mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
This speeds and reduces memory consumption of test cases with large
CFGs. The specific test case that spawned this fix was a large function
with many dictionary assignments:
public func func_0(dictIn : [String : MyClass]) -> [String : MyClass] {
var dictOut : [String : MyClass] = [:]
dictOut["key5000"] = dictIn["key500"]
dictOut["key5010"] = dictIn["key501"]
dictOut["key5020"] = dictIn["key502"]
dictOut["key5030"] = dictIn["key503"]
dictOut["key5040"] = dictIn["key504"]
...
}
This continued for 10k - 20k values.
This commit reduces the compile time by 2.5x and reduces the amount of
memory allocated by ARC by 2.6x (the memory allocation number includes
memory that is subsequently freed).
rdar://24350646
631 lines
23 KiB
C++
631 lines
23 KiB
C++
//===--- ARCRegionState.cpp -----------------------------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "arc-sequence-opts"
|
|
#include "ARCRegionState.h"
|
|
#include "RCStateTransitionVisitors.h"
|
|
#include "swift/Basic/Range.h"
|
|
#include "swift/SILOptimizer/Analysis/LoopRegionAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/RCIdentityAnalysis.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace swift;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ARCRegionState
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ARCRegionState::ARCRegionState(LoopRegion *R, bool AllowsLeaks)
|
|
: Region(R), PtrToTopDownState(), PtrToBottomUpState(),
|
|
AllowsLeaks(AllowsLeaks) {}
|
|
|
|
//===---
|
|
// Bottom Up Merge
|
|
//
|
|
|
|
/// Initialize this Region with the state of the successor region. This is
|
|
/// called on a region's state and then any other successors states are merged
|
|
/// in.
|
|
void ARCRegionState::initSuccBottomUp(ARCRegionState &SuccRegionState) {
|
|
PtrToBottomUpState = SuccRegionState.PtrToBottomUpState;
|
|
}
|
|
|
|
/// Merge in the state of the successor basic block. Returns true if after the
|
|
/// merge operation the region is tracking any state. Returns false otherwise.
|
|
///
|
|
/// The return value enables an analysis to bail early.
|
|
///
|
|
/// This is an intersection operation.
|
|
void ARCRegionState::mergeSuccBottomUp(ARCRegionState &SuccRegionState) {
|
|
// Otherwise for each [(SILValue, BottomUpState)] that we are tracking...
|
|
for (auto &Pair : getBottomupStates()) {
|
|
if (!Pair.hasValue())
|
|
continue;
|
|
|
|
SILValue RefCountedValue = Pair->first;
|
|
|
|
// If our SILValue was blotted, skip it. This will be ignored for the rest
|
|
// of the ARC optimization.
|
|
if (!RefCountedValue)
|
|
continue;
|
|
|
|
// Then attempt to lookup the corresponding (SILValue, BottomUpState) from
|
|
// SuccRegion. If we fail to do so, blot this SILValue and continue.
|
|
//
|
|
// Since we are already initialized by initSuccBottomUp(), this has the
|
|
// effect of an intersection.
|
|
auto Other = SuccRegionState.PtrToBottomUpState.find(RefCountedValue);
|
|
if (Other == SuccRegionState.PtrToBottomUpState.end()) {
|
|
PtrToBottomUpState.blot(RefCountedValue);
|
|
continue;
|
|
}
|
|
|
|
SILValue OtherRefCountedValue = (*Other)->first;
|
|
|
|
// If the other ref count value was blotted, blot our value and continue.
|
|
// This has the effect of an intersection since we already checked earlier
|
|
// that RefCountedValue was not blotted.
|
|
if (!OtherRefCountedValue) {
|
|
PtrToBottomUpState.blot(RefCountedValue);
|
|
continue;
|
|
}
|
|
|
|
BottomUpRefCountState &RefCountState = Pair->second;
|
|
BottomUpRefCountState &OtherRefCountState = (*Other)->second;
|
|
|
|
// Ok, now we know that the merged set can safely represent a set of
|
|
// of instructions which together semantically act as one ref count
|
|
// increment. Merge the two states together.
