mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
type-checking and applying attributes. We should really move to a model where variables are type-checked in a single pass, including their attributes. However, given that we don't, attributes which affect the type must be applied in multiple places and hence multiple times to the same declaration. Swift SVN r16339
432 lines
15 KiB
C++
432 lines
15 KiB
C++
//===--- Pattern.cpp - Swift Language Pattern-Matching ASTs ---------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the Pattern class and subclasses.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/AST/Pattern.h"
|
|
#include "swift/AST/AST.h"
|
|
#include "swift/AST/TypeLoc.h"
|
|
#include "llvm/ADT/APFloat.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
using namespace swift;
|
|
|
|
/// Diagnostic printing of PatternKinds.
|
|
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &OS, PatternKind kind) {
|
|
switch (kind) {
|
|
case PatternKind::Paren:
|
|
return OS << "parethesized pattern";
|
|
case PatternKind::Tuple:
|
|
return OS << "tuple pattern";
|
|
case PatternKind::Named:
|
|
return OS << "pattern variable binding";
|
|
case PatternKind::Any:
|
|
return OS << "'_' pattern";
|
|
case PatternKind::Typed:
|
|
return OS << "pattern type annotation";
|
|
case PatternKind::Isa:
|
|
return OS << "prefix 'is' pattern";
|
|
case PatternKind::NominalType:
|
|
return OS << "type destructuring pattern";
|
|
case PatternKind::Expr:
|
|
return OS << "expression pattern";
|
|
case PatternKind::Var:
|
|
return OS << "'var' binding pattern";
|
|
case PatternKind::EnumElement:
|
|
return OS << "enum case matching pattern";
|
|
}
|
|
}
|
|
|
|
StringRef Pattern::getKindName(PatternKind K) {
|
|
switch (K) {
|
|
#define PATTERN(Id, Parent) case PatternKind::Id: return #Id;
|
|
#include "swift/AST/PatternNodes.def"
|
|
}
|
|
}
|
|
|
|
// Metaprogram to verify that every concrete class implements
|
|
// a 'static bool classof(const Pattern*)'.
|
|
template <bool fn(const Pattern*)> struct CheckClassOfPattern {
|
|
static const bool IsImplemented = true;
|
|
};
|
|
template <> struct CheckClassOfPattern<Pattern::classof> {
|
|
static const bool IsImplemented = false;
|
|
};
|
|
|
|
#define PATTERN(ID, PARENT) \
|
|
static_assert(CheckClassOfPattern<ID##Pattern::classof>::IsImplemented, \
|
|
#ID "Pattern is missing classof(const Pattern*)");
|
|
#include "swift/AST/PatternNodes.def"
|
|
|
|
// Metaprogram to verify that every concrete class implements
|
|
// 'SourceRange getSourceRange()'.
|
|
typedef const char (&TwoChars)[2];
|
|
template<typename Class>
|
|
inline char checkSourceRangeType(SourceRange (Class::*)() const);
|
|
inline TwoChars checkSourceRangeType(SourceRange (Pattern::*)() const);
|
|
|
|
/// getSourceRange - Return the full source range of the pattern.
|
|
SourceRange Pattern::getSourceRange() const {
|
|
switch (getKind()) {
|
|
#define PATTERN(ID, PARENT) \
|
|
case PatternKind::ID: \
|
|
static_assert(sizeof(checkSourceRangeType(&ID##Pattern::getSourceRange)) == 1, \
|
|
#ID "Pattern is missing getSourceRange()"); \
|
|
return cast<ID##Pattern>(this)->getSourceRange();
|
|
#include "swift/AST/PatternNodes.def"
|
|
}
|
|
|
|
llvm_unreachable("pattern type not handled!");
|
|
}
|
|
|
|
/// getLoc - Return the caret location of the pattern.
|
|
SourceLoc Pattern::getLoc() const {
|
|
switch (getKind()) {
|
|
#define PATTERN(ID, PARENT) \
|
|
case PatternKind::ID: \
|
|
if (&Pattern::getLoc != &ID##Pattern::getLoc) \
|
|
return cast<ID##Pattern>(this)->getLoc(); \
|
|
break;
|
|
#include "swift/AST/PatternNodes.def"
|
|
}
|
|
|
|
return getStartLoc();
|
|
}
|
|
|
|
void Pattern::collectVariables(SmallVectorImpl<VarDecl *> &variables) const {
|
|
forEachVariable([&](VarDecl *VD) { variables.push_back(VD); });
|
|
}
|
|
|
|
VarDecl *Pattern::getSingleVar() const {
|
|
auto pattern = getSemanticsProvidingPattern();
|
|
if (auto named = dyn_cast<NamedPattern>(pattern))
|
|
return named->getDecl();
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// \brief apply the specified function to all variables referenced in this
|
|
/// pattern.
