Files
swift-mirror/lib/SILAnalysis/AliasAnalysis.cpp
2014-02-12 00:14:30 +00:00

628 lines
22 KiB
C++

//===-------------- AliasAnalysis.cpp - SIL Alias Analysis ----------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-aa"
#include "swift/SILAnalysis/AliasAnalysis.h"
#include "swift/SILPasses/Utils/Local.h"
#include "swift/SIL/Projection.h"
#include "swift/SIL/SILValue.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILFunction.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace swift;
#ifndef NDEBUG
/// This is meant to be used during AA bring up. If AA has been brought up, feel
/// free to remove this.
static llvm::cl::opt<bool>
DisableAliasAnalysis("disable-aa", llvm::cl::init(false),
llvm::cl::Hidden,
llvm::cl::desc("Always return most conservative AA "
"result."));
#endif
//===----------------------------------------------------------------------===//
// Utility Functions
//===----------------------------------------------------------------------===//
/// Strip off casts/indexing insts/address projections from V until there is
/// nothing left to strip.
static SILValue getUnderlyingObject(SILValue V) {
while (true) {
SILValue V2 = V.stripCasts().stripAddressProjections().stripIndexingInsts();
if (V2 == V)
return V2;
V = V2;
}
}
/// Return true if the given SILArgument is an argument to the first BB of a
/// function.
static bool isFunctionArgument(SILValue V) {
auto *Arg = dyn_cast<SILArgument>(V.getDef());
if (!Arg)
return false;
return Arg->getParent() == &*Arg->getFunction()->begin();
}
/// A no alias argument is an argument that is an address type of the entry
/// basic block of a function.
static bool isNoAliasArgument(SILValue V) {
return isFunctionArgument(V) && V.getType().isAddress();
}
/// Return true if V is an object that at compile time can be uniquely
/// identified.
static bool isIdentifiableObject(SILValue V) {
return isa<AllocationInst>(*V) || isNoAliasArgument(V) ||
isa<LiteralInst>(*V);
}
static bool isLocalLiteral(SILValue V) {
switch (V->getKind()) {
case ValueKind::IntegerLiteralInst:
case ValueKind::FloatLiteralInst:
case ValueKind::StringLiteralInst:
return true;
default:
return false;
}
}
static bool isIdentifiedFunctionLocal(SILValue V) {
return isa<AllocationInst>(*V) || isNoAliasArgument(V) || isLocalLiteral(V);
}
/// Returns true if the ValueBase inside V is an apply whose calle is a no read
/// builtin_function_ref.
static bool isNoReadApplyInst(SILValue V) {
auto *AI = dyn_cast<ApplyInst>(V.getDef());
if (!AI)
return false;
auto *BI = dyn_cast<BuiltinFunctionRefInst>(AI->getCallee());
return BI && isReadNone(BI);
}
namespace {
/// Are there any uses that should be ignored as capture uses.
///
/// TODO: Expand this if we ever do the store of pointer analysis mentioned in
/// Basic AA.
enum CaptureException : unsigned {
None=0,
ReturnsCannotCapture=1,
};
} // end anonymous namespace
/// Is Inst an instruction whose operands escape only if Inst itself escapes?
static bool isTransitiveEscapeInst(SILInstruction *Inst) {
switch (Inst->getKind()) {
case ValueKind::AllocArrayInst:
case ValueKind::AllocBoxInst:
case ValueKind::AllocRefInst:
case ValueKind::AllocStackInst:
case ValueKind::ApplyInst:
case ValueKind::ArchetypeMethodInst:
case ValueKind::BuiltinFunctionRefInst:
case ValueKind::CopyAddrInst:
case ValueKind::DeallocBoxInst:
case ValueKind::DeallocRefInst:
case ValueKind::DeallocStackInst:
case ValueKind::DebugValueAddrInst:
case ValueKind::DebugValueInst:
case ValueKind::DestroyAddrInst:
case ValueKind::DestroyValueInst:
case ValueKind::FloatLiteralInst:
case ValueKind::FunctionRefInst:
case ValueKind::GlobalAddrInst:
case ValueKind::IntegerLiteralInst:
case ValueKind::LoadInst:
case ValueKind::LoadWeakInst:
case ValueKind::MetatypeInst:
case ValueKind::SILGlobalAddrInst:
case ValueKind::StoreInst:
case ValueKind::StoreWeakInst:
