mirror of
https://github.com/apple/swift.git
synced 2025-12-21 12:14:44 +01:00
This is a very easily misused API since it allows for users to leak instructions if they are not careful. This commit removes this API and replaces the small number of uses of this API with higher level APIs that accomplish the same task without using removeFromParent(). There were no API users that specifically required removeFromParent. An example of one way we were using removeFromParent is to move a SILInstruction to the front of a block. That does not require exposing an API like removeFromParent()... we can just create a higher level API like the one added in this commit: SILInstruction::moveFront(SILBasicBlock *). rdar://31276565
431 lines
14 KiB
C++
431 lines
14 KiB
C++
//===--- AllocStackHoisting.cpp - Hoist alloc_stack instructions ----------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "alloc-stack-hoisting"
|
|
|
|
#include "swift/IRGen/IRGenSILPasses.h"
|
|
#include "swift/SILOptimizer/Analysis/Analysis.h"
|
|
#include "swift/SILOptimizer/PassManager/Passes.h"
|
|
#include "swift/SILOptimizer/PassManager/Transforms.h"
|
|
#include "swift/SIL/DebugUtils.h"
|
|
#include "swift/SIL/SILBuilder.h"
|
|
#include "swift/SIL/SILInstruction.h"
|
|
#include "swift/SIL/SILArgument.h"
|
|
|
|
#include "IRGenModule.h"
|
|
#include "NonFixedTypeInfo.h"
|
|
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace swift;
|
|
|
|
llvm::cl::opt<bool> SILUseStackSlotMerging(
|
|
"sil-merge-stack-slots", llvm::cl::init(true),
|
|
llvm::cl::desc("Merge generic alloc_stack instructions"));
|
|
|
|
/// Hoist generic alloc_stack instructions to the entry basic block and merge
|
|
/// alloc_stack instructions if their users span non-overlapping live-ranges.
|
|
///
|
|
/// This helps avoid llvm.stacksave/stackrestore intrinsic calls during code
|
|
/// generation. IRGen will only dynamic alloca instructions if the alloc_stack
|
|
/// is in the entry block but will emit a dynamic alloca and
|
|
/// llvm.stacksave/stackrestore for all other basic blocks.
|
|
///
|
|
/// Merging alloc_stack instructions saves code size and stack size.
|
|
|
|
/// An alloc_stack instructions is hoistable if it is of generic type and the
|
|
/// type parameter is not dependent on an opened type.
|
|
static bool isHoistable(AllocStackInst *Inst, irgen::IRGenModule &Mod) {
|
|
auto SILTy = Inst->getType();
|
|
// We don't need to hoist types that have reference semantics no dynamic
|
|
// alloca will be generated as they are fixed size.
|
|
if (SILTy.hasReferenceSemantics())
|
|
return false;
|
|
|
|
// Only hoist types that are dynamically sized (generics and resilient types).
|
|
auto &TI = Mod.getTypeInfo(SILTy);
|
|
if (TI.isFixedSize())
|
|
return false;
|
|
|
|
// Don't hoist generics with opened archetypes. We would have to hoist the
|
|
// open archetype instruction which might not be possible.
|
|
return Inst->getTypeDependentOperands().empty();
|
|
}
|
|
|
|
/// A partition of alloc_stack instructions.
|
|
///
|
|
/// Initially, a partition contains alloc_stack instructions of one type.
|
|
/// After merging non-overlapping alloc_stack live ranges, a partition contains
|
|
/// a set of alloc_stack instructions that can be assigned a single stack
|
|
/// location.
|
|
namespace {
|
|
class Partition {
|
|
public:
|
|
SmallVector<AllocStackInst *, 4> Elts;
|
|
|
|
Partition(AllocStackInst *A) : Elts(1, A) {}
|
|
Partition() {}
|
|
|
|
/// Assign a single alloc_stack instruction to all the alloc_stacks in the
|
|
/// partition.
|
|
///
|
|
/// This assumes that the live ranges of the alloc_stack instructions are
|
|
/// non-overlapping.
|
|
void assignStackLocation(SmallVectorImpl<SILInstruction *> &FunctionExits);
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// Erases all dealloc_stack users of an alloc_stack
|
|
static void eraseDeallocStacks(AllocStackInst *AllocStack) {
|
|
// Delete dealloc_stacks.
|
|
SmallVector<DeallocStackInst *, 16> DeallocStacksToDelete;
|
|
for (auto *U : AllocStack->getUses()) {
|
|
if (auto *DeallocStack = dyn_cast<DeallocStackInst>(U->getUser()))
|
|
DeallocStacksToDelete.push_back(DeallocStack);
|
|
}
|
|
for (auto *D : DeallocStacksToDelete)
|
|
D->eraseFromParent();
|
|
}
|
|
|
|
/// Inserts a dealloc_stack at all the function exits.
