Files
swift-mirror/lib/AST/RequirementMachine/HomotopyReduction.cpp
Slava Pestov fa65fd0e05 RequirementMachine: Plumb protocol typealiases through minimization
Now that we can detect protocol typealias rules, collect and keep
track of them so that they can be recorded in protocol requirement
signatures.

For now, this is all NFC since nothing introduces such rules into
the rewrite system, except for invalid requirements which are
diagnosed anyway.
2022-02-13 00:24:23 -05:00

832 lines
26 KiB
C++

//===--- HomotopyReduction.cpp - Higher-dimensional term rewriting --------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the algorithm for computing a minimal set of rules from
// a confluent rewrite system. A minimal set of rules is:
//
// 1) Large enough that computing the confluent completion produces the original
// rewrite system;
//
// 2) Small enough that no further rules can be deleted without changing the
// resulting confluent rewrite system.
//
// Redundant rules that are not part of the minimal set are redundant are
// detected by analyzing the set of rewrite loops computed by the completion
// procedure. See RewriteLoop.cpp for a discussion of rewrite loops.
//
// If a rewrite rule appears exactly once in a loop and without context, the
// loop witnesses a redundancy; the rewrite rule is equivalent to traveling
// around the loop "in the other direction". This rewrite rule and the
// corresponding rewrite loop can be deleted.
//
// Any occurrence of the rule in the remaining loops is replaced with the
// alternate definition obtained by splitting the loop that witnessed the
// redundancy.
//
// Iterating this process eventually produces a minimal set of rewrite rules.
//
// For a description of the general algorithm, see "A Homotopical Completion
// Procedure with Applications to Coherence of Monoids",
// https://hal.inria.fr/hal-00818253.
//
// Note that in the world of Swift, rewrite rules for introducing associated
// type symbols are marked 'permanent'; they are always re-added when a new
// rewrite system is built from a minimal generic signature, so instead of
// deleting them it is better to leave them in place in case it allows other
// rules to be deleted instead.
//
// Also, for a conformance rule (V.[P] => V) to be redundant, a stronger
// condition is needed than appearing once in a loop and without context;
// the rule must not be a _minimal conformance_. The algorithm for computing
// minimal conformances is implemented in MinimalConformances.cpp.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Type.h"
#include "swift/Basic/Range.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include "RewriteSystem.h"
using namespace swift;
using namespace rewriting;
/// Recompute RulesInEmptyContext and DecomposeCount if needed.
void RewriteLoop::recompute(const RewriteSystem &system) {
if (!Dirty)
return;
Dirty = 0;
ProjectionCount = 0;
// Rules appearing in empty context (possibly more than once).
llvm::SmallDenseSet<unsigned, 2> rulesInEmptyContext;
// The number of times each rule appears (with or without context).
llvm::SmallDenseMap<unsigned, unsigned, 2> ruleMultiplicity;
RewritePathEvaluator evaluator(Basepoint);
for (auto step : Path) {
switch (step.Kind) {
case RewriteStep::Rule: {
if (!step.isInContext() && !evaluator.isInContext())
rulesInEmptyContext.insert(step.getRuleID());
++ruleMultiplicity[step.getRuleID()];
break;
}
case RewriteStep::LeftConcreteProjection:
++ProjectionCount;
break;
case RewriteStep::PrefixSubstitutions:
case RewriteStep::Shift:
case RewriteStep::Decompose:
case RewriteStep::Relation:
case RewriteStep::DecomposeConcrete:
case RewriteStep::RightConcreteProjection:
break;
}
evaluator.apply(step, system);
}
RulesInEmptyContext.clear();
// Collect all rules that we saw exactly once in empty context.
for (auto rule : rulesInEmptyContext) {
auto found = ruleMultiplicity.find(rule);
assert(found != ruleMultiplicity.end());
if (found->second == 1)
RulesInEmptyContext.push_back(rule);
}
}
/// A rewrite rule is redundant if it appears exactly once in a loop
/// without context.
ArrayRef<unsigned>
RewriteLoop::findRulesAppearingOnceInEmptyContext(
const RewriteSystem &system) const {
const_cast<RewriteLoop *>(this)->recompute(system);
return RulesInEmptyContext;
}
/// The number of LeftConcreteProjection steps, used by the elimination order to
/// prioritize loops that are not concrete unification projections.
unsigned RewriteLoop::getProjectionCount(
const RewriteSystem &system) const {
const_cast<RewriteLoop *>(this)->recompute(system);
return ProjectionCount;
}
/// If a rewrite loop contains an explicit rule in empty context, propagate the
/// explicit bit to all other rules appearing in empty context within the same
/// loop.
