mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
548 lines
21 KiB
C++
548 lines
21 KiB
C++
//===--- MemoryBehavior.cpp -----------------------------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "sil-membehavior"
|
|
|
|
#include "swift/SIL/InstructionUtils.h"
|
|
#include "swift/SIL/MemAccessUtils.h"
|
|
#include "swift/SIL/SILVisitor.h"
|
|
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/EscapeAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/SideEffectAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/ValueTracking.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace swift;
|
|
|
|
// The MemoryBehavior Cache must not grow beyond this size.
|
|
// We limit the size of the MB cache to 2**14 because we want to limit the
|
|
// memory usage of this cache.
|
|
static const int MemoryBehaviorAnalysisMaxCacheSize = 16384;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Memory Behavior Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
using MemBehavior = SILInstruction::MemoryBehavior;
|
|
|
|
/// Visitor that determines the memory behavior of an instruction relative to a
|
|
/// specific SILValue (i.e. can the instruction cause the value to be read,
|
|
/// etc.).
|
|
///
|
|
/// TODO: Clarify what it means to return a MayHaveSideEffects result. Does this
|
|
/// mean that the instruction may release objects referenced by value 'V'?
|
|
/// Deallocate the an address contained in 'V'? Are any other code motion
|
|
/// barriers relevant here?
|
|
class MemoryBehaviorVisitor
|
|
: public SILInstructionVisitor<MemoryBehaviorVisitor, MemBehavior> {
|
|
|
|
AliasAnalysis *AA;
|
|
|
|
SideEffectAnalysis *SEA;
|
|
|
|
EscapeAnalysis *EA;
|
|
|
|
/// The value we are attempting to discover memory behavior relative to.
|
|
SILValue V;
|
|
|
|
/// Cache either the address of the access corresponding to memory at 'V', or
|
|
/// 'V' itself if it isn't recognized as part of an access. The cached value
|
|
/// is always a valid SILValue.
|
|
SILValue cachedValueAddress;
|
|
|
|
Optional<bool> cachedIsLetValue;
|
|
|
|
/// The SILType of the value.
|
|
Optional<SILType> TypedAccessTy;
|
|
|
|
public:
|
|
MemoryBehaviorVisitor(AliasAnalysis *AA, SideEffectAnalysis *SEA,
|
|
EscapeAnalysis *EA, SILValue V)
|
|
: AA(AA), SEA(SEA), EA(EA), V(V) {}
|
|
|
|
SILType getValueTBAAType() {
|
|
if (!TypedAccessTy)
|
|
TypedAccessTy = computeTBAAType(V);
|
|
return *TypedAccessTy;
|
|
}
|
|
|
|
/// If 'V' is an address projection within a formal access, return the
|
|
/// canonical address of the formal access if possible without looking past
|
|
/// any storage casts. Otherwise, a "best-effort" address
|
|
///
|
|
/// If 'V' is an address, then the returned value is also an address.
|
|
SILValue getValueAddress() {
|
|
if (!cachedValueAddress) {
|
|
cachedValueAddress =
|
|
V->getType().isAddress() ? getTypedAccessAddress(V) : V;
|
|
}
|
|
return cachedValueAddress;
|
|
}
|
|
|
|
/// Return true if 'V's accessed address is that of a let variables.
|
|
bool isLetValue() {
|
|
if (!cachedIsLetValue) {
|
|
cachedIsLetValue =
|
|
V->getType().isAddress() && isLetAddress(getValueAddress());
|
|
}
|
|
return cachedIsLetValue.getValue();
|
|
}
|
|
|
|
// Return true is the given address (or pointer) may alias with 'V'.
|
|
bool mayAlias(SILValue opAddress) {
|
|
if (AA->isNoAlias(opAddress, V, computeTBAAType(opAddress),
|
|
getValueTBAAType())) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "No alias: access " << opAddress << " value " << V);
|
|
return false;
|
|
}
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "May alias: access " << opAddress << " value " << V);
|
|
return true;
|
|
}
|
|
|
|
MemBehavior visitValueBase(ValueBase *V) {
|
|
llvm_unreachable("unimplemented");
|
|
}
|
|
|
|
MemBehavior visitSILInstruction(SILInstruction *Inst) {
|
|
// If we do not have any more information, just use the general memory
|
|
// behavior implementation.
