mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
performMemberLookup, eliminating a ton of duplicated logic, but keeping the same general behavior. - Now that r30787 landed, we can have diagnoseGeneralMemberFailure inform clients when a member lookup fails due to referencing a candidate decl of ErrorType (i.e, it is already invalid somehow). When this happens, there is no reason to diagnose a problem, because the original issue has been diagnosed and anything we produce now is just garbage. The second point cleans up a bunch of bogus diagnostics in the testsuite, which are *actually* due to upstream error that are already diagnosed. Swift SVN r30789
4567 lines
166 KiB
C++
4567 lines
166 KiB
C++
//===--- CSSimplify.cpp - Constraint Simplification -----------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements simplifications of constraints within the constraint
|
|
// system.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ConstraintSystem.h"
|
|
#include "swift/Basic/StringExtras.h"
|
|
#include "swift/ClangImporter/ClangModule.h"
|
|
|
|
using namespace swift;
|
|
using namespace constraints;
|
|
|
|
MatchCallArgumentListener::~MatchCallArgumentListener() { }
|
|
|
|
void MatchCallArgumentListener::extraArgument(unsigned argIdx) { }
|
|
|
|
void MatchCallArgumentListener::missingArgument(unsigned paramIdx) { }
|
|
|
|
void MatchCallArgumentListener::outOfOrderArgument(unsigned argIdx,
|
|
unsigned prevArgIdx) {
|
|
}
|
|
|
|
bool MatchCallArgumentListener::relabelArguments(ArrayRef<Identifier> newNames){
|
|
return true;
|
|
}
|
|
|
|
/// Produce a score (smaller is better) comparing a parameter name and
|
|
/// potentially-typo'd argument name.
|
|
///
|
|
/// \param paramName The name of the parameter.
|
|
/// \param argName The name of the argument.
|
|
/// \param maxScore The maximum score permitted by this comparison, or
|
|
/// 0 if there is no limit.
|
|
///
|
|
/// \returns the score, if it is good enough to even consider this a match.
|
|
/// Otherwise, an empty optional.
|
|
///
|
|
static Optional<unsigned> scoreParamAndArgNameTypo(StringRef paramName,
|
|
StringRef argName,
|
|
unsigned maxScore) {
|
|
using namespace camel_case;
|
|
|
|
// If one of the names starts with "with", drop it and compare the rest.
|
|
bool argStartsWith = startsWithIgnoreFirstCase(argName, "with");
|
|
bool paramStartsWith = startsWithIgnoreFirstCase(paramName, "with");
|
|
if (argStartsWith != paramStartsWith) {
|
|
if (argStartsWith)
|
|
argName = argName.substr(4);
|
|
else
|
|
paramName = paramName.substr(4);
|
|
}
|
|
|
|
// Compute the edit distance.
|
|
unsigned dist = argName.edit_distance(paramName, /*AllowReplacements=*/true,
|
|
/*MaxEditDistance=*/maxScore);
|
|
|
|
// If the edit distance would be too long, we're done.
|
|
if (maxScore != 0 && dist > maxScore)
|
|
return None;
|
|
|
|
// The distance can be zero due to the "with" transformation above.
|
|
if (dist == 0)
|
|
return 1;
|
|
|
|
// Only allow about one typo for every two properly-typed characters, which
|
|
// prevents completely-wacky suggestions in many cases.