///
/// When computing minimal conformances we prefer to eliminate non-explicit
/// rules, as a heuristic to ensure that minimized conformance requirements
/// remain in the same protocol as originally written, in cases where they can
/// be moved between protocols.
///
/// However, conformance rules can also be written in a non-canonical way.
///
/// Most conformance requirements are non-canonical, since the original
/// requirements use unresolved types. For example, a requirement 'Self.X.Y : Q'
/// inside a protocol P will lower to a rewrite rule
///
/// [P].X.Y.[Q] => [P].X.Y
///
/// Completion will then add a new rule that looks something like this, using
/// associated type symbols:
///
/// [P:X].[P2:Y].[Q] => [P:X].[P2:Y]
///
/// Furthermore, if [P:X].[P2:Y] simplies to some other term, such as [P:Z],
/// there will be yet another rule added by completion:
///
/// [P:Z].[Q] => [P:Z]
///
/// The new rules are related to the original rule via rewrite loops where
/// both rules appear in empty context. This algorithm will propagate the
/// explicit bit from the original rule to the canonical rule.
void RewriteSystem::propagateExplicitBits() {
for (const auto &loop : Loops) {
auto rulesInEmptyContext =
loop.findRulesAppearingOnceInEmptyContext(*this);
bool sawExplicitRule = false;
for (unsigned ruleID : rulesInEmptyContext) {
const auto &rule = getRule(ruleID);
if (rule.isExplicit())
sawExplicitRule = true;
}
if (sawExplicitRule) {
for (unsigned ruleID : rulesInEmptyContext) {
auto &rule = getRule(ruleID);
if (!rule.isPermanent() && !rule.isExplicit())
rule.markExplicit();
}
}
}
}
/// Given a rewrite rule which appears exactly once in a loop
/// without context, return a new definition for this rewrite rule.
/// The new definition is the path obtained by deleting the
/// rewrite rule from the loop.
RewritePath RewritePath::splitCycleAtRule(unsigned ruleID) const {
// A cycle is a path from the basepoint to the basepoint.
// Somewhere in this path, an application of \p ruleID
// appears in an empty context.
// First, we split the cycle into two paths:
//
// (1) A path from the basepoint to the rule's
// left hand side,
RewritePath basepointToLhs;
// (2) And a path from the rule's right hand side
// to the basepoint.
RewritePath rhsToBasepoint;
// Because the rule only appears once, we know that basepointToLhs
// and rhsToBasepoint do not involve the rule itself.
// If the rule is inverted, we have to invert the whole thing
// again at the end.
bool ruleWasInverted = false;
bool sawRule = false;
for (auto step : Steps) {
switch (step.Kind) {
case RewriteStep::Rule: {
if (step.getRuleID() != ruleID)
break;
assert(!sawRule && "Rule appears more than once?");
assert(!step.isInContext() && "Rule appears in context?");
ruleWasInverted = step.Inverse;
sawRule = true;
continue;
}
case RewriteStep::PrefixSubstitutions:
case RewriteStep::Shift:
case RewriteStep::Decompose:
case RewriteStep::Relation:
case RewriteStep::DecomposeConcrete:
case RewriteStep::LeftConcreteProjection:
case RewriteStep::RightConcreteProjection:
break;
}
if (sawRule)
rhsToBasepoint.add(step);
else
basepointToLhs.add(step);
}
// Build a path from the rule's lhs to the rule's rhs via the
// basepoint.
RewritePath result = rhsToBasepoint;
result.append(basepointToLhs);
// We want a path from the lhs to the rhs, so invert it unless
// the rewrite step was also inverted.
if (!ruleWasInverted)
result.invert();
return result;
}
/// Replace every rewrite step involving the given rewrite rule with
/// either the replacement path (or its inverse, if the step was
/// inverted).
///
/// The replacement path is re-contextualized at each occurrence of a
/// rewrite step involving the given rule.