|
|
auto Behavior = Inst->getMemoryBehavior();
|
|
|
|
// If this is a regular read-write access then return the computed memory
|
|
// behavior.
|
|
if (!isLetValue())
|
|
return Behavior;
|
|
|
|
// If this is a read-only access to 'let variable'. Other side effects, such
|
|
// as releases of the object containing a 'let' property are still relevant.
|
|
switch (Behavior) {
|
|
case MemBehavior::MayReadWrite: return MemBehavior::MayRead;
|
|
case MemBehavior::MayWrite: return MemBehavior::None;
|
|
default: return Behavior;
|
|
}
|
|
}
|
|
|
|
MemBehavior visitBeginAccessInst(BeginAccessInst *beginAccess) {
|
|
switch (beginAccess->getAccessKind()) {
|
|
case SILAccessKind::Deinit:
|
|
// A [deinit] only directly reads from the object. The fact that it frees
|
|
// memory is modeled more precisely by the release operations within the
|
|
// deinit scope. Therefore, handle it like a [read] here...
|
|
LLVM_FALLTHROUGH;
|
|
case SILAccessKind::Read:
|
|
if (!mayAlias(beginAccess->getSource()))
|
|
return MemBehavior::None;
|
|
|
|
return MemBehavior::MayRead;
|
|
|
|
case SILAccessKind::Modify:
|
|
if (isLetValue()) {
|
|
assert(getAccessBase(beginAccess) != getValueAddress()
|
|
&& "let modification not allowed");
|
|
return MemBehavior::None;
|
|
}
|
|
// [modify] has a special case for ignoring 'let's, but otherwise is
|
|
// identical to an [init]...
|
|
LLVM_FALLTHROUGH;
|
|
case SILAccessKind::Init:
|
|
if (!mayAlias(beginAccess->getSource()))
|
|
return MemBehavior::None;
|
|
|
|
return MemBehavior::MayWrite;
|
|
}
|
|
llvm_unreachable("invalid access kind");
|
|
}
|
|
|
|
MemBehavior visitEndAccessInst(EndAccessInst *endAccess) {
|
|
return visitBeginAccessInst(endAccess->getBeginAccess());
|
|
}
|
|
|
|
MemBehavior visitLoadInst(LoadInst *LI);
|
|
MemBehavior visitStoreInst(StoreInst *SI);
|
|
MemBehavior visitCopyAddrInst(CopyAddrInst *CAI);
|
|
MemBehavior visitApplyInst(ApplyInst *AI);
|
|
MemBehavior visitTryApplyInst(TryApplyInst *AI);
|
|
MemBehavior visitBeginApplyInst(BeginApplyInst *AI);
|
|
MemBehavior visitEndApplyInst(EndApplyInst *EAI);
|
|
MemBehavior visitAbortApplyInst(AbortApplyInst *AAI);
|
|
MemBehavior getApplyBehavior(FullApplySite AS);
|
|
MemBehavior visitBuiltinInst(BuiltinInst *BI);
|
|
MemBehavior visitStrongReleaseInst(StrongReleaseInst *BI);
|
|
MemBehavior visitReleaseValueInst(ReleaseValueInst *BI);
|
|
MemBehavior visitSetDeallocatingInst(SetDeallocatingInst *BI);
|
|
MemBehavior visitBeginCOWMutationInst(BeginCOWMutationInst *BCMI);
|
|
#define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
|
|
MemBehavior visit##Name##ReleaseInst(Name##ReleaseInst *BI);
|
|
#include "swift/AST/ReferenceStorage.def"
|
|
|
|
// Instructions which are none if our SILValue does not alias one of its
|
|
// arguments. If we cannot prove such a thing, return the relevant memory
|
|
// behavior.