case ValueKind::StringLiteralInst:
case ValueKind::StrongReleaseInst:
case ValueKind::StrongRetainAutoreleasedInst:
case ValueKind::StrongRetainInst:
case ValueKind::StrongRetainUnownedInst:
case ValueKind::UnownedReleaseInst:
case ValueKind::UnownedRetainInst:
case ValueKind::InjectEnumAddrInst:
case ValueKind::DeinitExistentialInst:
case ValueKind::UnreachableInst:
case ValueKind::IsNonnullInst:
case ValueKind::CondFailInst:
case ValueKind::DynamicMethodBranchInst:
case ValueKind::ReturnInst:
case ValueKind::AutoreleaseReturnInst:
case ValueKind::UpcastExistentialInst:
return false;
case ValueKind::AddressToPointerInst:
case ValueKind::ArchetypeMetatypeInst:
case ValueKind::ArchetypeRefToSuperInst:
case ValueKind::BranchInst:
case ValueKind::BridgeToBlockInst:
case ValueKind::CheckedCastBranchInst:
case ValueKind::ClassMetatypeInst:
case ValueKind::ClassMethodInst:
case ValueKind::CondBranchInst:
case ValueKind::ConvertFunctionInst:
case ValueKind::CopyValueInst:
case ValueKind::DynamicMethodInst:
case ValueKind::EnumInst:
case ValueKind::IndexAddrInst:
case ValueKind::IndexRawPointerInst:
case ValueKind::InitEnumDataAddrInst:
case ValueKind::InitExistentialInst:
case ValueKind::InitExistentialRefInst:
case ValueKind::ObjectPointerToRefInst:
case ValueKind::PartialApplyInst:
case ValueKind::PeerMethodInst:
case ValueKind::PointerToAddressInst:
case ValueKind::ProjectExistentialInst:
case ValueKind::ProjectExistentialRefInst:
case ValueKind::ProtocolMetatypeInst:
case ValueKind::ProtocolMethodInst:
case ValueKind::RawPointerToRefInst:
case ValueKind::RefElementAddrInst:
case ValueKind::RefToObjectPointerInst:
case ValueKind::RefToRawPointerInst:
case ValueKind::RefToUnownedInst:
case ValueKind::StructElementAddrInst:
case ValueKind::StructExtractInst:
case ValueKind::StructInst:
case ValueKind::SuperMethodInst:
case ValueKind::SwitchEnumAddrInst:
case ValueKind::SwitchEnumInst:
case ValueKind::SwitchIntInst:
case ValueKind::TakeEnumDataAddrInst:
case ValueKind::ThinToThickFunctionInst:
case ValueKind::TupleElementAddrInst:
case ValueKind::TupleExtractInst:
case ValueKind::TupleInst:
case ValueKind::UnconditionalCheckedCastInst:
case ValueKind::UnownedToRefInst:
case ValueKind::UpcastExistentialRefInst:
case ValueKind::UpcastInst:
return true;
case ValueKind::AssignInst:
case ValueKind::MarkFunctionEscapeInst:
case ValueKind::MarkUninitializedInst:
llvm_unreachable("Invalid in canonical SIL.");
case ValueKind::SILArgument:
case ValueKind::SILUndef:
llvm_unreachable("These do not use other values.");
}
}
/// Returns true if V is a value that is used in a manner such that we know its
/// captured or we don't understand whether or not it was captured. In such a
/// case to be conservative, we must assume it is captured.
static bool valueMayBeCaptured(SILValue V, CaptureException Exception) {
llvm::SmallVector<Operand *, 16> Worklist;
llvm::SmallPtrSet<Operand *, 16> Visited;
DEBUG(llvm::dbgs() << " Checking for capture.\n");
// All all uses of V to the worklist.
for (auto *UI : V.getUses()) {
Visited.insert(UI);
Worklist.push_back(UI);
}
// Until the worklist is empty...
while (!Worklist.empty()) {
// Pop off an operand and grab the operand's user...
Operand *Op = Worklist.pop_back_val();
SILInstruction *Inst = Op->getUser();
DEBUG(llvm::dbgs() << " Visiting: " << *Inst);
// If Inst is an instruction with the transitive escape property, V escapes
// if and only if the results of Inst escape as well.
if (isTransitiveEscapeInst(Inst)) {
DEBUG(llvm::dbgs() << " Found transitive escape "
"instruction!");
for (auto *UI : Inst->getUses())
if (Visited.insert(UI))
Worklist.push_back(UI);
continue;
}
// An apply of a builtin that does not read memory can not capture a value.
//
// TODO: Use analysis of the other function perhaps to see if it captures
// memory in some manner?