|
|
if (!RefCountState.merge(OtherRefCountState)) {
|
|
PtrToBottomUpState.blot(RefCountedValue);
|
|
}
|
|
}
|
|
}
|
|
|
|
//===---
|
|
// Top Down Merge
|
|
//
|
|
|
|
/// Initialize the state for this Region with the state of its predecessor
|
|
/// Region. Used to create an initial state before we merge in other
|
|
/// predecessors.
|
|
void ARCRegionState::initPredTopDown(ARCRegionState &PredRegionState) {
|
|
PtrToTopDownState = PredRegionState.PtrToTopDownState;
|
|
}
|
|
|
|
/// Merge in the state of the predecessor basic block.
|
|
void ARCRegionState::mergePredTopDown(ARCRegionState &PredRegionState) {
|
|
// For each [(SILValue, TopDownState)] that we are tracking...
|
|
for (auto &Pair : getTopDownStates()) {
|
|
if (!Pair.hasValue())
|
|
continue;
|
|
SILValue RefCountedValue = Pair->first;
|
|
|
|
// If our SILValue was blotted, skip it. This will be ignored in the rest of
|
|
// the optimizer.
|
|
if (!RefCountedValue)
|
|
continue;
|
|
|
|
// Then attempt to lookup the corresponding (SILValue, TopDownState) from
|
|
// PredRegion. If we fail to do so, blot this SILValue and continue.
|
|
//
|
|
// Since we are already initialized by initPredTopDown(), this has the
|
|
// effect of an intersection.
|
|
auto Other = PredRegionState.PtrToTopDownState.find(RefCountedValue);
|
|
if (Other == PredRegionState.PtrToTopDownState.end()) {
|
|
PtrToTopDownState.blot(RefCountedValue);
|
|
continue;
|
|
}
|
|
|
|
SILValue OtherRefCountedValue = (*Other)->first;
|
|
|
|
// If the other ref count value was blotted, blot our value and continue.
|
|
// This has the effect of an intersection.
|
|
if (!OtherRefCountedValue) {
|
|
PtrToTopDownState.blot(RefCountedValue);
|
|
continue;
|
|
}
|
|
|
|
// Ok, so now we know that the ref counted value we are tracking was not
|
|
// blotted on either side. Grab the states.
|
|
TopDownRefCountState &RefCountState = Pair->second;
|
|
TopDownRefCountState &OtherRefCountState = (*Other)->second;
|
|
|
|
// Attempt to merge Other into this ref count state. If we fail, blot this
|
|
// ref counted value and continue.
|
|
if (!RefCountState.merge(OtherRefCountState)) {
|
|
DEBUG(llvm::dbgs() << "Failed to merge!\n");
|
|
PtrToTopDownState.blot(RefCountedValue);
|
|
continue;
|
|
}
|
|
|
|
DEBUG(llvm::dbgs() << " Partial: "
|
|
<< (RefCountState.isPartial() ? "yes" : "no") << "\n");
|
|
}
|
|
}
|
|
|
|
//===---
|
|
// Bottom Up Dataflow
|
|
//
|
|
|
|
static bool isARCSignificantTerminator(TermInst *TI) {
|
|
switch (TI->getTermKind()) {
|
|
case TermKind::UnreachableInst:
|
|
// br is a forwarding use for its arguments. It cannot in of itself extend
|
|
// the lifetime of an object (just like a phi-node) cannot.
|
|
case TermKind::BranchInst:
|
|
// A cond_br is a forwarding use for its non-operand arguments in a similar
|
|
// way to br. Its operand must be an i1 that has a different lifetime from any
|
|
// ref counted object.
|
|
case TermKind::CondBranchInst:
|
|
return false;
|
|
// Be conservative for now. These actually perform some sort of operation
|
|
// against the operand or can use the value in some way.
|
|
case TermKind::ThrowInst:
|
|
case TermKind::ReturnInst:
|
|
case TermKind::TryApplyInst:
|
|
case TermKind::SwitchValueInst:
|
|
case TermKind::SwitchEnumInst:
|
|
case TermKind::SwitchEnumAddrInst:
|
|
case TermKind::DynamicMethodBranchInst:
|
|
case TermKind::CheckedCastBranchInst:
|
|
case TermKind::CheckedCastAddrBranchInst:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Visit each one of our predecessor regions and see if any are blocks that can
|
|
// use reference counted values. If any of them do, we advance the sequence for
|
|
// the pointer and create an insertion point here. This state will be propagated
|
|
// into all of our predecessors, allowing us to be conservatively correct in all
|
|
// cases.