|
|
if (dist > (argName.size() + 1) / 3)
|
|
return None;
|
|
|
|
return dist;
|
|
}
|
|
|
|
SmallVector<CallArgParam, 4> constraints::decomposeArgParamType(Type type) {
|
|
SmallVector<CallArgParam, 4> result;
|
|
switch (type->getKind()) {
|
|
case TypeKind::Tuple:
|
|
for (const auto &elt : cast<TupleType>(type.getPointer())->getElements()) {
|
|
CallArgParam argParam;
|
|
argParam.Ty = elt.isVararg() ? elt.getVarargBaseTy() : elt.getType();
|
|
argParam.Label = elt.getName();
|
|
argParam.HasDefaultArgument
|
|
= elt.getDefaultArgKind() != DefaultArgumentKind::None;
|
|
argParam.Variadic = elt.isVararg();
|
|
result.push_back(argParam);
|
|
}
|
|
break;
|
|
|
|
case TypeKind::Paren: {
|
|
CallArgParam argParam;
|
|
argParam.Ty = cast<ParenType>(type.getPointer())->getUnderlyingType();
|
|
result.push_back(argParam);
|
|
break;
|
|
}
|
|
|
|
default: {
|
|
CallArgParam argParam;
|
|
argParam.Ty = type;
|
|
result.push_back(argParam);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
bool constraints::
|
|
matchCallArguments(ArrayRef<CallArgParam> args,
|
|
ArrayRef<CallArgParam> params,
|
|
bool hasTrailingClosure,
|
|
bool allowFixes,
|
|
MatchCallArgumentListener &listener,
|
|
SmallVectorImpl<ParamBinding> ¶meterBindings) {
|
|
// Keep track of the parameter we're matching and what argument indices
|
|
// got bound to each parameter.
|
|
unsigned paramIdx, numParams = params.size();
|
|
parameterBindings.clear();
|
|
parameterBindings.resize(numParams);
|
|
|
|
// Keep track of which arguments we have claimed from the argument tuple.
|
|
unsigned nextArgIdx = 0, numArgs = args.size();
|
|
SmallVector<bool, 4> claimedArgs(numArgs, false);
|
|
SmallVector<Identifier, 4> actualArgNames;
|
|
unsigned numClaimedArgs = 0;
|
|
|
|
// Indicates whether any of the arguments are potentially out-of-order,
|
|
// requiring further checking at the end.
|
|
bool potentiallyOutOfOrder = false;
|
|
|
|
// Local function that claims the argument at \c argNumber, returning the
|
|
// index of the claimed argument. This is primarily a helper for
|
|
// \c claimNextNamed.
|
|
auto claim = [&](Identifier expectedName, unsigned argNumber,
|
|
bool ignoreNameClash = false) -> unsigned {
|
|
// Make sure we can claim this argument.
|
|
assert(argNumber != numArgs && "Must have a valid index to claim");
|
|
assert(!claimedArgs[argNumber] && "Argument already claimed");
|
|
|
|
if (!actualArgNames.empty()) {
|
|
// We're recording argument names; record this one.
|
|
actualArgNames[argNumber] = expectedName;
|
|
} else if (args[argNumber].Label != expectedName && !ignoreNameClash) {
|
|
// We have an argument name mismatch. Start recording argument names.
|
|
actualArgNames.resize(numArgs);
|
|
|
|
// Figure out previous argument names from the parameter bindings.
|
|
for (unsigned i = 0; i != numParams; ++i) {
|
|
const auto ¶m = params[i];
|
|
bool firstArg = true;
|
|
|
|
for (auto argIdx : parameterBindings[i]) {
|
|
actualArgNames[argIdx] = firstArg ? param.Label : Identifier();
|
|
firstArg = false;
|
|
}
|
|
}
|
|
|
|
// Record this argument name.
|
|
actualArgNames[argNumber] = expectedName;
|
|
}
|
|
|
|
claimedArgs[argNumber] = true;
|
|
++numClaimedArgs;
|
|
return argNumber;
|
|
};
|
|
|
|
// Local function that skips over any claimed arguments.
|
|
auto skipClaimedArgs = [&]() {
|
|
while (nextArgIdx != numArgs && claimedArgs[nextArgIdx])
|
|
++nextArgIdx;
|
|
};
|
|
|
|
// Local function that retrieves the next unclaimed argument with the given
|
|
// name (which may be empty). This routine claims the argument.
|
|
auto claimNextNamed
|
|
= [&](Identifier name, bool ignoreNameMismatch) -> Optional<unsigned> {
|
|
// Skip over any claimed arguments.
|
|
skipClaimedArgs();
|
|
|
|
// If we've claimed all of the arguments, there's nothing more to do.
|
|
if (numClaimedArgs == numArgs)
|
|
return None;
|
|
|
|
// When the expected name is empty, we claim the next argument if it has
|
|
// no name.
|
|
if (name.empty()) {
|
|
// Nothing to claim.