|
|
#define OPERANDALIAS_MEMBEHAVIOR_INST(Name) \
|
|
MemBehavior visit##Name(Name *I) { \
|
|
for (Operand & Op : I->getAllOperands()) { \
|
|
if (mayAlias(Op.get())) \
|
|
return I->getMemoryBehavior(); \
|
|
} \
|
|
return MemBehavior::None; \
|
|
}
|
|
|
|
OPERANDALIAS_MEMBEHAVIOR_INST(InjectEnumAddrInst)
|
|
OPERANDALIAS_MEMBEHAVIOR_INST(UncheckedTakeEnumDataAddrInst)
|
|
OPERANDALIAS_MEMBEHAVIOR_INST(InitExistentialAddrInst)
|
|
OPERANDALIAS_MEMBEHAVIOR_INST(DeinitExistentialAddrInst)
|
|
OPERANDALIAS_MEMBEHAVIOR_INST(DeallocStackInst)
|
|
OPERANDALIAS_MEMBEHAVIOR_INST(FixLifetimeInst)
|
|
OPERANDALIAS_MEMBEHAVIOR_INST(ClassifyBridgeObjectInst)
|
|
OPERANDALIAS_MEMBEHAVIOR_INST(ValueToBridgeObjectInst)
|
|
#undef OPERANDALIAS_MEMBEHAVIOR_INST
|
|
|
|
// Override simple behaviors where MayHaveSideEffects is too general and
|
|
// encompasses other behavior that is not read/write/ref count decrement
|
|
// behavior we care about.
|
|
#define SIMPLE_MEMBEHAVIOR_INST(Name, Behavior) \
|
|
MemBehavior visit##Name(Name *I) { return MemBehavior::Behavior; }
|
|
SIMPLE_MEMBEHAVIOR_INST(CondFailInst, None)
|
|
#undef SIMPLE_MEMBEHAVIOR_INST
|
|
|
|
// Incrementing reference counts doesn't have an observable memory effect.
|
|
#define REFCOUNTINC_MEMBEHAVIOR_INST(Name) \
|
|
MemBehavior visit##Name(Name *I) { \
|
|
return MemBehavior::None; \
|
|
}
|
|
REFCOUNTINC_MEMBEHAVIOR_INST(StrongRetainInst)
|
|
REFCOUNTINC_MEMBEHAVIOR_INST(RetainValueInst)
|
|
#define UNCHECKED_REF_STORAGE(Name, ...) \
|
|
REFCOUNTINC_MEMBEHAVIOR_INST(Name##RetainValueInst) \
|
|
REFCOUNTINC_MEMBEHAVIOR_INST(StrongCopy##Name##ValueInst)
|
|
#define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
|
|
REFCOUNTINC_MEMBEHAVIOR_INST(Name##RetainInst) \
|
|
REFCOUNTINC_MEMBEHAVIOR_INST(StrongRetain##Name##Inst) \
|
|
REFCOUNTINC_MEMBEHAVIOR_INST(StrongCopy##Name##ValueInst)
|
|
#include "swift/AST/ReferenceStorage.def"
|
|
#undef REFCOUNTINC_MEMBEHAVIOR_INST
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
MemBehavior MemoryBehaviorVisitor::visitLoadInst(LoadInst *LI) {
|
|
if (!mayAlias(LI->getOperand()))
|
|
return MemBehavior::None;
|
|
|
|
// A take is modelled as a write. See MemoryBehavior::MayWrite.
|
|
if (LI->getOwnershipQualifier() == LoadOwnershipQualifier::Take)
|
|
return MemBehavior::MayReadWrite;
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " Could not prove that load inst does not alias "
|
|
"pointer. Returning may read.\n");
|
|
return MemBehavior::MayRead;
|
|
}
|
|
|
|
MemBehavior MemoryBehaviorVisitor::visitStoreInst(StoreInst *SI) {
|
|
// No store besides the initialization of a "let"-variable
|
|
// can have any effect on the value of this "let" variable.
|
|
if (isLetValue() && (getAccessBase(SI->getDest()) != getValueAddress())) {
|
|
return MemBehavior::None;
|
|
}
|
|
// If the store dest cannot alias the pointer in question, then the
|
|
// specified value cannot be modified by the store.
|
|
if (!mayAlias(SI->getDest()))
|
|
return MemBehavior::None;
|
|
|
|
// Otherwise, a store just writes.
|
|
LLVM_DEBUG(llvm::dbgs() << " Could not prove store does not alias inst. "
|
|
"Returning MayWrite.\n");
|
|
return MemBehavior::MayWrite;
|
|
}
|
|
|
|
MemBehavior MemoryBehaviorVisitor::visitCopyAddrInst(CopyAddrInst *CAI) {
|
|
// If it's an assign to the destination, a destructor might be called on the
|
|
// old value. This can have any side effects.