///
/// Returns true if any rewrite steps were replaced; false means the
/// rule did not appear in this path.
bool RewritePath::replaceRuleWithPath(unsigned ruleID,
const RewritePath &path) {
bool foundAny = false;
for (const auto &step : Steps) {
if (step.Kind == RewriteStep::Rule &&
step.getRuleID() == ruleID) {
foundAny = true;
break;
}
}
if (!foundAny)
return false;
SmallVector<RewriteStep, 4> newSteps;
for (const auto &step : Steps) {
switch (step.Kind) {
case RewriteStep::Rule: {
// All other rewrite rules remain unchanged.
if (step.getRuleID() != ruleID) {
newSteps.push_back(step);
break;
}
// Ok, we found a rewrite step referencing the redundant rule.
// Replace this step with the provided path. If this rewrite step has
// context, the path's own steps must be re-contextualized.
// Keep track of rewrite step pairs which push and pop the stack. Any
// rewrite steps enclosed with a push/pop are not re-contextualized.
unsigned pushCount = 0;
auto recontextualizeStep = [&](RewriteStep newStep) {
bool inverse = newStep.Inverse ^ step.Inverse;
if (newStep.pushesTermsOnStack() && inverse) {
assert(pushCount > 0);
--pushCount;
}
if (pushCount == 0) {
newStep.StartOffset += step.StartOffset;
newStep.EndOffset += step.EndOffset;
}
newStep.Inverse = inverse;
newSteps.push_back(newStep);
if (newStep.pushesTermsOnStack() && !inverse) {
++pushCount;
}
};
// If this rewrite step is inverted, invert the entire path.
if (step.Inverse) {
for (auto newStep : llvm::reverse(path))
recontextualizeStep(newStep);
} else {
for (auto newStep : path)
recontextualizeStep(newStep);
}
// Rewrite steps which push and pop the stack must come in balanced pairs.
assert(pushCount == 0);
break;
}
case RewriteStep::PrefixSubstitutions:
case RewriteStep::Shift:
case RewriteStep::Decompose:
case RewriteStep::Relation:
case RewriteStep::DecomposeConcrete:
case RewriteStep::LeftConcreteProjection:
case RewriteStep::RightConcreteProjection:
newSteps.push_back(step);
break;
}
}
std::swap(newSteps, Steps);
return true;
}
/// Find a rule to delete by looking through all loops for rewrite rules appearing
/// once in empty context. Returns a pair consisting of a loop ID and a rule ID,
/// otherwise returns None.
///
/// Minimization performs three passes over the rewrite system.
///
/// 1) First, rules that are not conformance rules are deleted, with
/// \p redundantConformances equal to nullptr.
///
/// 2) Second, minimal conformances are computed.
///
/// 3) Finally, redundant conformance rules are deleted, with
/// \p redundantConformances equal to the set of conformance rules that are
/// not minimal conformances.
Optional<std::pair<unsigned, unsigned>> RewriteSystem::
findRuleToDelete(llvm::function_ref<bool(unsigned)> isRedundantRuleFn) {
SmallVector<std::pair<unsigned, unsigned>, 2> redundancyCandidates;
for (unsigned loopID : indices(Loops)) {
auto &loop = Loops[loopID];
if (loop.isDeleted())
continue;
bool foundAny = false;
for (unsigned ruleID : loop.findRulesAppearingOnceInEmptyContext(*this)) {
redundancyCandidates.emplace_back(loopID, ruleID);
foundAny = true;
}
// Delete loops that don't contain any rewrite rules in empty context,
// since such loops do not give us useful information.
if (!foundAny)
loop.markDeleted();
}
Optional<std::pair<unsigned, unsigned>> found;
if (Debug.contains(DebugFlags::HomotopyReduction)) {
llvm::dbgs() << "\n";
}
for (const auto &pair : redundancyCandidates) {
unsigned ruleID = pair.second;
const auto &rule = getRule(ruleID);
// We should not find a rule that has already been marked redundant
// here; it should have already been replaced with a rewrite path
// in all homotopy generators.
assert(!rule.isRedundant());
// Associated type introduction rules are 'permanent'. They're
// not worth eliminating since they are re-added every time; it
// is better to find other candidates to eliminate in the same
// loop instead.
if (rule.isPermanent())
continue;
// Homotopy reduction runs multiple passes with different filters to
// prioritize the deletion of certain rules ahead of others. Apply
// the filter now.
if (!isRedundantRuleFn(ruleID))
continue;
if (Debug.contains(DebugFlags::HomotopyReductionDetail)) {
llvm::dbgs() << "** Candidate " << rule << " from loop #"
<< pair.first << "\n";
}
if (!found) {
found = pair;
continue;
}
// 'rule' is the candidate rule; 'otherRule' is the best rule to eliminate
// we've found so far.
const auto &otherRule = getRule(found->second);
const auto &loop = Loops[pair.first];
const auto &otherLoop = Loops[found->first];
// If one of the rules was a concrete unification projection, prefer to
// eliminate the *other* rule.