|
|
if (nextArgIdx == numArgs ||
|
|
claimedArgs[nextArgIdx] ||
|
|
(args[nextArgIdx].hasLabel() && !ignoreNameMismatch))
|
|
return None;
|
|
|
|
return claim(name, nextArgIdx);
|
|
}
|
|
|
|
// If the name matches, claim this argument.
|
|
if (nextArgIdx != numArgs &&
|
|
(ignoreNameMismatch || args[nextArgIdx].Label == name)) {
|
|
return claim(name, nextArgIdx);
|
|
}
|
|
|
|
// The name didn't match. Go hunting for an unclaimed argument whose name
|
|
// does match.
|
|
Optional<unsigned> claimedWithSameName;
|
|
for (unsigned i = nextArgIdx; i != numArgs; ++i) {
|
|
// Skip arguments where the name doesn't match.
|
|
if (args[i].Label != name)
|
|
continue;
|
|
|
|
// Skip claimed arguments.
|
|
if (claimedArgs[i]) {
|
|
// Note that we have already claimed an argument with the same name.
|
|
if (!claimedWithSameName)
|
|
claimedWithSameName = i;
|
|
continue;
|
|
}
|
|
|
|
// We found a match. If the match wasn't the next one, we have
|
|
// potentially out of order arguments.
|
|
if (i != nextArgIdx)
|
|
potentiallyOutOfOrder = true;
|
|
|
|
// Claim it.
|
|
return claim(name, i);
|
|
}
|
|
|
|
// If we're not supposed to attempt any fixes, we're done.
|
|
if (!allowFixes)
|
|
return None;
|
|
|
|
// Several things could have gone wrong here, and we'll check for each
|
|
// of them at some point:
|
|
// - The keyword argument might be redundant, in which case we can point
|
|
// out the issue.
|
|
// - The argument might be unnamed, in which case we try to fix the
|
|
// problem by adding the name.
|
|
// - The keyword argument might be a typo for an actual argument name, in
|
|
// which case we should find the closest match to correct to.
|
|
|
|
// Redundant keyword arguments.
|
|
if (claimedWithSameName) {
|
|
// FIXME: We can provide better diagnostics here.
|
|
return None;
|
|
}
|
|
|
|
// Missing a keyword argument name.
|
|
if (nextArgIdx != numArgs && !args[nextArgIdx].hasLabel()) {
|
|
// Claim the next argument.
|
|
return claim(name, nextArgIdx);
|
|
}
|
|
|
|
// Typo correction is handled in a later pass.
|
|
return None;
|
|
};
|
|
|
|
// Local function that attempts to bind the given parameter to arguments in
|
|
// the list.
|
|
bool haveUnfulfilledParams = false;
|
|
auto bindNextParameter = [&](bool ignoreNameMismatch) {
|
|
const auto ¶m = params[paramIdx];
|
|
|
|
// Handle variadic parameters.
|
|
if (param.Variadic) {
|
|
// Claim the next argument with the name of this parameter.
|
|
auto claimed = claimNextNamed(param.Label, ignoreNameMismatch);
|
|
|
|
// If there was no such argument, leave the argument unf
|
|
if (!claimed) {
|
|
haveUnfulfilledParams = true;
|
|
return;
|
|
}
|
|
|
|
// Record the first argument for the variadic.
|
|
parameterBindings[paramIdx].push_back(*claimed);
|
|
|
|
// Claim any additional unnamed arguments.
|
|
while ((claimed = claimNextNamed(Identifier(), false))) {
|
|
parameterBindings[paramIdx].push_back(*claimed);
|
|
}
|
|
|
|
skipClaimedArgs();
|
|
return;
|
|
}
|
|
|
|
// Try to claim an argument for this parameter.
|
|
if (auto claimed = claimNextNamed(param.Label, ignoreNameMismatch)) {
|
|
parameterBindings[paramIdx].push_back(*claimed);
|
|
skipClaimedArgs();
|
|
return;
|
|
}
|
|
|
|
// There was no argument to claim. Leave the argument unfulfilled.
|
|
haveUnfulfilledParams = true;
|
|
};
|
|
|
|
// If we have a trailing closure, it maps to the last parameter.
|
|
if (hasTrailingClosure && numParams > 0) {
|
|
claimedArgs[numArgs-1] = true;
|
|
++numClaimedArgs;
|
|
parameterBindings[numParams-1].push_back(numArgs-1);
|
|
}
|
|
|
|
// Mark through the parameters, binding them to their arguments.