|
|
static void
|
|
insertDeallocStackAtEndOf(SmallVectorImpl<SILInstruction *> &FunctionExits,
|
|
AllocStackInst *AllocStack) {
|
|
// Insert dealloc_stack in the exit blocks.
|
|
for (auto *Exit : FunctionExits) {
|
|
SILBuilder Builder(Exit);
|
|
Builder.createDeallocStack(AllocStack->getLoc(), AllocStack);
|
|
}
|
|
}
|
|
|
|
/// Hack to workaround a clang LTO bug.
|
|
LLVM_ATTRIBUTE_NOINLINE
|
|
void moveAllocStackToBeginningOfBlock(AllocStackInst* AS, SILBasicBlock *BB) {
|
|
AS->moveFront(BB);
|
|
}
|
|
|
|
/// Assign a single alloc_stack instruction to all the alloc_stacks in the
|
|
/// partition.
|
|
void Partition::assignStackLocation(
|
|
SmallVectorImpl<SILInstruction *> &FunctionExits) {
|
|
assert(!Elts.empty() && "Must have a least one location");
|
|
// The assigned location is the first alloc_stack in our partition.
|
|
auto *AssignedLoc = Elts[0];
|
|
|
|
// Move this assigned location to the beginning of the entry block.
|
|
auto *EntryBB = AssignedLoc->getFunction()->getEntryBlock();
|
|
moveAllocStackToBeginningOfBlock(AssignedLoc, EntryBB);
|
|
|
|
// Erase the dealloc_stacks.
|
|
eraseDeallocStacks(AssignedLoc);
|
|
|
|
// Insert a new dealloc_stack at the exit(s) of the function.
|
|
insertDeallocStackAtEndOf(FunctionExits, AssignedLoc);
|
|
|
|
// Rewrite all the other alloc_stacks in the partition to use the assigned
|
|
// location.
|
|
for (auto *AllocStack : Elts) {
|
|
if (AssignedLoc == AllocStack) continue;
|
|
eraseDeallocStacks(AllocStack);
|
|
AllocStack->replaceAllUsesWith(AssignedLoc);
|
|
AllocStack->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
/// Returns a single dealloc_stack user of the alloc_stack or nullptr otherwise.
|
|
static SILInstruction *getSingleDeallocStack(AllocStackInst *ASI) {
|
|
SILInstruction *Dealloc = nullptr;
|
|
for (auto *U : ASI->getUses()) {
|
|
auto *Inst = U->getUser();
|
|
if (isa<DeallocStackInst>(Inst)) {
|
|
if (Dealloc == nullptr) {
|
|
Dealloc = Inst;
|
|
continue;
|
|
}
|
|
// Already saw a dealloc_stack.
|
|
return nullptr;
|
|
}
|
|
}
|
|
return Dealloc;
|
|
}
|
|
|
|
namespace {
|
|
/// Compute liveness for the partition to allow for an interference check
|
|
/// between two alloc_stack instructions.
|
|
///
|
|
/// For now liveness is computed and this just performs a simple check
|
|
/// whether two regions of alloc_stack instructions might overlap.
|
|
class Liveness {
|
|
public:
|
|
Liveness(Partition &P) {}
|
|
|
|
/// Check whether the live ranges of the two alloc_stack instructions
|
|
/// might overlap.
|
|
///
|
|
/// Currently this does not use a liveness analysis. Rather we check that for
|
|
/// both alloc_stack we have:
|
|
/// * a single dealloc_stack user
|
|
/// * the dealloc_stack is in the same basic block
|
|
/// If the alloc_stack instructions are in different basic blocks we know that
|
|
/// the live-ranges can't overlap.
|
|
/// If they are in the same basic block we scan the basic block to determine
|
|
/// whether one dealloc_stack dominates the other alloc_stack. If this is the
|
|
/// case the live ranges can't overlap.
|
|
bool mayOverlap(AllocStackInst *A, AllocStackInst *B) {
|
|
assert(A != B);
|
|
|
|
// Check that we have a single dealloc_stack user in the same block.
|
|
auto *singleDeallocA = getSingleDeallocStack(A);
|
|
if (singleDeallocA == nullptr ||
|
|
singleDeallocA->getParent() != A->getParent())
|
|
return true;
|
|
auto *singleDeallocB = getSingleDeallocStack(B);
|
|
if (singleDeallocB == nullptr ||
|
|
singleDeallocB->getParent() != B->getParent())
|
|
return true;
|
|
|
|
// Different basic blocks.