//
// For example, if 'X.T == G<U, V>' is implied by the conformance on X,
// and the following three rules are defined in the current protocol:
//
// X.T == G<Int, W>
// X.U == Int
// X.V == W
//
// Then we can either eliminate a) alone, or b) and c). Since b) and c)
// are projections, they are "simpler", and we would rather keep both and
// eliminate a).
unsigned projectionCount = loop.getProjectionCount(*this);
unsigned otherProjectionCount = otherLoop.getProjectionCount(*this);
if (projectionCount != otherProjectionCount) {
if (projectionCount < otherProjectionCount)
found = pair;
continue;
}
// If one of the rules is a concrete type requirement, prefer to
// eliminate the *other* rule.
bool ruleIsConcrete = rule.getLHS().back().hasSubstitutions();
bool otherRuleIsConcrete = otherRule.getRHS().back().hasSubstitutions();
if (ruleIsConcrete != otherRuleIsConcrete) {
if (otherRuleIsConcrete)
found = pair;
continue;
}
// Otherwise, perform a shortlex comparison on (LHS, RHS).
Optional<int> comparison = rule.compare(otherRule, Context);
if (!comparison.hasValue()) {
// Two rules (T.[C] => T) and (T.[C'] => T) are incomparable if
// C and C' are superclass, concrete type or concrete conformance
// symbols.
//
// This should only arise in two limited situations:
// - The new rule was marked invalid due to a conflict.
// - The new rule was substitution-simplified.
//
// In both cases, the new rule becomes the new candidate for
// elimination.
if (!rule.isConflicting() && !rule.isSubstitutionSimplified()) {
llvm::errs() << "Incomparable rules in homotopy reduction:\n";
llvm::errs() << "- Candidate rule: " << rule << "\n";
llvm::errs() << "- Best rule so far: " << otherRule << "\n";
abort();
}
found = pair;
continue;
}
if (*comparison > 0) {
// Otherwise, if the new rule is less canonical than the best one so
// far, it becomes the new candidate for elimination.
found = pair;
continue;
}
}
return found;
}
/// Delete a rewrite rule that is known to be redundant, replacing all
/// occurrences of the rule in all loops with the replacement path.
void RewriteSystem::deleteRule(unsigned ruleID,
const RewritePath &replacementPath) {
// Replace all occurrences of the rule with the replacement path in
// all remaining rewrite loops.
for (unsigned loopID : indices(Loops)) {
auto &loop = Loops[loopID];
if (loop.isDeleted())
continue;
bool changed = loop.Path.replaceRuleWithPath(ruleID, replacementPath);
if (!changed)
continue;
// The loop's path has changed, so we must invalidate the cached
// result of findRulesAppearingOnceInEmptyContext().
loop.markDirty();
if (Debug.contains(DebugFlags::HomotopyReductionDetail)) {
llvm::dbgs() << "** Updated loop #" << loopID << ": ";
loop.dump(llvm::dbgs(), *this);
llvm::dbgs() << "\n";
}
}
}
void RewriteSystem::performHomotopyReduction(
llvm::function_ref<bool(unsigned)> isRedundantRuleFn) {
while (true) {
auto optPair = findRuleToDelete(isRedundantRuleFn);
// If no redundant rules remain which can be eliminated by this pass, stop.
if (!optPair)
return;
unsigned loopID = optPair->first;
unsigned ruleID = optPair->second;
auto &loop = Loops[loopID];
auto replacementPath = loop.Path.splitCycleAtRule(ruleID);
loop.markDeleted();
auto &rule = getRule(ruleID);
if (Debug.contains(DebugFlags::HomotopyReduction)) {
llvm::dbgs() << "** Deleting rule " << rule << " from loop #"
<< loopID << "\n";
llvm::dbgs() << "* Replacement path: ";
MutableTerm mutTerm(getRule(ruleID).getLHS());
replacementPath.dump(llvm::dbgs(), mutTerm, *this);
llvm::dbgs() << "\n";
}
rule.markRedundant();
deleteRule(ruleID, replacementPath);
}
}
/// Use the loops to delete redundant rewrite rules via a series of Tietze
/// transformations, updating and simplifying existing loops as each rule
/// is deleted.