|
|
//
|
|
// The key thing to notice is that in general this cannot happen due to
|
|
// critical edge splitting. To trigger this, one would need a terminator that
|
|
// uses a reference counted value and only has one successor due to critical
|
|
// edge splitting. This is just to be conservative when faced with the unknown
|
|
// of future changes.
|
|
//
|
|
// We do not need to worry about loops here, since a loop exit block can only
|
|
// have predecessors in the loop itself implying that loop exit blocks at the
|
|
// loop region level always have only one predecessor, the loop itself.
|
|
void ARCRegionState::processBlockBottomUpPredTerminators(
|
|
const LoopRegion *R, AliasAnalysis *AA, LoopRegionFunctionInfo *LRFI,
|
|
ImmutablePointerSetFactory<SILInstruction> &SetFactory) {
|
|
auto &BB = *R->getBlock();
|
|
llvm::TinyPtrVector<SILInstruction *> PredTerminators;
|
|
for (unsigned PredID : R->getPreds()) {
|
|
auto *PredRegion = LRFI->getRegion(PredID);
|
|
if (!PredRegion->isBlock())
|
|
continue;
|
|
|
|
auto *TermInst = PredRegion->getBlock()->getTerminator();
|
|
if (!isARCSignificantTerminator(TermInst))
|
|
continue;
|
|
PredTerminators.push_back(TermInst);
|
|
}
|
|
|
|
auto *InsertPt = &*BB.begin();
|
|
for (auto &OtherState : getBottomupStates()) {
|
|
// If the other state's value is blotted, skip it.
|
|
if (!OtherState.hasValue())
|
|
continue;
|
|
|
|
OtherState->second.updateForPredTerminators(PredTerminators, InsertPt,
|
|
SetFactory, AA);
|
|
}
|
|
}
|
|
|
|
static bool processBlockBottomUpInsts(
|
|
ARCRegionState &State, SILBasicBlock &BB,
|
|
BottomUpDataflowRCStateVisitor<ARCRegionState> &DataflowVisitor,
|
|
AliasAnalysis *AA, ImmutablePointerSetFactory<SILInstruction> &SetFactory) {
|
|
|
|
auto II = State.summarizedinterestinginsts_rbegin();
|
|
auto IE = State.summarizedinterestinginsts_rend();
|
|
|
|
// If we do not have any interesting instructions, bail and return false since
|
|
// we can not have any nested instructions.
|
|
if (II == IE)
|
|
return false;
|
|
|
|
// If II is the terminator, skip it since our terminator was already processed
|
|
// in our successors.
|
|
if (*II == BB.getTerminator())
|
|
++II;
|
|
|
|
bool NestingDetected = false;
|
|
while (II != IE) {
|
|
SILInstruction *I = *II;
|
|
++II;
|
|
|
|
DEBUG(llvm::dbgs() << "VISITING:\n " << *I);
|
|
|
|
auto Result = DataflowVisitor.visit(I);
|
|
|
|
// If this instruction can have no further effects on another instructions,
|
|
// continue. This happens for instance if we have cleared all of the state
|
|
// we are tracking.
|
|
if (Result.Kind == RCStateTransitionDataflowResultKind::NoEffects)
|
|
continue;
|
|
|
|
// Make sure that we propagate out whether or not nesting was detected.
|
|
NestingDetected |= Result.NestingDetected;
|
|
|
|
// This SILValue may be null if we were unable to find a specific RCIdentity
|
|
// that the instruction "visits".
|
|
SILValue Op = Result.RCIdentity;
|
|
|
|
auto *InsertPt = &*std::next(I->getIterator());
|
|
|
|
// For all other (reference counted value, ref count state) we are
|
|
// tracking...
|
|
for (auto &OtherState : State.getBottomupStates()) {
|
|
// If the other state's value is blotted, skip it.