|
|
for (paramIdx = 0; paramIdx != numParams; ++paramIdx) {
|
|
if (parameterBindings[paramIdx].empty())
|
|
bindNextParameter(false);
|
|
}
|
|
|
|
// If we have any unclaimed arguments, complain about those.
|
|
if (numClaimedArgs != numArgs) {
|
|
|
|
// Find all of the named, unclaimed arguments.
|
|
llvm::SmallVector<unsigned, 4> unclaimedNamedArgs;
|
|
for (nextArgIdx = 0; skipClaimedArgs(), nextArgIdx != numArgs;
|
|
++nextArgIdx) {
|
|
if (args[nextArgIdx].hasLabel())
|
|
unclaimedNamedArgs.push_back(nextArgIdx);
|
|
}
|
|
|
|
if (!unclaimedNamedArgs.empty()) {
|
|
// Find all of the named, unfulfilled parameters.
|
|
llvm::SmallVector<unsigned, 4> unfulfilledNamedParams;
|
|
bool hasUnfulfilledUnnamedParams = false;
|
|
for (paramIdx = 0; paramIdx != numParams; ++paramIdx ) {
|
|
if (parameterBindings[paramIdx].empty()) {
|
|
if (params[paramIdx].hasLabel())
|
|
unfulfilledNamedParams.push_back(paramIdx);
|
|
else
|
|
hasUnfulfilledUnnamedParams = true;
|
|
}
|
|
}
|
|
|
|
if (!unfulfilledNamedParams.empty()) {
|
|
// Use typo correction to find the best matches.
|
|
// FIXME: There is undoubtedly a good dynamic-programming algorithm
|
|
// to find the best assignment here.
|
|
for (auto argIdx : unclaimedNamedArgs) {
|
|
auto argName = args[argIdx].Label;
|
|
|
|
// Find the closest matching unfulfilled named parameter.
|
|
unsigned bestScore = 0;
|
|
unsigned best = 0;
|
|
for (unsigned i = 0, n = unfulfilledNamedParams.size(); i != n; ++i) {
|
|
unsigned param = unfulfilledNamedParams[i];
|
|
auto paramName = params[param].Label;
|
|
|
|
if (auto score = scoreParamAndArgNameTypo(paramName.str(),
|
|
argName.str(),
|
|
bestScore)) {
|
|
if (*score < bestScore || bestScore == 0) {
|
|
bestScore = *score;
|
|
best = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we found a parameter to fulfill, do it.
|
|
if (bestScore > 0) {
|
|
// Bind this parameter to the argument.
|
|
nextArgIdx = argIdx;
|
|
paramIdx = unfulfilledNamedParams[best];
|
|
bindNextParameter(true);
|
|
|
|
// Erase this parameter from the list of unfulfilled named
|
|
// parameters, so we don't try to fulfill it again.
|
|
unfulfilledNamedParams.erase(unfulfilledNamedParams.begin() + best);
|
|
if (unfulfilledNamedParams.empty())
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Update haveUnfulfilledParams, because we may have fulfilled some
|
|
// parameters above.
|
|
haveUnfulfilledParams = hasUnfulfilledUnnamedParams ||
|
|
!unfulfilledNamedParams.empty();
|
|
}
|
|
}
|
|
|
|
// Find all of the unfulfilled parameters, and match them up
|
|
// semi-positionally.
|
|
if (numClaimedArgs != numArgs) {
|
|
// Restart at the first argument/parameter.
|
|
nextArgIdx = 0;
|
|
skipClaimedArgs();
|
|
haveUnfulfilledParams = false;
|
|
for (paramIdx = 0; paramIdx != numParams; ++paramIdx) {
|
|
// Skip fulfilled parameters.
|
|
if (!parameterBindings[paramIdx].empty())
|
|
continue;
|
|
|
|
bindNextParameter(true);
|
|
}
|
|
}
|
|
|
|
// If we still haven't claimed all of the arguments, fail.
