mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
This replaces swiftMSVCRT with swiftCRT. The big difference here is that the `visualc` module is no longer imported nor exported. The `visualc` module remains in use for a singular test wrt availability, but this should effectively remove the need for the `visualc` module. The difference between the MSVCRT and ucrt module was not well understood by most. MSVCRT provided ucrt AND visualc, combining pieces of the old MSVCRT and the newer ucrt. The ucrt module is what you really wanted most of the time, however, would need to use MSVCRT for the convenience aliases for type-generic math and the deprecated math constants. Unfortunately, we cannot shadow the `ucrt` module and create a Swift SDK overlay for ucrt as that seems to result in circular dependencies when processing the `_Concurrency` module. Although this makes using the C library easier for most people, it has a more important subtle change: it cleaves the dependency on visualc. This means that this enables use of Swift without Visual Studio for the singular purpose of providing 3 header files. Additionally, it removes the need for the installation of 2 of the 4 support files. This greatly simplifies the deployment process on Windows.
302 lines
8.8 KiB
Swift
302 lines
8.8 KiB
Swift
//===--- TgmathDerivatives.swift.gyb --------------------------*- swift -*-===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2020 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
// This file defines derivatives for tgmath functions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
import Swift
|
|
|
|
#if os(macOS) || os(iOS) || os(tvOS) || os(watchOS)
|
|
import Darwin.C.tgmath
|
|
#elseif os(Linux) || os(FreeBSD) || os(OpenBSD) || os(PS4) || os(Android) || os(Cygwin) || os(Haiku)
|
|
import Glibc
|
|
#elseif os(Windows)
|
|
import CRT
|
|
#else
|
|
#error("Unsupported platform")
|
|
#endif
|
|
|
|
@usableFromInline
|
|
@derivative(of: fma)
|
|
func _jvpFma<T: FloatingPoint & Differentiable> (
|
|
_ x: T,
|
|
_ y: T,
|
|
_ z: T
|
|
) -> (value: T, differential: (T, T, T) -> T) where T == T.TangentVector {
|
|
return (fma(x, y, z), { (dx, dy, dz) in dx * y + dy * x + dz })
|
|
}
|
|
|
|
@usableFromInline
|
|
@derivative(of: fma)
|
|
func _vjpFma<T: FloatingPoint & Differentiable> (
|
|
_ x: T,
|
|
_ y: T,
|
|
_ z: T
|
|
) -> (value: T, pullback: (T) -> (T, T, T)) where T == T.TangentVector {
|
|
return (fma(x, y, z), { v in (v * y, v * x, v) })
|
|
}
|
|
|
|
@usableFromInline
|
|
@derivative(of: remainder)
|
|
func _jvpRemainder<T: FloatingPoint & Differentiable> (
|
|
_ x: T,
|
|
_ y: T
|
|
) -> (value: T, differential: (T, T) -> T) where T == T.TangentVector {
|
|
fatalError("""
|
|
Unimplemented JVP for 'remainder(_:)'. \
|
|
https://bugs.swift.org/browse/TF-1108 tracks this issue
|
|
""")
|
|
}
|
|
|
|
@usableFromInline
|
|
@derivative(of: remainder)
|
|
func _vjpRemainder<T: FloatingPoint & Differentiable> (
|
|
_ x: T,
|
|
_ y: T
|
|
) -> (value: T, pullback: (T) -> (T, T)) where T == T.TangentVector {
|
|
return (remainder(x, y), { v in (v, -v * ((x / y).rounded(.toNearestOrEven))) })
|
|
}
|
|
|
|
@usableFromInline
|
|
@derivative(of: fmod)
|
|
func _jvpFmod<T: FloatingPoint & Differentiable> (
|
|
_ x: T,
|
|
_ y: T
|
|
) -> (value: T, differential: (T, T) -> T) where T == T.TangentVector {
|
|
fatalError("""
|
|
Unimplemented JVP for 'fmod(_:)'. \
|
|
https://bugs.swift.org/browse/TF-1108 tracks this issue
|
|
""")
|
|
}
|
|
|
|
@usableFromInline
|
|
@derivative(of: fmod)
|
|