|
|
if (!OtherState.hasValue())
|
|
continue;
|
|
|
|
// If this is the state associated with the instruction that we are
|
|
// currently visiting, bail.
|
|
if (Op && OtherState->first == Op)
|
|
continue;
|
|
|
|
OtherState->second.updateForSameLoopInst(I, InsertPt, SetFactory, AA);
|
|
}
|
|
}
|
|
|
|
return NestingDetected;
|
|
}
|
|
|
|
bool ARCRegionState::processBlockBottomUp(
|
|
const LoopRegion *R, AliasAnalysis *AA, RCIdentityFunctionInfo *RCIA,
|
|
LoopRegionFunctionInfo *LRFI, bool FreezeOwnedArgEpilogueReleases,
|
|
ConsumedArgToEpilogueReleaseMatcher &ConsumedArgToReleaseMap,
|
|
BlotMapVector<SILInstruction *, BottomUpRefCountState> &IncToDecStateMap,
|
|
ImmutablePointerSetFactory<SILInstruction> &SetFactory) {
|
|
DEBUG(llvm::dbgs() << ">>>> Bottom Up!\n");
|
|
|
|
SILBasicBlock &BB = *R->getBlock();
|
|
BottomUpDataflowRCStateVisitor<ARCRegionState> DataflowVisitor(
|
|
RCIA, *this, FreezeOwnedArgEpilogueReleases, ConsumedArgToReleaseMap,
|
|
IncToDecStateMap, SetFactory);
|
|
|
|
// Visit each non-terminator arc relevant instruction I in BB visited in
|
|
// reverse...
|
|
bool NestingDetected =
|
|
processBlockBottomUpInsts(*this, BB, DataflowVisitor, AA, SetFactory);
|
|
|
|
// Now visit each one of our predecessor regions and see if any are blocks
|
|
// that can use reference counted values. If any of them do, we advance the
|
|
// sequence for the pointer and create an insertion point here. This state
|
|
// will be propagated into all of our predecessors, allowing us to be
|
|
// conservatively correct in all cases.
|
|
processBlockBottomUpPredTerminators(R, AA, LRFI, SetFactory);
|
|
|
|
return NestingDetected;
|
|
}
|
|
|
|
// Find the relevant insertion points for the loop region R in its
|
|
// successors. Returns true if we succeeded. Returns false if any of the
|
|
// non-local successors of the region are not leaking blocks. We currently do
|
|
// not handle early exits, but do handle trapping blocks.
|
|
static bool getInsertionPtsForLoopRegionExits(
|
|
const LoopRegion *R, LoopRegionFunctionInfo *LRFI,
|
|
llvm::DenseMap<const LoopRegion *, ARCRegionState *> &RegionStateInfo,
|
|
llvm::SmallVectorImpl<SILInstruction *> &InsertPts) {
|
|
assert(R->isLoop() && "Expected a loop region that is representing a loop");
|
|
|
|
// Go through all of our non local successors. If any of them cannot be
|
|
// ignored, we bail for simplicity. This means that for now we do not handle
|
|
// early exits.
|
|
if (any_of(R->getNonLocalSuccs(), [&](unsigned SuccID) -> bool {
|
|
return !RegionStateInfo[LRFI->getRegion(SuccID)]->allowsLeaks();
|
|
})) {
|
|
return false;
|
|
}
|
|
|
|
// We assume that all of our loops have been canonicalized so that /all/ loop
|
|
// exit blocks only have exiting blocks as predecessors. This means that all
|
|
// successor regions of any region /cannot/ be a region representing a loop.
|
|
for (unsigned SuccID : R->getLocalSuccs()) {
|
|
auto *SuccRegion = LRFI->getRegion(SuccID);
|
|
assert(SuccRegion->isBlock() && "Loop canonicalization failed?!");
|
|
InsertPts.push_back(&*SuccRegion->getBlock()->begin());
|
|
}
|
|
|
|
// Sort and unique the insert points so we can put them into
|
|
// ImmutablePointerSets.