|
|
if (numClaimedArgs != numArgs) {
|
|
nextArgIdx = 0;
|
|
skipClaimedArgs();
|
|
listener.extraArgument(nextArgIdx);
|
|
return true;
|
|
}
|
|
|
|
// FIXME: If we had the actual parameters and knew the body names, those
|
|
// matches would be best.
|
|
potentiallyOutOfOrder = true;
|
|
}
|
|
|
|
// If we have any unfulfilled parameters, check them now.
|
|
if (haveUnfulfilledParams) {
|
|
for (paramIdx = 0; paramIdx != numParams; ++paramIdx) {
|
|
// If we have a binding for this parameter, we're done.
|
|
if (!parameterBindings[paramIdx].empty())
|
|
continue;
|
|
|
|
const auto ¶m = params[paramIdx];
|
|
|
|
// Variadic parameters can be unfulfilled.
|
|
if (param.Variadic)
|
|
continue;
|
|
|
|
// Parameters with defaults can be unfilfilled.
|
|
if (param.HasDefaultArgument)
|
|
continue;
|
|
|
|
listener.missingArgument(paramIdx);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// If any arguments were provided out-of-order, check whether we have
|
|
// violated any of the reordering rules.
|
|
if (potentiallyOutOfOrder) {
|
|
// Build a mapping from arguments to parameters.
|
|
SmallVector<unsigned, 4> argumentBindings(numArgs);
|
|
for(paramIdx = 0; paramIdx != numParams; ++paramIdx) {
|
|
for (auto argIdx : parameterBindings[paramIdx])
|
|
argumentBindings[argIdx] = paramIdx;
|
|
}
|
|
|
|
// Walk through the arguments, determining if any were bound to parameters
|
|
// out-of-order where it is not permitted.
|
|
unsigned prevParamIdx = argumentBindings[0];
|
|
for (unsigned argIdx = 1; argIdx != numArgs; ++argIdx) {
|
|
unsigned paramIdx = argumentBindings[argIdx];
|
|
|
|
// If this argument binds to the same parameter as the previous one or to
|
|
// a later parameter, just update the parameter index.
|
|
if (paramIdx >= prevParamIdx) {
|
|
prevParamIdx = paramIdx;
|
|
continue;
|
|
}
|
|
|
|
// The argument binds to a parameter that comes earlier than the
|
|
// previous argument. This is fine so long as this parameter and all of
|
|
// those parameters up to (and including) the previously-bound parameter
|
|
// are either variadic or have a default argument.
|
|
for (unsigned i = paramIdx; i != prevParamIdx + 1; ++i) {
|
|
const auto ¶m = params[i];
|
|
if (param.Variadic || param.HasDefaultArgument)
|
|
continue;
|
|
|
|
unsigned prevArgIdx = parameterBindings[prevParamIdx].front();
|
|
listener.outOfOrderArgument(argIdx, prevArgIdx);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If no arguments were renamed, the call arguments match up with the
|
|
// parameters.
|
|
if (actualArgNames.empty())
|
|
return false;
|
|
|
|
// The arguments were relabeled; notify the listener.
|
|
return listener.relabelArguments(actualArgNames);
|
|
}
|
|
|
|
// Match the argument of a call to the parameter.
|
|
static ConstraintSystem::SolutionKind
|
|
matchCallArguments(ConstraintSystem &cs, TypeMatchKind kind,
|
|
Type argType, Type paramType,
|
|
ConstraintLocatorBuilder locator) {
|
|
/// Listener used to produce failures if they should be produced.
