInt(0)
let alarmTimer = _InterruptibleSleep()
let masterThreadBody = {
() -> Void in
for t in 0..<trials {
// Check for timeout.
// _masterThreadStopWorkers must run BEFORE the last _masterThreadOneTrial
// to make the thread coordination barriers work
// but we do want to run at least one trial even if the timeout occurs.
if timeoutReached.load() == 1 && t > 0 {
_masterThreadStopWorkers(sharedState)
break
}
autoreleasepool {
_masterThreadOneTrial(sharedState)
}
}
}
let racingThreadBody = {
(tid: Int) -> Void in
for _ in 0..<trials {
let stopNow = _workerThreadOneTrial(tid, sharedState)
if stopNow { break }
}
}
let alarmThreadBody = {
() -> Void in
guard let timeoutInSeconds = timeoutInSeconds
else { return }
alarmTimer.sleep(durationInSeconds: timeoutInSeconds)
_ = timeoutReached.fetchAndAdd(1)
}
var testTids = [ThreadHandle]()
var alarmTid: ThreadHandle
// Create the master thread.
do {
let (ret, tid) = _stdlib_thread_create_block(masterThreadBody, ())
expectEqual(0, ret)
testTids.append(tid!)
}
// Create racing threads.
for i in 0..<racingThreadCount {
let (ret, tid) = _stdlib_thread_create_block(racingThreadBody, i)
expectEqual(0, ret)
testTids.append(tid!)
}
// Create the alarm thread that enforces the timeout.
do {
let (ret, tid) = _stdlib_thread_create_block(alarmThreadBody, ())
expectEqual(0, ret)
alarmTid = tid!
}
// Join all testing threads.
for tid in testTids {
let (ret, _) = _stdlib_thread_join(tid, Void.self)
expectEqual(0, ret)
}
// Tell the alarm thread to stop if it hasn't already, then join it.
do {
alarmTimer.wake()
let (ret, _) = _stdlib_thread_join(alarmTid, Void.self)
expectEqual(0, ret)
}
let aggregatedEvaluations = sharedState.aggregatedEvaluations
expectFalse(aggregatedEvaluations.isFailed)
print(aggregatedEvaluations)
}
internal func _divideRoundUp(_ lhs: Int, _ rhs: Int) -> Int {
return (lhs + rhs) / rhs
}
public func runRaceTest<RT : RaceTestWithPerTrialData>(
_ test: RT.Type,
operations: Int,
timeoutInSeconds: Int? = nil,
threads: Int? = nil
) {
let racingThreadCount = threads ?? max(2, _stdlib_getHardwareConcurrency())
// Each trial runs threads^2 operations.
let operationsPerTrial = racingThreadCount * racingThreadCount
let trials = _divideRoundUp(operations, operationsPerTrial)
runRaceTest(test, trials: trials, timeoutInSeconds: timeoutInSeconds,
threads: threads)
}
public func consumeCPU(units amountOfWork: Int) {
for _ in 0..<amountOfWork {
let scale = 16
for _ in 0..<scale {
_blackHole(42)
}
}
}
internal struct ClosureBasedRaceTest : RaceTestWithPerTrialData {
static var thread: () -> Void = {}
class RaceData {}
typealias ThreadLocalData = Void
typealias Observation = Void
func makeRaceData() -> RaceData { return RaceData() }
func makeThreadLocalData() -> Void { return Void() }
func thread1(
_ raceData: RaceData, _ threadLocalData: inout ThreadLocalData
) {
ClosureBasedRaceTest.thread()
}
func evaluateObservations(
_ observations: [Observation],
_ sink: (RaceTestObservationEvaluation) -> Void
) {}
}
public func runRaceTest(
trials: Int,
timeoutInSeconds: Int? = nil,
threads: Int? = nil,
invoking body: @escaping () -> Void
) {
ClosureBasedRaceTest.thread = body
runRaceTest(ClosureBasedRaceTest.self, trials: trials,
timeoutInSeconds: timeoutInSeconds, threads: threads)
}
public func runRaceTest(
operations: Int,
timeoutInSeconds: Int? = nil,
threads: Int? = nil,
invoking body: @escaping () -> Void
) {
ClosureBasedRaceTest.thread = body
runRaceTest(ClosureBasedRaceTest.self, operations: operations,
timeoutInSeconds: timeoutInSeconds, threads: threads)
}