// TODO: Add in knowledge about how parameters work on swift to make this
// more aggressive.
if (auto *AI = dyn_cast<ApplyInst>(Inst))
if (auto *BI = dyn_cast<BuiltinFunctionRefInst>(AI->getCallee().getDef()))
if (isReadNone(BI))
continue;
// Loading from a pointer does not cause it to be captured.
if (isa<LoadInst>(Inst))
continue;
// If we have a store and are storing into the pointer, this is not a
// capture. Otherwise it is safe.
if (auto *SI = dyn_cast<StoreInst>(Inst)) {
if (SI->getDest() == Op->get()) {
continue;
} else {
return true;
}
}
// Deallocation instructions don't capture.
if (isa<DeallocationInst>(Inst))
continue;
// Debug instructions don't capture.
if (isa<DebugValueInst>(Inst) || isa<DebugValueAddrInst>(Inst))
continue;
// RefCountOperations don't capture.
//
// The release case is true since Swift does not allow destructors to
// resurrent objects. This is enforced via a runtime failure.
if (isa<RefCountingInst>(Inst))
continue;
// If we have a return instruction and we are assuming that returns don't
// capture, we are safe.
if (Exception == CaptureException::ReturnsCannotCapture &&
(isa<ReturnInst>(Inst) || isa<AutoreleaseReturnInst>(Inst)))
continue;
// We could not prove that Inst does not capture V. Be conservative and
// return true.
return true;
}
// We successfully proved that V is not captured. Return false.
return false;
}
/// Return true if the pointer is to a function-local object that never escapes
/// from the function.
static bool isNonEscapingLocalObject(SILValue V) {
// If this is a local allocation, or the result of a no read apply inst (which
// can not affect memory in the caller), check to see if the allocation
// escapes.
if (isa<AllocationInst>(*V) || isNoReadApplyInst(V))
return !valueMayBeCaptured(V, CaptureException::ReturnsCannotCapture);
// If this is a no alias argument then it has not escaped before entering the
// function. Check if it escapes inside the function.
if (isNoAliasArgument(V))
return !valueMayBeCaptured(V, CaptureException::ReturnsCannotCapture);
// Otherwise we could not prove that V is a non escaping local object. Be
// conservative and return false.
return false;
}
/// Returns true if V is a function argument that is not an address implying
/// that we do not have the gaurantee that it will not alias anything inside the
/// function.
static bool isAliasingFunctionArgument(SILValue V) {
return isFunctionArgument(V) && !V.getType().isAddress();
}
/// Returns true if V is an apply inst that may read or write to memory.
static bool isReadWriteApplyInst(SILValue V) {
return isa<ApplyInst>(*V) && !isNoReadApplyInst(V.getDef());
}
/// Return true if the pointer is one which would have been considered an escape
/// by isNonEscapingLocalObject.
static bool isEscapeSource(SILValue V) {
if (isReadWriteApplyInst(V))
return true;
if (isAliasingFunctionArgument(V))
return true;
// The LoadInst case works since valueMayBeCaptured always assumes stores are
// escapes.
if (isa<LoadInst>(*V))
return true;
// We could not prove anything, be conservative and return false.
return false;
}
/// Returns true if we can prove that the two input SILValues which do not equal
/// can not alias.
static bool aliasUnequalObjects(SILValue O1, SILValue O2) {
assert(O1 != O2 && "This function should only be called on unequal values.");
// If O1 and O2 do not equal and they are both values that can be statically
// and uniquely identified, they can not alias.
if (isIdentifiableObject(O1) && isIdentifiableObject(O2)) {
DEBUG(llvm::dbgs() << " Found two unequal identified "
"objects.\n");
return true;
}
// Function arguments can't alias with things that are known to be
// unambigously identified at the function level.
if ((isFunctionArgument(O1.getDef()) && isIdentifiedFunctionLocal(O2)) ||
(isFunctionArgument(O2.getDef()) && isIdentifiedFunctionLocal(O1))) {
DEBUG(llvm::dbgs() << " Found unequal function arg and "
"identified function local!\n");
return true;
}
// If one pointer is the result of an apply or load and the other is a
// non-escaping local object within the same function, then we know the object
// couldn't escape to a point where the call could return it.
if ((isEscapeSource(O1) && isNonEscapingLocalObject(O2)) ||
(isEscapeSource(O2) && isNonEscapingLocalObject(O1))) {
DEBUG(llvm::dbgs() << " Found unequal escape source and non "
"escaping local object!\n");
return true;
}
// We failed to prove that the two objects are different.
return false;
}
/// Returns true if every projection in V1Path and V2Path equal. Returns false
/// otherwise.