|
|
// We could also check if it's a trivial type (which cannot have any side
|
|
// effect on destruction), but such copy_addr instructions are optimized to
|
|
// load/stores anyway, so it's probably not worth it.
|
|
if (!CAI->isInitializationOfDest())
|
|
return MemBehavior::MayHaveSideEffects;
|
|
|
|
bool mayWrite = mayAlias(CAI->getDest());
|
|
bool mayRead = mayAlias(CAI->getSrc());
|
|
|
|
if (mayRead) {
|
|
if (mayWrite)
|
|
return MemBehavior::MayReadWrite;
|
|
|
|
// A take is modelled as a write. See MemoryBehavior::MayWrite.
|
|
if (CAI->isTakeOfSrc())
|
|
return MemBehavior::MayReadWrite;
|
|
|
|
return MemBehavior::MayRead;
|
|
}
|
|
if (mayWrite)
|
|
return MemBehavior::MayWrite;
|
|
|
|
return MemBehavior::None;
|
|
}
|
|
|
|
MemBehavior MemoryBehaviorVisitor::visitBuiltinInst(BuiltinInst *BI) {
|
|
// If our callee is not a builtin, be conservative and return may have side
|
|
// effects.
|
|
if (!BI) {
|
|
return MemBehavior::MayHaveSideEffects;
|
|
}
|
|
|
|
// If the builtin is read none, it does not read or write memory.
|
|
if (!BI->mayReadOrWriteMemory()) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Found apply of read none builtin. Returning"
|
|
" None.\n");
|
|
return MemBehavior::None;
|
|
}
|
|
|
|
// If the builtin is side effect free, then it can only read memory.
|
|
if (!BI->mayHaveSideEffects()) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Found apply of side effect free builtin. "
|
|
"Returning MayRead.\n");
|
|
return MemBehavior::MayRead;
|
|
}
|
|
|
|
// FIXME: If the value (or any other values from the instruction that the
|
|
// value comes from) that we are tracking does not escape and we don't alias
|
|
// any of the arguments of the apply inst, we should be ok.
|
|
|
|
// Otherwise be conservative and return that we may have side effects.
|
|
LLVM_DEBUG(llvm::dbgs() << " Found apply of side effect builtin. "
|
|
"Returning MayHaveSideEffects.\n");
|
|
return MemBehavior::MayHaveSideEffects;
|
|
}
|
|
|
|
MemBehavior MemoryBehaviorVisitor::visitTryApplyInst(TryApplyInst *AI) {
|
|
return getApplyBehavior(AI);
|
|
}
|
|
|
|
MemBehavior MemoryBehaviorVisitor::visitApplyInst(ApplyInst *AI) {
|
|
return getApplyBehavior(AI);
|
|
}
|
|
|
|
MemBehavior MemoryBehaviorVisitor::visitBeginApplyInst(BeginApplyInst *AI) {
|
|
return getApplyBehavior(AI);
|
|
}
|
|
|
|
MemBehavior MemoryBehaviorVisitor::visitEndApplyInst(EndApplyInst *EAI) {
|
|
return getApplyBehavior(EAI->getBeginApply());
|
|
}
|
|
|
|
MemBehavior MemoryBehaviorVisitor::visitAbortApplyInst(AbortApplyInst *AAI) {
|
|
return getApplyBehavior(AAI->getBeginApply());
|
|
}
|
|
|
|
/// Returns true if the \p address may have any users which let the address
|
|
/// escape in an unusual way, e.g. with an address_to_pointer instruction.
|
|
static bool hasEscapingUses(SILValue address, int &numChecks) {
|
|
for (Operand *use : address->getUses()) {
|
|
SILInstruction *user = use->getUser();
|
|
|
|
// Avoid quadratic complexity in corner cases. A limit of 24 is more than
|
|
// enough in most cases.
|
|
if (++numChecks > 24)
|
|
return true;
|
|
|
|
switch (user->getKind()) {
|
|
case SILInstructionKind::DebugValueAddrInst:
|
|
case SILInstructionKind::FixLifetimeInst:
|
|
case SILInstructionKind::LoadInst:
|
|
case SILInstructionKind::StoreInst:
|
|
case SILInstructionKind::CopyAddrInst:
|
|
case SILInstructionKind::DestroyAddrInst:
|
|
case SILInstructionKind::DeallocStackInst:
|
|
case SILInstructionKind::EndAccessInst:
|
|
// Those instructions have no result and cannot escape the address.