|
|
if (A->getParent() != B->getParent())
|
|
return false;
|
|
bool ALive = false;
|
|
bool BLive = false;
|
|
for (auto &Inst : *A->getParent()) {
|
|
if (A == &Inst) {
|
|
ALive = true;
|
|
} else if (singleDeallocA == &Inst) {
|
|
ALive = false;
|
|
} else if (B == &Inst) {
|
|
BLive = true;
|
|
} else if (singleDeallocB == &Inst) {
|
|
BLive = false;
|
|
}
|
|
|
|
if (ALive && BLive)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
namespace {
|
|
/// Merge alloc_stack instructions.
|
|
///
|
|
/// This merges alloc_stack instructions of one type by:
|
|
/// * building partitions of alloc_stack instructions of one type
|
|
/// * merging alloc_stack instructions in each partition into one alloc_stack
|
|
/// if the live ranges spanned by the alloc_stack users are known not to
|
|
/// overlap.
|
|
class MergeStackSlots {
|
|
/// Contains partitions of alloc_stack instructions by type.
|
|
SmallVector<Partition, 2> PartitionByType;
|
|
/// The function exits.
|
|
SmallVectorImpl<SILInstruction *> &FunctionExits;
|
|
|
|
public:
|
|
MergeStackSlots(SmallVectorImpl<AllocStackInst *> &AllocStacks,
|
|
SmallVectorImpl<SILInstruction *> &FuncExits);
|
|
|
|
/// Merge alloc_stack instructions if possible and hoist them to the entry
|
|
/// block.
|
|
void mergeSlots();
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
MergeStackSlots::MergeStackSlots(SmallVectorImpl<AllocStackInst *> &AllocStacks,
|
|
SmallVectorImpl<SILInstruction *> &FuncExits)
|
|
: FunctionExits(FuncExits) {
|
|
// Build initial partitions based on the type.
|
|
llvm::DenseMap<SILType, unsigned> TypeToPartitionMap;
|
|
for (auto *AS : AllocStacks) {
|
|
auto Ty = AS->getType();
|
|
auto It = TypeToPartitionMap.find(Ty);
|
|
if (It != TypeToPartitionMap.end()) {
|
|
PartitionByType[It->second].Elts.push_back(AS);
|
|
} else {
|
|
PartitionByType.push_back(Partition(AS));
|
|
TypeToPartitionMap[Ty] = PartitionByType.size() - 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Merge alloc_stack instructions if possible and hoist them to the entry
|
|
/// block.
|
|
void MergeStackSlots::mergeSlots() {
|
|
for (auto &PartitionOfOneType : PartitionByType) {
|
|
Liveness Live(PartitionOfOneType);
|
|
|
|
// Partitions that are know to contain non-overlapping alloc_stack
|
|
// live-ranges.
|
|
SmallVector<Partition, 4> DisjointPartitions(1, Partition());
|
|
|
|
// Look at all the alloc_stacks of one type.
|
|
for (auto *CurAllocStack : PartitionOfOneType.Elts) {
|
|
bool FoundAPartition = false;
|
|
// Check if we can add it to an existing partition that we have show to be
|
|
// non-interfering.
|
|
for (auto &CandidateP : DisjointPartitions) {
|
|
// If the candidate partition is empty (the very first time we look at an
|
|
// alloc_stack) we can just add the alloc_stack.
|
|
if (CandidateP.Elts.empty()) {
|
|
CandidateP.Elts.push_back(CurAllocStack);
|
|
FoundAPartition = true;
|
|
break;
|
|
}
|
|
// Otherwise, we check interference of the current alloc_stack with the
|
|
// candidate partition.
|
|
bool InterferesWithCandidateP = false;
|
|
for (auto *AllocStackInPartition : CandidateP.Elts) {
|
|
if (Live.mayOverlap(AllocStackInPartition, CurAllocStack)) {
|
|
InterferesWithCandidateP = true;
|
|
break;
|
|
}
|
|
}
|
|
// No interference add the current alloc_stack to the candidate
|
|
// partition.
|
|
if (!InterferesWithCandidateP) {
|
|
CandidateP.Elts.push_back(CurAllocStack);
|
|
FoundAPartition = true;
|
|
break;
|
|
}
|
|
// Otherwise, we look at the next partition.
|
|
}
|
|
// If not partition was found add a new one.