|
|
class Listener : public MatchCallArgumentListener {
|
|
ConstraintSystem &CS;
|
|
Type ArgType;
|
|
Type ParamType;
|
|
ConstraintLocatorBuilder &Locator;
|
|
|
|
public:
|
|
Listener(ConstraintSystem &cs, Type argType, Type paramType,
|
|
ConstraintLocatorBuilder &locator)
|
|
: CS(cs), ArgType(argType), ParamType(paramType), Locator(locator) { }
|
|
|
|
virtual void extraArgument(unsigned argIdx) {
|
|
if (!CS.shouldRecordFailures())
|
|
return;
|
|
|
|
CS.recordFailure(CS.getConstraintLocator(Locator),
|
|
Failure::ExtraArgument,
|
|
argIdx);
|
|
}
|
|
|
|
virtual void missingArgument(unsigned paramIdx) {
|
|
if (!CS.shouldRecordFailures())
|
|
return;
|
|
|
|
CS.recordFailure(CS.getConstraintLocator(Locator),
|
|
Failure::MissingArgument,
|
|
ParamType, paramIdx);
|
|
}
|
|
|
|
virtual void outOfOrderArgument(unsigned argIdx, unsigned prevArgIdx) {
|
|
if (!CS.shouldRecordFailures())
|
|
return;
|
|
|
|
CS.recordFailure(CS.getConstraintLocator(Locator),
|
|
Failure::OutOfOrderArgument,
|
|
argIdx, prevArgIdx);
|
|
}
|
|
|
|
virtual bool relabelArguments(ArrayRef<Identifier> newNames) {
|
|
if (!CS.shouldAttemptFixes()) {
|
|
// FIXME: record why this failed. We have renaming.
|
|
return true;
|
|
}
|
|
|
|
// Add a fix for the name. This is only responsible for recording the fix.
|
|
auto result = CS.simplifyFixConstraint(
|
|
Fix::getRelabelTuple(CS, FixKind::RelabelCallTuple,
|
|
newNames),
|
|
ArgType, ParamType,
|
|
TypeMatchKind::ArgumentTupleConversion,
|
|
ConstraintSystem::TMF_None,
|
|
Locator);
|
|
return result != ConstraintSystem::SolutionKind::Solved;
|
|
}
|
|
};
|
|
|
|
// Extract the arguments.
|
|
auto args = decomposeArgParamType(argType);
|
|
|
|
// Extract the parameters.
|
|
auto params = decomposeArgParamType(paramType);
|
|
|
|
// Match up the call arguments to the parameters.
|
|
Listener listener(cs, argType, paramType, locator);
|
|
SmallVector<ParamBinding, 4> parameterBindings;
|
|
if (constraints::matchCallArguments(args, params,
|
|
hasTrailingClosure(locator),
|
|
cs.shouldAttemptFixes(), listener,
|
|
parameterBindings))
|
|
return ConstraintSystem::SolutionKind::Error;
|
|
|
|
// Check the argument types for each of the parameters.
|
|
unsigned subflags = ConstraintSystem::TMF_GenerateConstraints;
|
|
TypeMatchKind subKind;
|
|
switch (kind) {
|
|
case TypeMatchKind::ArgumentTupleConversion:
|
|
subKind = TypeMatchKind::ArgumentConversion;
|
|
break;
|
|
|
|
case TypeMatchKind::OperatorArgumentTupleConversion:
|
|
subKind = TypeMatchKind::OperatorArgumentConversion;
|
|
break;
|
|
|
|
case TypeMatchKind::Conversion:
|
|
case TypeMatchKind::ExplicitConversion:
|
|
case TypeMatchKind::OperatorArgumentConversion:
|
|
case TypeMatchKind::ArgumentConversion:
|
|
case TypeMatchKind::BindType:
|
|
case TypeMatchKind::BindToPointerType:
|
|
case TypeMatchKind::SameType:
|
|
case TypeMatchKind::ConformsTo:
|
|
case TypeMatchKind::Subtype:
|
|
llvm_unreachable("Not an call argument constraint");
|
|
}
|
|
|
|
auto haveOneNonUserConversion =
|
|
(subKind != TypeMatchKind::OperatorArgumentConversion);
|
|
|
|
auto haveNilArgument = false;
|
|
auto nilLiteralProto = cs.TC.getProtocol(SourceLoc(),
|
|
KnownProtocolKind::
|
|
NilLiteralConvertible);
|
|
|
|
auto isNilLiteral = [&](Type t) -> bool {
|
|
if (auto tyvar = t->getAs<TypeVariableType>()) {
|
|
return tyvar->getImpl().literalConformanceProto == nilLiteralProto;
|
|
}
|
|
return false;
|
|
};
|
|
|
|
// If we're applying an operator function to a nil literal operand, we
|
|
// disallow value-to-optional conversions from taking place so as not to
|
|
// select an overly permissive overload.