|
|
sortUnique(InsertPts);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ARCRegionState::processLoopBottomUp(
|
|
const LoopRegion *R, AliasAnalysis *AA, LoopRegionFunctionInfo *LRFI,
|
|
llvm::DenseMap<const LoopRegion *, ARCRegionState *> &RegionStateInfo,
|
|
ImmutablePointerSetFactory<SILInstruction> &SetFactory) {
|
|
ARCRegionState *State = RegionStateInfo[R];
|
|
|
|
llvm::SmallVector<SILInstruction *, 2> InsertPts;
|
|
// Try to lookup insertion points for this region. If when checking for
|
|
// insertion points, we find that we have non-leaking early exits, clear state
|
|
// and bail. We do not handle these for now.
|
|
if (!getInsertionPtsForLoopRegionExits(R, LRFI, RegionStateInfo, InsertPts)) {
|
|
clearBottomUpState();
|
|
return false;
|
|
}
|
|
|
|
// For each state that we are currently tracking, apply our summarized
|
|
// instructions to it.
|
|
for (auto &OtherState : getBottomupStates()) {
|
|
if (!OtherState.hasValue())
|
|
continue;
|
|
|
|
for (auto *I : State->getSummarizedInterestingInsts())
|
|
OtherState->second.updateForDifferentLoopInst(I, InsertPts, SetFactory,
|
|
AA);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ARCRegionState::processBottomUp(
|
|
AliasAnalysis *AA, RCIdentityFunctionInfo *RCIA,
|
|
LoopRegionFunctionInfo *LRFI, bool FreezeOwnedArgEpilogueReleases,
|
|
ConsumedArgToEpilogueReleaseMatcher &ConsumedArgToReleaseMap,
|
|
BlotMapVector<SILInstruction *, BottomUpRefCountState> &IncToDecStateMap,
|
|
llvm::DenseMap<const LoopRegion *, ARCRegionState *> &RegionStateInfo,
|
|
ImmutablePointerSetFactory<SILInstruction> &SetFactory) {
|
|
const LoopRegion *R = getRegion();
|
|
|
|
// We only process basic blocks for now. This ensures that we always propagate
|
|
// the empty set from loops.
|
|
if (!R->isBlock())
|
|
return processLoopBottomUp(R, AA, LRFI, RegionStateInfo, SetFactory);
|
|
|
|
return processBlockBottomUp(R, AA, RCIA, LRFI, FreezeOwnedArgEpilogueReleases,
|
|
ConsumedArgToReleaseMap, IncToDecStateMap,
|
|
SetFactory);
|
|
}
|
|
|
|
//===---
|
|
// Top Down Dataflow
|
|
//
|
|
|
|
bool ARCRegionState::processBlockTopDown(
|
|
SILBasicBlock &BB, AliasAnalysis *AA, RCIdentityFunctionInfo *RCIA,
|
|
BlotMapVector<SILInstruction *, TopDownRefCountState> &DecToIncStateMap,
|
|
ImmutablePointerSetFactory<SILInstruction> &SetFactory) {
|
|
DEBUG(llvm::dbgs() << ">>>> Top Down!\n");
|
|
|
|
bool NestingDetected = false;
|
|
|
|
TopDownDataflowRCStateVisitor<ARCRegionState> DataflowVisitor(
|
|
RCIA, *this, DecToIncStateMap, SetFactory);
|
|
|
|
// If the current BB is the entry BB, initialize a state corresponding to each
|
|
// of its owned parameters. This enables us to know that if we see a retain
|
|
// before any decrements that the retain is known safe.
|
|
//
|
|
// We do not handle guaranteed parameters here since those are handled in the
|
|
// code in GlobalARCPairingAnalysis. This is because even if we don't do
|
|
// anything, we will still pair the retain, releases and then the guaranteed
|
|
// parameter will ensure it is known safe to remove them.
|
|
if (BB.isEntry()) {
|
|
auto Args = BB.getBBArgs();
|
|
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
|
|
DataflowVisitor.visit(Args[i]);
|
|
}
|
|
}
|
|
|
|
// For each instruction I in BB...
|
|
for (auto *I : SummarizedInterestingInsts) {
|
|
|
|
DEBUG(llvm::dbgs() << "VISITING:\n " << *I);
|
|
|
|
auto Result = DataflowVisitor.visit(I);
|
|
|
|
// If this instruction can have no further effects on another instructions,
|
|
// continue. This happens for instance if we have cleared all of the state
|
|
// we are tracking.