func _vjpFmod<T: FloatingPoint & Differentiable> (
|
|
_ x: T,
|
|
_ y: T
|
|
) -> (value: T, pullback: (T) -> (T, T)) where T == T.TangentVector {
|
|
return (fmod(x, y), { v in (v, -v * ((x / y).rounded(.towardZero))) })
|
|
}
|
|
|
|
%for derivative_kind in ['jvp', 'vjp']:
|
|
% linear_map_kind = 'differential' if derivative_kind == 'jvp' else 'pullback'
|
|
@usableFromInline
|
|
@derivative(of: sqrt)
|
|
func _${derivative_kind}Sqrt<T: FloatingPoint & Differentiable> (
|
|
_ x: T
|
|
) -> (value: T, ${linear_map_kind}: (T) -> T) where T == T.TangentVector {
|
|
let value = sqrt(x)
|
|
return (value, { v in v / (2 * value) })
|
|
}
|
|
|
|
@usableFromInline
|
|
@derivative(of: ceil)
|
|
func _${derivative_kind}Ceil<T: FloatingPoint & Differentiable> (
|
|
_ x: T
|
|
) -> (value: T, ${linear_map_kind}: (T) -> T) where T == T.TangentVector {
|
|
return (ceil(x), { v in 0 })
|
|
}
|
|
|
|
@usableFromInline
|
|
@derivative(of: floor)
|
|
func _${derivative_kind}Floor<T: FloatingPoint & Differentiable> (
|
|
_ x: T
|
|
) -> (value: T, ${linear_map_kind}: (T) -> T) where T == T.TangentVector {
|
|
return (floor(x), { v in 0 })
|
|
}
|
|
|
|
@usableFromInline
|
|
@derivative(of: round)
|
|
func _${derivative_kind}Round<T: FloatingPoint & Differentiable> (
|
|
_ x: T
|
|
) -> (value: T, ${linear_map_kind}: (T) -> T) where T == T.TangentVector {
|
|
return (round(x), { v in 0 })
|
|
}
|
|
|
|
@usableFromInline
|
|
@derivative(of: trunc)
|
|
func _${derivative_kind}Trunc<T: FloatingPoint & Differentiable> (
|
|
_ x: T
|
|
) -> (value: T, ${linear_map_kind}: (T) -> T) where T == T.TangentVector {
|
|
return (trunc(x), { v in 0 })
|
|
}
|
|
%end # for derivative_kind in ['jvp', 'vjp']:
|
|
|
|
// Unary functions
|
|
%for derivative_kind in ['jvp', 'vjp']:
|
|
% linear_map_kind = 'differential' if derivative_kind == 'jvp' else 'pullback'
|
|
% for T in ['Float', 'Double', 'Float80']:
|
|
% if T == 'Float80':
|
|
#if !(os(Windows) || os(Android)) && (arch(i386) || arch(x86_64))
|
|
% end
|
|
@inlinable
|
|
@derivative(of: exp)
|
|
func _${derivative_kind}Exp(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) {
|
|
let value = exp(x)
|
|
return (value, { v in value * v })
|
|
}
|
|
|
|
@inlinable
|
|
@derivative(of: exp2)
|
|
func _${derivative_kind}Exp2(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) {
|
|
let value = exp2(x)
|
|
return (value, { v in v * ${T}(M_LN2) * value })
|
|
}
|
|
|
|
@inlinable
|
|
@derivative(of: log)
|
|
func _${derivative_kind}Log(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) {
|
|
return (log(x), { v in v / x })
|
|
}
|
|
|
|
@inlinable
|
|
@derivative(of: log10)
|
|
func _${derivative_kind}Log10(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) {
|
|
return (log10(x), { v in v * ${T}(M_LOG10E) / x })
|
|
}
|
|
|
|
@inlinable
|
|
@derivative(of: log2)
|
|
func _${derivative_kind}Log2(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) {
|
|
return (log2(x), { v in v / (${T}(M_LN2) * x) })
|
|
}
|
|
|
|
@inlinable
|
|
@derivative(of: sin)
|
|
func _${derivative_kind}Sin(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) {
|
|
return (sin(x), { v in v * cos(x) })
|
|
}
|
|
|
|
@inlinable
|
|
@derivative(of: cos)
|
|
func _${derivative_kind}Cos(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) {
|
|
return (cos(x), { v in -v * sin(x) })
|
|
}
|
|
|
|
@inlinable
|
|
@derivative(of: tan)
|
|
func _${derivative_kind}Tan(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) {
|
|
let value = tan(x)
|
|
return (value, { v in v * (1 + value * value) })
|
|
}
|
|