static bool projectionListsEqual(llvm::SmallVectorImpl<Projection> &V1Path,
llvm::SmallVectorImpl<Projection> &V2Path) {
if (V1Path.size() != V2Path.size())
return false;
for (unsigned i = 0, e = V1Path.size(); i != e; ++i)
if (V1Path[i] != V2Path[i])
return false;
return true;
}
/// Uses a bunch of ad-hoc rules to disambiguate a GEP instruction against
/// another pointer. We know that V1 is a GEP, but we don't know anything about
/// V2. O1, O2 are getUnderlyingObject of V1, V2 respectively.
static
AliasAnalysis::AliasResult
aliasAddressProjection(AliasAnalysis &AA, SILValue V1, SILValue V2, SILValue O1,
SILValue O2) {
// If V2 is also a gep instruction with a must-alias or not-aliasing base
// pointer, figure out if the indices of the GEPs tell us anything about the
// derived pointers.
if (Projection::isAddressProjection(V2)) {
// Do the base pointers alias?
AliasAnalysis::AliasResult BaseAlias = AA.alias(O1, O2);
// If we get a NoAlias or a MayAlias, then there is nothing we can do here
// so just return the base alias value.
if (BaseAlias != AliasAnalysis::AliasResult::MustAlias)
return BaseAlias;
// Otherwise, we have a MustAlias result. Since the base pointers alias each
// other exactly, see if computing offsets from the common pointer tells us
// about the relation of the resulting pointer.
llvm::SmallVector<Projection, 4> V1Path, V2Path;
bool Result = findAddressProjectionPathBetweenValues(O1, V1, V1Path);
Result &= findAddressProjectionPathBetweenValues(O1, V2, V2Path);
// getUnderlyingPath and findAddressProjectionPathBetweenValues disagree on
// what the base pointer of the two values are. Be conservative and return
// MayAlias.
//
// FIXME: The only way this should happen realistically is if there are
// casts in between two projection instructions. getUnderlyingObject will
// ignore that, while findAddressProjectionPathBetweenValues wont. The two
// solutions are to make address projections variadic (something on the wee
// horizon) or enable Projection to represent a cast as a special sort of
// projection.
if (!Result)
return AliasAnalysis::AliasResult::MayAlias;
// If all of the projections are equal, the two GEPs must be the same.
if (projectionListsEqual(V1Path, V2Path))
return AliasAnalysis::AliasResult::MustAlias;
}
// We failed to prove anything. Be conservative and return MayAlias.
return AliasAnalysis::AliasResult::MayAlias;
}
//===----------------------------------------------------------------------===//
// Entry Points
//===----------------------------------------------------------------------===//
AliasAnalysis::AliasResult AliasAnalysis::alias(SILValue V1, SILValue V2) {
#ifndef NDEBUG
// If alias analysis is disabled, always return may alias.
if (DisableAliasAnalysis)
return AliasResult::MayAlias;
#endif
// If the two values equal, quickly return must alias.
if (V1 == V2)
return AliasResult::MustAlias;
DEBUG(llvm::dbgs() << "ALIAS ANALYSIS:\n V1: " << *V1.getDef()
<< " V2: " << *V2.getDef());
// Strip off any casts on V1, V2.
V1 = V1.stripCasts();
V2 = V2.stripCasts();
DEBUG(llvm::dbgs() << " After Cast Stripping V1:" << *V1.getDef());
DEBUG(llvm::dbgs() << " After Cast Stripping V2:" << *V2.getDef());
// Create a key to lookup if we have already computed an alias result for V1,
// V2. Canonicalize our cache keys so that the pointer with the lower address
// is always the first element of the pair. This ensures we do not pollute our
// cache with two entries with the same key, albeit with the key's fields
// swapped.
auto Key = V1 < V2? std::make_pair(V1, V2) : std::make_pair(V2, V1);
// If we find our key in the cache, just return the alias result.
auto Pair = AliasCache.find(Key);
if (Pair != AliasCache.end()) {
DEBUG(llvm::dbgs() << " Found value in the cache: "
<< Pair->second << "\n");
return Pair->second;
}
// Ok, we need to actually compute an Alias Analysis result for V1, V2. Begin
// by finding the "base" of V1, V2 by stripping off all casts and GEPs.
SILValue O1 = getUnderlyingObject(V1);
SILValue O2 = getUnderlyingObject(V2);
DEBUG(llvm::dbgs() << " Underlying V1:" << *O1.getDef());
DEBUG(llvm::dbgs() << " Underlying V2:" << *O2.getDef());
// If O1 and O2 do not equal, see if we can prove that they can not be the
// same object. If we can, return No Alias.
if (O1 != O2 && aliasUnequalObjects(O1, O2))
return AliasCache[Key] = AliasResult::NoAlias;
// Ok, either O1, O2 are the same or we could not prove anything based off of
// their inequality. Now we climb up use-def chains and attempt to do tricks
// based off of GEPs.