|
|
if (Result.Kind == RCStateTransitionDataflowResultKind::NoEffects)
|
|
continue;
|
|
|
|
// Make sure that we propagate out whether or not nesting was detected.
|
|
NestingDetected |= Result.NestingDetected;
|
|
|
|
// This SILValue may be null if we were unable to find a specific RCIdentity
|
|
// that the instruction "visits".
|
|
SILValue Op = Result.RCIdentity;
|
|
|
|
// For all other [(SILValue, TopDownState)] we are tracking...
|
|
for (auto &OtherState : getTopDownStates()) {
|
|
// If the other state's value is blotted, skip it.
|
|
if (!OtherState.hasValue())
|
|
continue;
|
|
|
|
// If we visited an increment or decrement successfully (and thus Op is
|
|
// set), if this is the state for this operand, skip it. We already
|
|
// processed it.
|
|
if (Op && OtherState->first == Op)
|
|
continue;
|
|
|
|
OtherState->second.updateForSameLoopInst(I, I, SetFactory, AA);
|
|
}
|
|
}
|
|
|
|
return NestingDetected;
|
|
}
|
|
|
|
bool ARCRegionState::processLoopTopDown(
|
|
const LoopRegion *R, ARCRegionState *State, AliasAnalysis *AA,
|
|
LoopRegionFunctionInfo *LRFI,
|
|
ImmutablePointerSetFactory<SILInstruction> &SetFactory) {
|
|
|
|
assert(R->isLoop() && "We assume we are processing a loop");
|
|
|
|
// If we have more than 2 predecessors, we do not have a pre-header. We do not
|
|
// support this case since canonicalization failed.
|
|
if (R->pred_size() != 1) {
|
|
clearTopDownState();
|
|
return false;
|
|
}
|
|
|
|
auto *PredRegion = LRFI->getRegion(*R->pred_begin());
|
|
assert(PredRegion->isBlock() && "Expected the predecessor region to be a "
|
|
"block");
|
|
|
|
// Our insert point is going to be the terminator inst.
|
|
SILInstruction *InsertPt = PredRegion->getBlock()->getTerminator();
|
|
|
|
// For each state that we are currently tracking, apply our summarized
|
|
// instructions to it.
|
|
for (auto &OtherState : getTopDownStates()) {
|
|
if (!OtherState.hasValue())
|
|
continue;
|
|
|
|
for (auto *I : State->getSummarizedInterestingInsts())
|
|
OtherState->second.updateForDifferentLoopInst(I, InsertPt, SetFactory,
|
|
AA);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ARCRegionState::processTopDown(
|
|
AliasAnalysis *AA, RCIdentityFunctionInfo *RCIA,
|
|
LoopRegionFunctionInfo *LRFI,
|
|
BlotMapVector<SILInstruction *, TopDownRefCountState> &DecToIncStateMap,
|
|
llvm::DenseMap<const LoopRegion *, ARCRegionState *> &RegionStateInfo,
|
|
ImmutablePointerSetFactory<SILInstruction> &SetFactory) {
|
|
const LoopRegion *R = getRegion();
|
|
|
|
// We only process basic blocks for now. This ensures that we always propagate
|
|
// the empty set from loops.
