Files
swift-mirror/test/AutoDiff/stdlib/tgmath_derivatives.swift.gyb
Saleem Abdulrasool 2fc5cbdc14 stdlib: remove swiftMSVCRT, replace with swiftCRT on Windows
This replaces swiftMSVCRT with swiftCRT.  The big difference here is
that the `visualc` module is no longer imported nor exported.  The
`visualc` module remains in use for a singular test wrt availability,
but this should effectively remove the need for the `visualc` module.

The difference between the MSVCRT and ucrt module was not well
understood by most.  MSVCRT provided ucrt AND visualc, combining pieces
of the old MSVCRT and the newer ucrt.  The ucrt module is what you
really wanted most of the time, however, would need to use MSVCRT for
the convenience aliases for type-generic math and the deprecated math
constants.

Unfortunately, we cannot shadow the `ucrt` module and create a Swift SDK
overlay for ucrt as that seems to result in circular dependencies when
processing the `_Concurrency` module.

Although this makes using the C library easier for most people, it has a
more important subtle change: it cleaves the dependency on visualc.
This means that this enables use of Swift without Visual Studio for the
singular purpose of providing 3 header files.  Additionally, it removes
the need for the installation of 2 of the 4 support files.  This greatly
simplifies the deployment process on Windows.
2020-10-15 16:02:01 -07:00