|
|
void Pattern::forEachVariable(const std::function<void(VarDecl*)> &fn) const {
|
|
switch (getKind()) {
|
|
case PatternKind::Any:
|
|
case PatternKind::Isa:
|
|
case PatternKind::Expr:
|
|
return;
|
|
|
|
case PatternKind::Named:
|
|
fn(cast<NamedPattern>(this)->getDecl());
|
|
return;
|
|
|
|
case PatternKind::Paren:
|
|
case PatternKind::Typed:
|
|
case PatternKind::Var:
|
|
return getSemanticsProvidingPattern()->forEachVariable(fn);
|
|
|
|
case PatternKind::Tuple:
|
|
for (auto elt : cast<TuplePattern>(this)->getFields())
|
|
elt.getPattern()->forEachVariable(fn);
|
|
return;
|
|
|
|
case PatternKind::NominalType:
|
|
for (auto elt : cast<NominalTypePattern>(this)->getElements())
|
|
elt.getSubPattern()->forEachVariable(fn);
|
|
return;
|
|
|
|
case PatternKind::EnumElement: {
|
|
auto *OP = cast<EnumElementPattern>(this);
|
|
if (OP->hasSubPattern())
|
|
OP->getSubPattern()->forEachVariable(fn);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \brief apply the specified function to all pattern nodes recursively in
|
|
/// this pattern. This is a pre-order traversal.
|
|
void Pattern::forEachNode(const std::function<void(Pattern*)> &f) {
|
|
f(this);
|
|
|
|
switch (getKind()) {
|
|
// Leaf patterns have no recursion.
|
|
case PatternKind::Any:
|
|
case PatternKind::Named:
|
|
case PatternKind::Isa:
|
|
case PatternKind::Expr:// FIXME: expr nodes are not modeled right in general.
|
|
return;
|
|
|
|
case PatternKind::Paren:
|
|
return cast<ParenPattern>(this)->getSubPattern()->forEachNode(f);
|
|
case PatternKind::Typed:
|
|
return cast<TypedPattern>(this)->getSubPattern()->forEachNode(f);
|
|
case PatternKind::Var:
|
|
return cast<VarPattern>(this)->getSubPattern()->forEachNode(f);
|
|
|
|
case PatternKind::Tuple:
|
|
for (auto elt : cast<TuplePattern>(this)->getFields())
|
|
elt.getPattern()->forEachNode(f);
|
|
return;
|
|
|
|
case PatternKind::NominalType:
|
|
for (auto elt : cast<NominalTypePattern>(this)->getElements())
|
|
elt.getSubPattern()->forEachNode(f);
|
|
return;
|
|
|
|
case PatternKind::EnumElement: {
|
|
auto *OP = cast<EnumElementPattern>(this);
|
|
if (OP->hasSubPattern())
|
|
OP->getSubPattern()->forEachNode(f);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
Pattern *Pattern::clone(ASTContext &context,
|
|
OptionSet<CloneFlags> options) const {
|
|
Pattern *result;
|
|
switch (getKind()) {
|
|
case PatternKind::Any: {
|
|
auto any = cast<AnyPattern>(this);
|
|
if (options & AlwaysNamed) {
|
|
VarDecl *var = new (context) VarDecl(/*isStatic=*/false,
|
|
!(options & Pattern::IsVar),
|
|
any->getLoc(),
|
|
context.getIdentifier("_"),
|
|
any->hasType()? any->getType()
|
|
: Type(),
|
|
nullptr);
|
|
if (options & Implicit)
|
|
var->setImplicit();
|
|
|
|
result = new (context) NamedPattern(var);
|
|
} else {
|
|
result = new (context) AnyPattern(cast<AnyPattern>(this)->getLoc());
|
|
}
|
|
break;
|
|
}
|
|
|
|
case PatternKind::Named: {
|
|
auto named = cast<NamedPattern>(this);
|
|
VarDecl *var = new (context) VarDecl(!named->getDecl()->isInstanceMember(),
|
|
named->getDecl()->isLet(),
|
|
named->getLoc(),
|
|
named->getBoundName(),
|
|
named->getDecl()->hasType()
|
|
? named->getDecl()->getType()
|
|
: Type(),
|
|
named->getDecl()->getDeclContext());
|
|
if ((options & Implicit) || var->isImplicit())
|
|
var->setImplicit();
|
|
result = new (context) NamedPattern(var);
|
|
break;
|
|
}
|
|
|
|
case PatternKind::Paren: {
|
|
auto paren = cast<ParenPattern>(this);
|
|
result = new (context) ParenPattern(paren->getLParenLoc(),
|
|
paren->getSubPattern()->clone(context,
|
|
options),
|
|
paren->getRParenLoc());
|
|
break;
|
|
}
|
|
|
|
case PatternKind::Tuple: {
|
|
auto tuple = cast<TuplePattern>(this);
|
|
SmallVector<TuplePatternElt, 2> elts;
|
|
elts.reserve(tuple->getNumFields());
|
|
for (const auto &elt : tuple->getFields()) {
|
|
auto eltPattern = elt.getPattern()->clone(context, options);
|
|
|
|
// If we're inheriting a default argument, mark it as such.