///
/// Redundant rules are mutated to set their isRedundant() bit.
void RewriteSystem::minimizeRewriteSystem() {
if (Debug.contains(DebugFlags::HomotopyReduction)) {
llvm::dbgs() << "-----------------------------\n";
llvm::dbgs() << "- Minimizing rewrite system -\n";
llvm::dbgs() << "-----------------------------\n";
}
assert(Complete);
assert(!Minimized);
Minimized = 1;
propagateExplicitBits();
// First pass:
// - Eliminate all LHS-simplified non-conformance rules.
// - Eliminate all RHS-simplified and substitution-simplified rules.
// - Eliminate all rules with unresolved symbols.
if (Debug.contains(DebugFlags::HomotopyReduction)) {
llvm::dbgs() << "---------------------------------------------\n";
llvm::dbgs() << "First pass: simplified and unresolved rules -\n";
llvm::dbgs() << "---------------------------------------------\n";
}
performHomotopyReduction([&](unsigned ruleID) -> bool {
const auto &rule = getRule(ruleID);
if (rule.isLHSSimplified() &&
!rule.isAnyConformanceRule())
return true;
if (rule.isRHSSimplified() ||
rule.isSubstitutionSimplified())
return true;
if (rule.containsUnresolvedSymbols() &&
!rule.isProtocolTypeAliasRule())
return true;
return false;
});
// Now compute a set of minimal conformances.
//
// FIXME: For now this just produces a set of redundant conformances, but
// it should actually output the canonical minimal conformance equation
// for each non-minimal conformance. We can then use information to
// compute conformance access paths, instead of the current "brute force"
// algorithm used for that purpose.
llvm::DenseSet<unsigned> redundantConformances;
computeMinimalConformances(redundantConformances);
// Second pass: Eliminate all non-minimal conformance rules.
if (Debug.contains(DebugFlags::HomotopyReduction)) {
llvm::dbgs() << "--------------------------------------------\n";
llvm::dbgs() << "Second pass: non-minimal conformance rules -\n";
llvm::dbgs() << "--------------------------------------------\n";
}
performHomotopyReduction([&](unsigned ruleID) -> bool {
const auto &rule = getRule(ruleID);
if (rule.isAnyConformanceRule() &&
redundantConformances.count(ruleID))
return true;
return false;
});
// Third pass: Eliminate all other redundant non-conformance rules.
if (Debug.contains(DebugFlags::HomotopyReduction)) {
llvm::dbgs() << "---------------------------------------\n";
llvm::dbgs() << "Third pass: all other redundant rules -\n";
llvm::dbgs() << "---------------------------------------\n";
}
performHomotopyReduction([&](unsigned ruleID) -> bool {
const auto &rule = getRule(ruleID);
if (!rule.isAnyConformanceRule())
return true;
return false;
});
// Check invariants after homotopy reduction.
verifyRewriteLoops();
verifyRedundantConformances(redundantConformances);
verifyMinimizedRules(redundantConformances);
}
/// In a conformance-valid rewrite system, any rule with unresolved symbols on
/// the left or right hand side should have been simplified by another rule.
bool RewriteSystem::hadError() const {
assert(Complete);
assert(Minimized);
for (const auto &rule : Rules) {
if (rule.isPermanent())
continue;
if (rule.isConflicting())
return true;
if (!rule.isRedundant() &&
!rule.isProtocolTypeAliasRule() &&
rule.containsUnresolvedSymbols())
return true;
}
return false;
}
/// Collect all non-permanent, non-redundant rules whose domain is equal to
/// one of the protocols in the connected component represented by this
/// rewrite system.