212 lines
7.2 KiB
Swift

// RUN: %target-run-simple-swiftgyb(-Xfrontend -enable-experimental-forward-mode-differentiation)
// REQUIRES: executable_test
#if canImport(Darwin)
import Darwin.C.tgmath
#elseif canImport(Glibc)
import Glibc
#elseif os(Windows)
import CRT
#else
#error("Unsupported platform")
#endif
#if !(os(Windows) || os(Android)) && (arch(i386) || arch(x86_64))
typealias TestLiteralType = Float80
#else
typealias TestLiteralType = Double
#endif
import StdlibUnittest
import _Differentiation
let DerivativeTests = TestSuite("TGMath")
func expectEqualWithTolerance<T>(_ expected: TestLiteralType, _ actual: T,
ulps allowed: T = 3,
file: String = #file, line: UInt = #line)
where T: BinaryFloatingPoint {
if actual == T(expected) || actual.isNaN && expected.isNaN || actual.isInfinite && expected.isInfinite {
return
}
// Compute error in ulp, compare to tolerance.
let absoluteError = T(abs(TestLiteralType(actual) - expected))
let ulpError = absoluteError / T(expected).ulp
expectTrue(ulpError <= allowed,
"\(actual) != \(expected) as \(T.self)" +
"\n \(ulpError)-ulp error exceeds \(allowed)-ulp tolerance.",
file: file, line: line)
}
func computeDividedDifference<T: BinaryFloatingPoint> (
_ f: (T, T) -> T,
_ x: T,
_ y: T,
eps: T = 0.01
) -> (dfdx: T, dfdy: T) {
let dfdx = (f(x + eps, y) - f(x, y)) / eps
let dfdy = (f(x, y + eps) - f(x, y)) / eps
return (dfdx, dfdy)
}
func checkGradient<T: BinaryFloatingPoint & Differentiable>(
_ f: @differentiable (T, T) -> T,
_ x: T,
_ y: T,
ulps: T = 192)
where T == T.TangentVector {
let eps = T(0.01)
let grad = gradient(at: x, y, in: f)
let (dfdx, dfdy) = computeDividedDifference(f, x, y, eps: eps)
expectEqualWithTolerance(TestLiteralType(dfdx), grad.0, ulps: ulps)
expectEqualWithTolerance(TestLiteralType(dfdy), grad.1, ulps: ulps)
}
func checkDerivative<T: BinaryFloatingPoint & Differentiable>(
_ f: @differentiable (T, T) -> T,
_ x: T,
_ y: T,
ulps: T = 192)
where T == T.TangentVector {
let eps = T(0.01)
let deriv = derivative(at: x, y, in: f)
let (dfdx, dfdy) = computeDividedDifference(f, x, y, eps: eps)
expectEqualWithTolerance(TestLiteralType(dfdx + dfdy), deriv, ulps: ulps)
}
%for op in ['derivative', 'gradient']:
%for T in ['Float', 'Float80']:
%if T == 'Float80':
#if !(os(Windows) || os(Android)) && (arch(i386) || arch(x86_64))
%end
DerivativeTests.test("${op}_${T}") {
expectEqualWithTolerance(7.3890560989306502274, ${op}(at: 2 as ${T}, in: exp))
expectEqualWithTolerance(2.772588722239781145, ${op}(at: 2 as ${T}, in: exp2))
expectEqualWithTolerance(7.3890560989306502274, ${op}(at: 2 as ${T}, in: expm1))
expectEqualWithTolerance(0.5, ${op}(at: 2 as ${T}, in: log))
expectEqualWithTolerance(0.21714724095162590833, ${op}(at: 2 as ${T}, in: log10))
expectEqualWithTolerance(0.7213475204444817278, ${op}(at: 2 as ${T}, in: log2))
expectEqualWithTolerance(0.33333333333333333334, ${op}(at: 2 as ${T}, in: log1p))
expectEqualWithTolerance(5.774399204041917612, ${op}(at: 2 as ${T}, in: tan))
expectEqualWithTolerance(-0.9092974268256816954, ${op}(at: 2 as ${T}, in: cos))
expectEqualWithTolerance(-0.416146836547142387, ${op}(at: 2 as ${T}, in: sin))
expectEqualWithTolerance(1.154700538379251529, ${op}(at: 0.5 as ${T}, in: asin))
expectEqualWithTolerance(-1.154700538379251529, ${op}(at: 0.5 as ${T}, in: acos))
expectEqualWithTolerance(0.8, ${op}(at: 0.5 as ${T}, in: atan))
expectEqualWithTolerance(3.7621956910836314597, ${op}(at: 2 as ${T}, in: sinh))
expectEqualWithTolerance(3.6268604078470187677, ${op}(at: 2 as ${T}, in: cosh))
expectEqualWithTolerance(0.07065082485316446565, ${op}(at: 2 as ${T}, in: tanh))
expectEqualWithTolerance(0.44721359549995793928, ${op}(at: 2 as ${T}, in: asinh))
expectEqualWithTolerance(0.5773502691896257645, ${op}(at: 2 as ${T}, in: acosh))
expectEqualWithTolerance(1.3333333333333333334, ${op}(at: 0.5 as ${T}, in: atanh))
expectEqualWithTolerance(0.020666985354092053575, ${op}(at: 2 as ${T}, in: erf))
expectEqualWithTolerance(-0.020666985354092053575, ${op}(at: 2 as ${T}, in: erfc))
expectEqualWithTolerance(0.35355339059327376222, ${op}(at: 2 as ${T}, in: { sqrt($0) }))
expectEqualWithTolerance(0, ${op}(at: 2 as ${T}, in: { ceil($0) }))
expectEqualWithTolerance(0, ${op}(at: 2 as ${T}, in: { floor($0) }))
expectEqualWithTolerance(0, ${op}(at: 2 as ${T}, in: { round($0) }))
expectEqualWithTolerance(0, ${op}(at: 2 as ${T}, in: { trunc($0) }))
// Differential operator specific tests.
// fma
let dfma = ${op}(at: 4 as ${T}, 5 as ${T}, 6 as ${T}, in: fma)
%if op == 'gradient':
expectEqualWithTolerance(5, dfma.0)
expectEqualWithTolerance(4, dfma.1)
expectEqualWithTolerance(1, dfma.2)
%else: # if op == 'derivative'
expectEqualWithTolerance(10, dfma)
%end
// remainder, fmod
for a in -10...10 {
let x = ${T}(a)
for b in -10...10 {
let y = ${T}(b)
guard b != 0 && remainder(x, y).sign == remainder(x + ${T}(0.001), y).sign &&
remainder(x, y).sign == remainder(x, y + ${T}(0.001)).sign
else { continue }
%if op == 'gradient':
checkGradient({ remainder($0, $1) }, x, y)
checkGradient({ fmod($0, $1) }, x, y)
%else: # if op == 'derivative'
// TODO(TF-1108): Implement JVPs for `remainder` and `fmod`.
%end
}
}
// pow
let eps:${T} = 0.01
let ulps:${T} = eps/eps.ulp
// Checks for negative base.
for a in -3..<0 {
let x = ${T}(a)
for b in -3...3 {
let y = ${T}(b)
let expectedDx = y * pow(x, y - 1)
let expectedDy = ${T}.zero
let dpow = ${op}(at: x, y, in: pow)
%if op == 'gradient':
expectEqualWithTolerance(TestLiteralType(expectedDx), dpow.0)
expectEqualWithTolerance(TestLiteralType(expectedDy), dpow.1)
%else: # if op == 'derivative'
expectEqualWithTolerance(TestLiteralType(expectedDx + expectedDy), dpow)
%end
}
}
// Checks for 0 base.
for b in -3...3 {
let y = ${T}(b)
var expectedValues: (dx: ${T}, dy: ${T})?
if y.isLess(than: 0) {
expectedValues = (dx: ${T}.infinity, dy: ${T}.nan)
} else if y.isZero {
expectedValues = (dx: ${T}.nan, dy: ${T}.zero)
} else if !y.isEqual(to: 1) {
expectedValues = (dx: ${T}.zero, dy: ${T}.zero)
}
if let (expectedDx, expectedDy) = expectedValues {
let dpow = ${op}(at: 0.0, y, in: pow)
%if op == 'gradient':
expectEqualWithTolerance(TestLiteralType(expectedDx), dpow.0)
expectEqualWithTolerance(TestLiteralType(expectedDy), dpow.1)
%else: # if op == 'derivative'
expectEqualWithTolerance(TestLiteralType(expectedDx + expectedDy), dpow)
%end
} else {
%if op == 'gradient':
checkGradient({ pow($0, $1) }, 0.0, y, ulps: ulps)
%else: # if op == 'derivative'
checkDerivative({ pow($0, $1) }, 0.0, y, ulps: ulps)
%end
}
}
// Checks for positive base.
for a in 1...3 {
let x = ${T}(a)
for b in -3...3 {
let y = ${T}(b)
%if op == 'gradient':
checkGradient({ pow($0, $1) }, x, y, ulps: ulps)
%else: # if op == 'derivative'
checkDerivative({ pow($0, $1) }, x, y, ulps: ulps)
%end
}
}
}
%if T == 'Float80':
#endif
%end
%end # for T in ['Float', 'Float80']:
%end # for op in ['derivative', 'gradient']:
runAllTests()