|
|
@inlinable
|
|
@derivative(of: asin)
|
|
func _${derivative_kind}Asin(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) {
|
|
return (asin(x), { v in v / sqrt(1 - x * x) })
|
|
}
|
|
|
|
@inlinable
|
|
@derivative(of: acos)
|
|
func _${derivative_kind}Acos(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) {
|
|
return (acos(x), { v in -v / sqrt(1 - x * x) })
|
|
}
|
|
|
|
@inlinable
|
|
@derivative(of: atan)
|
|
func _${derivative_kind}Atan(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) {
|
|
return (atan(x), { v in v / (1 + x * x) })
|
|
}
|
|
|
|
@inlinable
|
|
@derivative(of: sinh)
|
|
func _${derivative_kind}Sinh(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) {
|
|
return (sinh(x), { v in v * cosh(x) })
|
|
}
|
|
|
|
@inlinable
|
|
@derivative(of: cosh)
|
|
func _${derivative_kind}Cosh(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) {
|
|
return (cosh(x), { v in v * sinh(x) })
|
|
}
|
|
|
|
@inlinable
|
|
@derivative(of: tanh)
|
|
func _${derivative_kind}Tanh(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) {
|
|
let value = tanh(x)
|
|
return (value, { v in v * (1 - value * value) })
|
|
}
|
|
|
|
@inlinable
|
|
@derivative(of: asinh)
|
|
func _${derivative_kind}Asinh(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) {
|
|
return (asinh(x), { v in v / sqrt(1 + x * x) })
|
|
}
|
|
|
|
@inlinable
|
|
@derivative(of: acosh)
|
|
func _${derivative_kind}Acosh(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) {
|
|
return (acosh(x), { v in v / sqrt(x * x - 1) })
|
|
}
|
|
|
|
@inlinable
|
|
@derivative(of: atanh)
|
|
func _${derivative_kind}Atanh(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) {
|
|
return (atanh(x), { v in v / (1 - x * x) })
|
|
}
|
|
|
|
@inlinable
|
|
@derivative(of: expm1)
|
|
func _${derivative_kind}Expm1(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) {
|
|
return (expm1(x), { v in exp(x) * v })
|
|
}
|
|
|
|
@inlinable
|
|
@derivative(of: log1p)
|
|
func _${derivative_kind}Log1p(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) {
|
|
return (log1p(x), { v in v / (x + 1) })
|
|
}
|
|
|
|
@inlinable
|
|
@derivative(of: erf)
|
|
func _${derivative_kind}Erf(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) {
|
|
return (erf(x), { v in v * ${T}(M_2_SQRTPI) * exp(-x * x) })
|
|
}
|
|
|
|
@inlinable
|
|
@derivative(of: erfc)
|
|
func _${derivative_kind}Erfc(_ x: ${T}) -> (value: ${T}, ${linear_map_kind}: (${T}) -> ${T}) {
|
|
return (erfc(x), { v in v * -${T}(M_2_SQRTPI) * exp(-x * x) })
|
|
}
|
|
|
|
% if T == 'Float80':
|
|
#endif
|
|
% end # if T == 'Float80':
|
|
% end # for T in ['Float', 'Double', 'Float80']:
|
|
%end # for derivative_kind in ['jvp', 'vjp']:
|
|
|
|
// Binary functions
|
|
%for T in ['Float', 'Float80']:
|
|
% if T == 'Float80':
|
|
#if !(os(Windows) || os(Android)) && (arch(i386) || arch(x86_64))
|
|
% end
|
|
@inlinable
|
|
@derivative(of: pow)
|
|
func _vjpPow(_ x: ${T}, _ y: ${T}) -> (value: ${T}, pullback: (${T}) -> (${T}, ${T})) {
|
|
let value = pow(x, y)
|
|
return (value, { v in (
|
|
v * y * pow(x, y - 1), v * value * log(x.isLessThanOrEqualTo(0) ? ${T}(1) : x)
|
|
) })
|
|
}
|
|
|
|
@inlinable
|
|
@derivative(of: pow)
|
|
func _jvpPow(_ x: ${T}, _ y: ${T}) -> (value: ${T}, differential: (${T}, ${T}) -> ${T}) {
|
|
let value = pow(x, y)
|
|
return (value, { (dx, dy) in
|
|
dx * y * pow(x, y - 1) + dy * value * log(x.isLessThanOrEqualTo(0) ? ${T}(1) : x)
|
|
})
|
|
}
|
|
% if T == 'Float80':
|
|
#endif
|
|
% end # if T == 'Float80':
|
|
%end # for T in ['Float', 'Float80']:
|