|
|
if (!R->isBlock())
|
|
return processLoopTopDown(R, RegionStateInfo[R], AA, LRFI, SetFactory);
|
|
|
|
return processBlockTopDown(*R->getBlock(), AA, RCIA, DecToIncStateMap,
|
|
SetFactory);
|
|
}
|
|
|
|
//===---
|
|
// Summary
|
|
//
|
|
|
|
static bool isStrongEntranceInstruction(const SILInstruction &I) {
|
|
switch (I.getKind()) {
|
|
case ValueKind::AllocRefInst:
|
|
case ValueKind::AllocRefDynamicInst:
|
|
case ValueKind::AllocBoxInst:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void ARCRegionState::summarizeBlock(SILBasicBlock *BB) {
|
|
SummarizedInterestingInsts.clear();
|
|
|
|
for (auto &I : *BB)
|
|
if (!canNeverUseValues(&I) || I.mayReleaseOrReadRefCount() ||
|
|
isStrongEntranceInstruction(I))
|
|
SummarizedInterestingInsts.push_back(&I);
|
|
}
|
|
|
|
void ARCRegionState::summarizeLoop(
|
|
const LoopRegion *R, LoopRegionFunctionInfo *LRFI,
|
|
llvm::DenseMap<const LoopRegion *, ARCRegionState *> &RegionStateInfo) {
|
|
SummarizedInterestingInsts.clear();
|
|
for (unsigned SubregionID : R->getSubregions()) {
|
|
LoopRegion *Subregion = LRFI->getRegion(SubregionID);
|
|
ARCRegionState *SubregionState = RegionStateInfo[Subregion];
|
|
std::copy(SubregionState->summarizedinterestinginsts_begin(),
|
|
SubregionState->summarizedinterestinginsts_end(),
|
|
std::back_inserter(SummarizedInterestingInsts));
|
|
}
|
|
}
|
|
|
|
void ARCRegionState::summarize(
|
|
LoopRegionFunctionInfo *LRFI,
|
|
llvm::DenseMap<const LoopRegion *, ARCRegionState *> &RegionStateInfo) {
|
|
const LoopRegion *R = getRegion();
|
|
|
|
// We do not need to summarize a function since it is the outermost loop.
|
|
if (R->isFunction())
|
|
return;
|
|
|
|
assert(R->isLoop() && "Expected to be called on a loop");
|
|
// Make sure that all subregions that are blocked are summarized. We know that
|
|
// all subloops have already been summarized.
|
|
for (unsigned SubregionID : R->getSubregions()) {
|
|
auto *Subregion = LRFI->getRegion(SubregionID);
|
|
if (!Subregion->isBlock())
|
|
continue;
|
|
auto *SubregionState = RegionStateInfo[Subregion];
|
|
SubregionState->summarizeBlock(Subregion->getBlock());
|
|
}
|
|
|
|
summarizeLoop(R, LRFI, RegionStateInfo);
|
|
}
|
|
|
|
void ARCRegionState::addInterestingInst(SILInstruction *TargetInst) {
|
|
// Insert I into its location in the interesting instruction list.
|
|
SILBasicBlock *BB = getRegion()->getBlock();
|
|
assert(TargetInst->getParent() == BB);
|
|
|
|
auto II = BB->begin();
|
|
auto IE = BB->end();
|
|
assert(II != IE && "I can not be an element of an empty block");
|
|
|
|
auto SI = SummarizedInterestingInsts.begin();
|
|
auto SE = SummarizedInterestingInsts.end();
|
|
|
|
while (II != IE) {
|
|
if (SI == SE) {
|
|
// Ok, TargetInst is after all of the interesting insts. Append it to the
|
|
// list.
|
|
SummarizedInterestingInsts.push_back(TargetInst);
|
|
return;
|
|
}
|
|
|
|
// Move II down the block until it hits TargetInst or the first
|
|
// SummarizedInterestingInst.
|
|
while (&*II != *SI && &*II != TargetInst) {
|
|
++II;
|
|
return;
|
|
}
|
|
|
|
// If II == SI and TargetInst == II then there is nothing further to do.
|
|
if (&*II == TargetInst) {
|
|
assert(&*II != *SI);
|
|
SummarizedInterestingInsts.insert(SI, TargetInst);
|
|
return;
|
|
}
|
|
|
|
// If we reach this point, then we know that II == SI and we have not found
|
|
// TargetInst yet. So we move to the next II, SI.
|
|
++II;
|
|
++SI;
|
|
}
|
|
|
|
llvm_unreachable("Could not find Inst in the block?!");
|
|
}
|
|
|
|
void ARCRegionState::removeInterestingInst(SILInstruction *I) {
|
|
SummarizedInterestingInsts.erase(
|
|
std::remove(SummarizedInterestingInsts.begin(),
|
|
SummarizedInterestingInsts.end(), I),
|
|
SummarizedInterestingInsts.end());
|
|
}
|