|
|
break;
|
|
case SILInstructionKind::ApplyInst:
|
|
case SILInstructionKind::TryApplyInst:
|
|
case SILInstructionKind::BeginApplyInst:
|
|
// Apply instructions can not let an address escape either. It's not
|
|
// possible that an address, passed as an indirect parameter, escapes
|
|
// the function in any way (which is not unsafe and undefined behavior).
|
|
break;
|
|
case SILInstructionKind::BeginAccessInst:
|
|
case SILInstructionKind::OpenExistentialAddrInst:
|
|
case SILInstructionKind::UncheckedTakeEnumDataAddrInst:
|
|
case SILInstructionKind::StructElementAddrInst:
|
|
case SILInstructionKind::TupleElementAddrInst:
|
|
case SILInstructionKind::UncheckedAddrCastInst:
|
|
// Check the uses of address projections.
|
|
if (hasEscapingUses(cast<SingleValueInstruction>(user), numChecks))
|
|
return true;
|
|
break;
|
|
case SILInstructionKind::AddressToPointerInst:
|
|
// This is _the_ instruction which can let an address escape.
|
|
return true;
|
|
default:
|
|
// To be conservative, also bail for anything we don't handle here.
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
MemBehavior MemoryBehaviorVisitor::getApplyBehavior(FullApplySite AS) {
|
|
|
|
// Do a quick check first: if V is directly passed to an in_guaranteed
|
|
// argument, we know that the function cannot write to it.
|
|
for (Operand &argOp : AS.getArgumentOperands()) {
|
|
if (argOp.get() == V &&
|
|
AS.getArgumentConvention(argOp) ==
|
|
swift::SILArgumentConvention::Indirect_In_Guaranteed) {
|
|
return MemBehavior::MayRead;
|
|
}
|
|
}
|
|
|
|
SILValue object = getUnderlyingObject(V);
|
|
int numUsesChecked = 0;
|
|
|
|
// For exclusive/local addresses we can do a quick and good check with alias
|
|
// analysis. For everything else we use escape analysis (see below).
|
|
// TODO: The check for not-escaping can probably done easier with the upcoming
|
|
// API of AccessStorage.
|
|
bool nonEscapingAddress =
|
|
(isa<AllocStackInst>(object) || isExclusiveArgument(object)) &&
|
|
!hasEscapingUses(object, numUsesChecked);
|
|
|
|
FunctionSideEffects applyEffects;
|
|
SEA->getCalleeEffects(applyEffects, AS);
|
|
|
|
MemBehavior behavior = MemBehavior::None;
|
|
MemBehavior globalBehavior = applyEffects.getGlobalEffects().getMemBehavior(
|
|
RetainObserveKind::IgnoreRetains);
|
|
|
|
// If it's a non-escaping address, we don't care about the "global" effects
|
|
// of the called function.
|
|
if (!nonEscapingAddress)
|
|
behavior = globalBehavior;
|
|
|
|
// Check all parameter effects.
|
|
for (unsigned argIdx = 0, end = AS.getNumArguments();
|
|
argIdx < end && behavior < MemBehavior::MayHaveSideEffects;
|
|
++argIdx) {
|
|
SILValue arg = AS.getArgument(argIdx);
|
|
|
|
// In case the argument is not an address, alias analysis will always report
|
|
// a no-alias. Therefore we have to treat non-address arguments
|
|
// conservatively here. For example V could be a ref_element_addr of a
|
|
// reference argument. In this case V clearly "aliases" the argument, but
|
|
// this is not reported by alias analysis.
|
|
if ((!nonEscapingAddress && !arg->getType().isAddress()) ||
|
|
mayAlias(arg)) {
|
|
MemBehavior argBehavior = applyEffects.getArgumentBehavior(AS, argIdx);
|
|
behavior = combineMemoryBehavior(behavior, argBehavior);
|
|
}
|
|
}
|
|
|
|
if (behavior > MemBehavior::None) {
|
|
if (behavior > MemBehavior::MayRead && isLetValue())
|
|
behavior = MemBehavior::MayRead;
|
|
|
|
// Ask escape analysis.