|
|
if (!FoundAPartition) {
|
|
DisjointPartitions.push_back(Partition(CurAllocStack));
|
|
}
|
|
}
|
|
|
|
// Assign stack locations to disjoint partition hoisting alloc_stacks to the
|
|
// entry block at the same time.
|
|
for (auto &Par : DisjointPartitions) {
|
|
Par.assignStackLocation(FunctionExits);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
namespace {
|
|
/// Hoist alloc_stack instructions to the entry block and merge them.
|
|
class HoistAllocStack {
|
|
/// The function to process.
|
|
SILFunction *F;
|
|
/// The current IRGenModule.
|
|
irgen::IRGenModule &IRGenMod;
|
|
|
|
SmallVector<AllocStackInst *, 16> AllocStackToHoist;
|
|
SmallVector<SILInstruction *, 8> FunctionExits;
|
|
|
|
public:
|
|
HoistAllocStack(SILFunction *F, irgen::IRGenModule &Mod)
|
|
: F(F), IRGenMod(Mod) {}
|
|
|
|
/// Try to hoist generic alloc_stack instructions to the entry block.
|
|
/// Returns true if the function was changed.
|
|
bool run();
|
|
|
|
private:
|
|
/// Collect generic alloc_stack instructions that can be moved to the entry
|
|
/// block.
|
|
void collectHoistableInstructions();
|
|
|
|
/// Move the hoistable alloc_stack instructions to the entry block.
|
|
void hoist();
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// Collect generic alloc_stack instructions in the current function can be
|
|
/// hoisted.
|
|
/// We can hoist generic alloc_stack instructions if they are not dependent on a
|
|
/// another instruction that we would have to hoist.
|
|
/// A generic alloc_stack could reference an opened archetype that was not
|
|
/// opened in the entry block.
|
|
void HoistAllocStack::collectHoistableInstructions() {
|
|
for (auto &BB : *F) {
|
|
for (auto &Inst : BB) {
|
|
// Terminators that are function exits are our dealloc_stack
|
|
// insertion points.
|
|
if (auto *Term = dyn_cast<TermInst>(&Inst)) {
|
|
if (Term->isFunctionExiting())
|
|
FunctionExits.push_back(Term);
|
|
continue;
|
|
}
|
|
|
|
auto *ASI = dyn_cast<AllocStackInst>(&Inst);
|
|
if (!ASI) {
|
|
continue;
|
|
}
|
|
if (isHoistable(ASI, IRGenMod)) {
|
|
DEBUG(llvm::dbgs() << "Hoisting " << Inst);
|
|
AllocStackToHoist.push_back(ASI);
|
|
} else {
|
|
DEBUG(llvm::dbgs() << "Not hoisting " << Inst);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Hoist the alloc_stack instructions to the entry block and sink the
|
|
/// dealloc_stack instructions to the function exists.
|
|
void HoistAllocStack::hoist() {
|
|
|
|
if (SILUseStackSlotMerging) {
|
|
MergeStackSlots Merger(AllocStackToHoist, FunctionExits);
|
|
Merger.mergeSlots();
|
|
} else {
|
|
// Hoist alloc_stacks to the entry block and delete dealloc_stacks.
|
|
auto *EntryBB = F->getEntryBlock();
|
|
for (auto *AllocStack : AllocStackToHoist) {
|
|
// Insert at the beginning of the entry block.
|
|
AllocStack->moveFront(EntryBB);
|
|
// Delete dealloc_stacks.
|
|
eraseDeallocStacks(AllocStack);
|
|
}
|
|
// Insert dealloc_stack in the exit blocks.
|
|
for (auto *AllocStack : AllocStackToHoist) {
|
|
insertDeallocStackAtEndOf(FunctionExits, AllocStack);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Try to hoist generic alloc_stack instructions to the entry block.
|
|
/// Returns true if the function was changed.
|
|
bool HoistAllocStack::run() {
|
|
collectHoistableInstructions();
|
|
|
|
// Nothing to hoist?
|
|
if (AllocStackToHoist.empty())
|
|
return false;
|
|
|
|
hoist();
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
class AllocStackHoisting : public SILFunctionTransform {
|
|
void run() override {
|
|
auto *F = getFunction();
|
|
auto *Mod = getIRGenModule();
|
|
assert(Mod && "This pass must be run as part of an IRGen pipeline");
|
|
bool Changed = HoistAllocStack(F, *Mod).run();
|
|
if (Changed) {
|
|
PM->invalidateAnalysis(F, SILAnalysis::InvalidationKind::Instructions);
|
|
}
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
SILTransform *irgen::createAllocStackHoisting() {
|
|
return new AllocStackHoisting();
|
|
}
|