|
|
if (elt.getDefaultArgKind() != DefaultArgumentKind::None &&
|
|
(options & Inherited)) {
|
|
elts.push_back(TuplePatternElt(eltPattern, nullptr,
|
|
DefaultArgumentKind::Inherited));
|
|
} else {
|
|
elts.push_back(TuplePatternElt(eltPattern,
|
|
elt.getInit(),
|
|
elt.getDefaultArgKind()));
|
|
}
|
|
}
|
|
|
|
result = TuplePattern::create(context, tuple->getLParenLoc(), elts,
|
|
tuple->getRParenLoc(),
|
|
tuple->hasVararg(),
|
|
tuple->getEllipsisLoc());
|
|
break;
|
|
}
|
|
|
|
case PatternKind::Typed: {
|
|
auto typed = cast<TypedPattern>(this);
|
|
result = new(context) TypedPattern(typed->getSubPattern()->clone(context,
|
|
options),
|
|
typed->getTypeLoc().clone(context));
|
|
break;
|
|
}
|
|
|
|
case PatternKind::Isa: {
|
|
auto isa = cast<IsaPattern>(this);
|
|
result = new(context) IsaPattern(isa->getLoc(),
|
|
isa->getCastTypeLoc().clone(context),
|
|
isa->getSubPattern()->clone(context,
|
|
options),
|
|
isa->getCastKind());
|
|
break;
|
|
}
|
|
|
|
case PatternKind::NominalType: {
|
|
auto nom = cast<NominalTypePattern>(this);
|
|
SmallVector<NominalTypePattern::Element, 4> elts;
|
|
for (const auto &elt : nom->getElements()) {
|
|
elts.push_back(NominalTypePattern::Element(elt.getPropertyLoc(),
|
|
elt.getPropertyName(),
|
|
elt.getProperty(),
|
|
elt.getColonLoc(),
|
|
elt.getSubPattern()->clone(context,
|
|
options)));
|
|
}
|
|
|
|
result = NominalTypePattern::create(nom->getCastTypeLoc().clone(context),
|
|
nom->getLParenLoc(),
|
|
elts,
|
|
nom->getRParenLoc(), context);
|
|
break;
|
|
}
|
|
|
|
case PatternKind::EnumElement: {
|
|
auto oof = cast<EnumElementPattern>(this);
|
|
Pattern *sub = nullptr;
|
|
if (oof->hasSubPattern())
|
|
sub = oof->getSubPattern()->clone(context, options);
|
|
result = new (context) EnumElementPattern(oof->getParentType()
|
|
.clone(context),
|
|
oof->getLoc(),
|
|
oof->getNameLoc(),
|
|
oof->getName(),
|
|
oof->getElementDecl(),
|
|
sub);
|
|
break;
|
|
}
|
|
|
|
case PatternKind::Expr: {
|
|
auto expr = cast<ExprPattern>(this);
|
|
result = new(context) ExprPattern(expr->getSubExpr(),
|
|
expr->isResolved(),
|
|
expr->getMatchExpr(),
|
|
expr->getMatchVar());
|
|
break;
|
|
}
|
|
|
|
case PatternKind::Var: {
|
|
auto var = cast<VarPattern>(this);
|
|
result = new(context) VarPattern(var->getLoc(),
|
|
var->getSubPattern()->clone(
|
|
context,
|
|
options|IsVar));
|
|
}
|
|
}
|
|
|
|
if (hasType())
|
|
result->setType(getType());
|
|
if ((options & Implicit) || isImplicit())
|
|
result->setImplicit();
|
|
|
|
return result;
|
|
}
|
|
|
|
/// Standard allocator for Patterns.