///
/// These rules form the requirement signatures of these protocols.
llvm::DenseMap<const ProtocolDecl *, RewriteSystem::MinimizedProtocolRules>
RewriteSystem::getMinimizedProtocolRules() const {
assert(Minimized);
assert(!Protos.empty());
llvm::DenseMap<const ProtocolDecl *, MinimizedProtocolRules> rules;
for (unsigned ruleID : indices(Rules)) {
const auto &rule = getRule(ruleID);
if (rule.isPermanent() ||
rule.isRedundant() ||
rule.isConflicting())
continue;
const auto *proto = rule.getLHS().getRootProtocol();
if (!isInMinimizationDomain(proto))
continue;
if (rule.isProtocolTypeAliasRule())
rules[proto].TypeAliases.push_back(ruleID);
else if (!rule.containsUnresolvedSymbols())
rules[proto].Requirements.push_back(ruleID);
}
return rules;
}
/// Collect all non-permanent, non-redundant rules whose left hand side
/// begins with a generic parameter symbol.
///
/// These rules form the top-level generic signature for this rewrite system.
std::vector<unsigned>
RewriteSystem::getMinimizedGenericSignatureRules() const {
assert(Minimized);
assert(Protos.empty());
std::vector<unsigned> rules;
for (unsigned ruleID : indices(Rules)) {
const auto &rule = getRule(ruleID);
if (rule.isPermanent() ||
rule.isRedundant() ||
rule.isConflicting() ||
rule.containsUnresolvedSymbols()) {
continue;
}
if (rule.getLHS()[0].getKind() != Symbol::Kind::GenericParam)
continue;
rules.push_back(ruleID);
}
return rules;
}
/// Verify that each loop begins and ends at its basepoint.
void RewriteSystem::verifyRewriteLoops() const {
#ifndef NDEBUG
for (const auto &loop : Loops) {
loop.verify(*this);
}
#endif
}
/// Assert if homotopy reduction failed to eliminate a redundant conformance,
/// since this suggests a misunderstanding on my part.
void RewriteSystem::verifyRedundantConformances(
const llvm::DenseSet<unsigned> &redundantConformances) const {
#ifndef NDEBUG
for (unsigned ruleID : redundantConformances) {
const auto &rule = getRule(ruleID);
assert(!rule.isPermanent() &&
"Permanent rule cannot be redundant");
assert(!rule.isIdentityConformanceRule() &&
"Identity conformance cannot be redundant");
assert(rule.isAnyConformanceRule() &&
"Redundant conformance is not a conformance rule?");
if (!rule.isRedundant()) {
llvm::errs() << "Homotopy reduction did not eliminate redundant "
<< "conformance?\n";
llvm::errs() << "(#" << ruleID << ") " << rule << "\n\n";
dump(llvm::errs());
abort();
}
}
#endif
}
// Assert if homotopy reduction failed to eliminate a rewrite rule it was
// supposed to delete.
void RewriteSystem::verifyMinimizedRules(
const llvm::DenseSet<unsigned> &redundantConformances) const {
#ifndef NDEBUG
for (unsigned ruleID : indices(Rules)) {
const auto &rule = getRule(ruleID);
// Ignore the rewrite rule if it is not part of our minimization domain.
if (!isInMinimizationDomain(rule.getLHS().getRootProtocol()))
continue;
// Note that sometimes permanent rules can be simplified, but they can never
// be redundant.
if (rule.isPermanent()) {
if (rule.isRedundant()) {
llvm::errs() << "Permanent rule is redundant: " << rule << "\n\n";
dump(llvm::errs());
abort();
}
continue;
}
// LHS-simplified rules should be redundant, unless they're protocol
// conformance rules, which unfortunately might no be redundant, because
// we try to keep them in the original protocol definition for
// compatibility with the GenericSignatureBuilder's minimization algorithm.
if (rule.isLHSSimplified() &&
!rule.isRedundant() &&
!rule.isProtocolConformanceRule()) {
llvm::errs() << "Simplified rule is not redundant: " << rule << "\n\n";
dump(llvm::errs());
abort();
}
// RHS-simplified and substitution-simplified rules should be redundant.
if ((rule.isRHSSimplified() ||
rule.isSubstitutionSimplified()) &&
!rule.isRedundant()) {
llvm::errs() << "Simplified rule is not redundant: " << rule << "\n\n";
dump(llvm::errs());
abort();
}
if (rule.isRedundant() &&
rule.isAnyConformanceRule() &&
!rule.isRHSSimplified() &&
!rule.isSubstitutionSimplified() &&
!rule.containsUnresolvedSymbols() &&
!redundantConformances.count(ruleID)) {
llvm::errs() << "Minimal conformance is redundant: " << rule << "\n\n";
dump(llvm::errs());
abort();
}
}
#endif
}