|
|
if (!EA->canEscapeTo(V, AS))
|
|
behavior = MemBehavior::None;
|
|
}
|
|
LLVM_DEBUG(llvm::dbgs() << " Found apply, returning " << behavior << '\n');
|
|
|
|
return behavior;
|
|
}
|
|
|
|
MemBehavior
|
|
MemoryBehaviorVisitor::visitStrongReleaseInst(StrongReleaseInst *SI) {
|
|
if (!EA->canEscapeTo(V, SI))
|
|
return MemBehavior::None;
|
|
return MemBehavior::MayHaveSideEffects;
|
|
}
|
|
|
|
#define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
|
|
MemBehavior \
|
|
MemoryBehaviorVisitor::visit##Name##ReleaseInst(Name##ReleaseInst *SI) { \
|
|
if (!EA->canEscapeTo(V, SI)) \
|
|
return MemBehavior::None; \
|
|
return MemBehavior::MayHaveSideEffects; \
|
|
}
|
|
#include "swift/AST/ReferenceStorage.def"
|
|
|
|
MemBehavior MemoryBehaviorVisitor::visitReleaseValueInst(ReleaseValueInst *SI) {
|
|
if (!EA->canEscapeTo(V, SI))
|
|
return MemBehavior::None;
|
|
return MemBehavior::MayHaveSideEffects;
|
|
}
|
|
|
|
MemBehavior MemoryBehaviorVisitor::visitSetDeallocatingInst(SetDeallocatingInst *SDI) {
|
|
return MemBehavior::None;
|
|
}
|
|
|
|
MemBehavior MemoryBehaviorVisitor::
|
|
visitBeginCOWMutationInst(BeginCOWMutationInst *BCMI) {
|
|
// begin_cow_mutation is defined to have side effects, because it has
|
|
// dependencies with instructions which retain the buffer operand.
|
|
// But it never interferes with any memory address.
|
|
return MemBehavior::None;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Top Level Entrypoint
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
MemBehavior
|
|
AliasAnalysis::computeMemoryBehavior(SILInstruction *Inst, SILValue V) {
|
|
MemBehaviorKeyTy Key = toMemoryBehaviorKey(Inst, V);
|
|
// Check if we've already computed this result.
|
|
auto It = MemoryBehaviorCache.find(Key);
|
|
if (It != MemoryBehaviorCache.end()) {
|
|
return It->second;
|
|
}
|
|
|
|
// Flush the cache if the size of the cache is too large.
|
|
if (MemoryBehaviorCache.size() > MemoryBehaviorAnalysisMaxCacheSize) {
|
|
MemoryBehaviorCache.clear();
|
|
MemoryBehaviorNodeToIndex.clear();
|
|
|
|
// Key is no longer valid as we cleared the MemoryBehaviorNodeToIndex.
|
|
Key = toMemoryBehaviorKey(Inst, V);
|
|
}
|
|
|
|
// Calculate the aliasing result and store it in the cache.
|
|
auto Result = computeMemoryBehaviorInner(Inst, V);
|
|
MemoryBehaviorCache[Key] = Result;
|
|
return Result;
|
|
}
|
|
|
|
MemBehavior
|
|
AliasAnalysis::computeMemoryBehaviorInner(SILInstruction *Inst, SILValue V) {
|
|
LLVM_DEBUG(llvm::dbgs() << "GET MEMORY BEHAVIOR FOR:\n " << *Inst << " "
|
|
<< *V);
|
|
assert(SEA && "SideEffectsAnalysis must be initialized!");
|
|
return MemoryBehaviorVisitor(this, SEA, EA, V).visit(Inst);
|
|
}
|
|
|
|
MemBehaviorKeyTy AliasAnalysis::toMemoryBehaviorKey(SILInstruction *V1,
|
|
SILValue V2) {
|
|
size_t idx1 =
|
|
MemoryBehaviorNodeToIndex.getIndex(V1->getRepresentativeSILNodeInObject());
|
|
assert(idx1 != std::numeric_limits<size_t>::max() &&
|
|
"~0 index reserved for empty/tombstone keys");
|
|
size_t idx2 = MemoryBehaviorNodeToIndex.getIndex(
|
|
V2->getRepresentativeSILNodeInObject());
|
|
assert(idx2 != std::numeric_limits<size_t>::max() &&
|
|
"~0 index reserved for empty/tombstone keys");
|
|
return {idx1, idx2};
|
|
}
|