|
|
void *Pattern::operator new(size_t numBytes, ASTContext &C) {
|
|
return C.Allocate(numBytes, alignof(Pattern));
|
|
}
|
|
|
|
/// Find the name directly bound by this pattern. When used as a
|
|
/// tuple element in a function signature, such names become part of
|
|
/// the type.
|
|
Identifier Pattern::getBoundName() const {
|
|
if (auto *NP = dyn_cast<NamedPattern>(getSemanticsProvidingPattern()))
|
|
return NP->getBoundName();
|
|
return Identifier();
|
|
}
|
|
|
|
/// Allocate a new pattern that matches a tuple.
|
|
TuplePattern *TuplePattern::create(ASTContext &C, SourceLoc lp,
|
|
ArrayRef<TuplePatternElt> elts, SourceLoc rp,
|
|
bool hasVararg, SourceLoc ellipsis,
|
|
Optional<bool> implicit) {
|
|
if (!implicit.hasValue())
|
|
implicit = !lp.isValid();
|
|
|
|
unsigned n = elts.size();
|
|
void *buffer = C.Allocate(sizeof(TuplePattern) + n * sizeof(TuplePatternElt) +
|
|
(hasVararg ? sizeof(SourceLoc) : 0),
|
|
alignof(TuplePattern));
|
|
TuplePattern *pattern = ::new(buffer) TuplePattern(lp, n, rp, hasVararg,
|
|
ellipsis, *implicit);
|
|
memcpy(pattern->getFieldsBuffer(), elts.data(), n * sizeof(TuplePatternElt));
|
|
return pattern;
|
|
}
|
|
|
|
Pattern *TuplePattern::createSimple(ASTContext &C, SourceLoc lp,
|
|
ArrayRef<TuplePatternElt> elements,
|
|
SourceLoc rp,
|
|
bool hasVararg, SourceLoc ellipsis) {
|
|
assert(lp.isValid() == rp.isValid());
|
|
|
|
if (elements.size() == 1 &&
|
|
elements[0].getInit() == nullptr &&
|
|
elements[0].getPattern()->getBoundName().empty() &&
|
|
!hasVararg) {
|
|
auto &first = const_cast<TuplePatternElt&>(elements.front());
|
|
return new (C) ParenPattern(lp, first.getPattern(), rp);
|
|
}
|
|
|
|
return create(C, lp, elements, rp, hasVararg, ellipsis);
|
|
}
|
|
|
|
SourceRange TuplePattern::getSourceRange() const {
|
|
if (LPLoc.isValid())
|
|
return { LPLoc, RPLoc };
|
|
auto Fields = getFields();
|
|
if (Fields.empty())
|
|
return {};
|
|
return { Fields.front().getPattern()->getStartLoc(),
|
|
Fields.back().getPattern()->getEndLoc() };
|
|
}
|
|
|
|
SourceRange TypedPattern::getSourceRange() const {
|
|
if (isImplicit()) {
|
|
// If a TypedPattern is implicit, then its type is definitely implicit, se
|
|
// we should ignore its location. On the other hand, the sub-pattern can
|
|
// be explicit or implicit.
|
|
return SubPattern->getSourceRange();
|
|
}
|
|
|
|
if (SubPattern->isImplicit())
|
|
return PatType.getSourceRange();
|
|
|
|
return { SubPattern->getSourceRange().Start, PatType.getSourceRange().End };
|
|
}
|
|
|
|
NominalTypePattern *NominalTypePattern::create(TypeLoc CastTy,
|
|
SourceLoc LParenLoc,
|
|
ArrayRef<Element> Elements,
|
|
SourceLoc RParenLoc,
|
|
ASTContext &C,
|
|
Optional<bool> implicit) {
|
|
void *buf = C.Allocate(sizeof(NominalTypePattern)
|
|
+ sizeof(Element) * Elements.size(),
|
|
alignof(Element));
|
|
return ::new (buf) NominalTypePattern(CastTy, LParenLoc, Elements, RParenLoc,
|
|
implicit);
|
|
}
|