// First if one instruction is a gep and the other is not, canonicalize our
// inputs so that V1 always is the instruction containing the GEP.
if (!Projection::isAddressProjection(V1) &&
Projection::isAddressProjection(V2)) {
std::swap(V1, V2);
std::swap(O1, O2);
}
// If V1 is an address projection, attempt to use information from the
// aggregate type tree to disambiguate it from V2.
if (Projection::isAddressProjection(V1)) {
AliasResult Result = aliasAddressProjection(*this, V1, V2, O1, O2);
if (Result != AliasResult::MayAlias)
return AliasCache[Key] = Result;
}
// We could not prove anything. Be conservative and return that V1, V2 may
// alias.
return AliasResult::MayAlias;
}
SILInstruction::MemoryBehavior
AliasAnalysis::getMemoryBehavior(SILInstruction *Inst, SILValue V) {
DEBUG(llvm::dbgs() << "GET MEMORY BEHAVIOR FOR:\n " << *Inst << " "
<< *V.getDef());
// If we already know that we do not read or write memory, just return None.
if (!Inst->mayReadOrWriteMemory()) {
DEBUG(llvm::dbgs() << " Inst does not write memory. Returning None.\n");
return MemoryBehavior::None;
}
switch (Inst->getKind()) {
case ValueKind::LoadInst:
// If the load address doesn't alias the given address, it doesn't read or
// write the specified memory.
if (isNoAlias(Inst->getOperand(0), V)) {
DEBUG(llvm::dbgs() << " Load does not alias inst. Returning None.\n");
return MemoryBehavior::None;
}
// Otherwise be conservative and just return reads since loads can only
// read.
DEBUG(llvm::dbgs() << " Could not prove load does not alias inst. "
"Returning MayRead.\n");
return MemoryBehavior::MayRead;
case ValueKind::StoreInst:
// If the store dest cannot alias the pointer in question, then the
// specified value can not be modified by the store.
if (isNoAlias(cast<StoreInst>(Inst)->getDest(), V)) {
DEBUG(llvm::dbgs() << " Store Dst does not alias inst. Returning "
"None.\n");
return MemoryBehavior::None;
}
// Otherwise, a store just writes.
DEBUG(llvm::dbgs() << " Could not prove store does not alias inst. "
"Returning MayWrite.\n");
return MemoryBehavior::MayWrite;
case ValueKind::ApplyInst: {
// If the ApplyInst is from a no-read builtin it can not read or write and
// if it comes from a no-side effect builtin, it can only read.
auto *AI = cast<ApplyInst>(Inst);
auto *BFR = dyn_cast<BuiltinFunctionRefInst>(AI->getCallee().getDef());
// If our callee is not a builtin, be conservative and return may have side
// effects.
if (!BFR) {
DEBUG(llvm::dbgs() << " Found apply we don't understand returning "
"MHSF.\n");
return MemoryBehavior::MayHaveSideEffects;
}
// If the builtin is read none, it does not read or write memory.
if (isReadNone(BFR)) {
DEBUG(llvm::dbgs() << " Found apply of read none builtin. Returning"
" None.\n");
return MemoryBehavior::None;
}
// If the builtin is side effect free, then it can only read memory.
if (isSideEffectFree(BFR)) {
DEBUG(llvm::dbgs() << " Found apply of side effect free builtin. "
"Returning MayRead.\n");
return MemoryBehavior::MayRead;
}
// Otherwise be conservative and return that we may have side effects.
DEBUG(llvm::dbgs() << " Found apply of side effect builtin. "
"Returning MayHaveSideEffects.\n");
return MemoryBehavior::MayHaveSideEffects;
}
default:
// If we do not have a special case, just return the generic memory
// behavior of Inst.
return Inst->getMemoryBehavior();
}
}
SILAnalysis *swift::createAliasAnalysis(SILModule *M) {
return new AliasAnalysis(M);
}
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &OS,
AliasAnalysis::AliasResult R) {
switch (R) {
case AliasAnalysis::AliasResult::NoAlias:
return OS << "NoAlias";
case AliasAnalysis::AliasResult::MayAlias:
return OS << "MayAlias";
case AliasAnalysis::AliasResult::MustAlias:
return OS << "MustAlias";
}
}