|
|
auto allowOptionalConversion = [&](Type t) -> bool {
|
|
|
|
if (t->isLValueType())
|
|
t = t->getLValueOrInOutObjectType();
|
|
|
|
if (!t->getAnyOptionalObjectType().isNull())
|
|
return true;
|
|
|
|
if (isNilLiteral(t))
|
|
return true;
|
|
|
|
if (auto nt = t->getNominalOrBoundGenericNominal()) {
|
|
return nt->getName() == cs.TC.Context.Id_OptionalNilComparisonType;
|
|
}
|
|
|
|
return false;
|
|
};
|
|
|
|
// Pre-scan operator arguments for nil literals.
|
|
if (subKind == TypeMatchKind::OperatorArgumentConversion) {
|
|
for (auto arg : args) {
|
|
if (isNilLiteral(arg.Ty)) {
|
|
haveNilArgument = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (unsigned paramIdx = 0, numParams = parameterBindings.size();
|
|
paramIdx != numParams; ++paramIdx){
|
|
// Skip unfulfilled parameters. There's nothing to do for them.
|
|
if (parameterBindings[paramIdx].empty())
|
|
continue;
|
|
|
|
// Determine the parameter type.
|
|
const auto ¶m = params[paramIdx];
|
|
auto paramTy = param.Ty;
|
|
|
|
// Compare each of the bound arguments for this parameter.
|
|
for (auto argIdx : parameterBindings[paramIdx]) {
|
|
auto loc = locator.withPathElement(LocatorPathElt::
|
|
getApplyArgToParam(argIdx,
|
|
paramIdx));
|
|
auto argTy = args[argIdx].Ty;
|
|
|
|
if (haveNilArgument && !allowOptionalConversion(argTy)) {
|
|
subflags |= ConstraintSystem::TMF_ApplyingOperatorWithNil;
|
|
}
|
|
|
|
if (!haveOneNonUserConversion) {
|
|
subflags |= ConstraintSystem::TMF_ApplyingOperatorParameter;
|
|
}
|
|
|
|
switch (cs.matchTypes(argTy,paramTy,
|
|
subKind, subflags,
|
|
loc)) {
|
|
case ConstraintSystem::SolutionKind::Error:
|
|
return ConstraintSystem::SolutionKind::Error;
|
|
|
|
case ConstraintSystem::SolutionKind::Solved:
|
|
case ConstraintSystem::SolutionKind::Unsolved:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return ConstraintSystem::SolutionKind::Solved;
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::matchTupleTypes(TupleType *tuple1, TupleType *tuple2,
|
|
TypeMatchKind kind, unsigned flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
unsigned subFlags = flags | TMF_GenerateConstraints;
|
|
|
|
// Equality and subtyping have fairly strict requirements on tuple matching,
|
|
// requiring element names to either match up or be disjoint.
|
|
if (kind < TypeMatchKind::Conversion) {
|
|
if (tuple1->getNumElements() != tuple2->getNumElements()) {
|
|
// Record this failure.
|
|
if (shouldRecordFailures()) {
|
|
recordFailure(getConstraintLocator(locator),
|
|
Failure::TupleSizeMismatch, tuple1, tuple2);
|
|
}
|
|
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
for (unsigned i = 0, n = tuple1->getNumElements(); i != n; ++i) {
|
|
const auto &elt1 = tuple1->getElement(i);
|
|
const auto &elt2 = tuple2->getElement(i);
|
|
|
|
// If the names don't match, we may have a conflict.
|
|
if (elt1.getName() != elt2.getName()) {
|
|
// Same-type requirements require exact name matches.
|
|
if (kind == TypeMatchKind::SameType) {
|
|
// Record this failure.
|
|
if (shouldRecordFailures()) {
|
|
recordFailure(getConstraintLocator(
|
|
locator.withPathElement(
|
|
LocatorPathElt::getNamedTupleElement(i))),
|
|
Failure::TupleNameMismatch, tuple1, tuple2);
|
|
}
|
|
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
// For subtyping constraints, just make sure that this name isn't
|
|
// used at some other position.
|
|
if (elt2.hasName()) {
|
|
int matched = tuple1->getNamedElementId(elt2.getName());
|
|
if (matched != -1) {
|
|
// Record this failure.
|
|
if (shouldRecordFailures()) {
|
|
recordFailure(getConstraintLocator(
|
|
locator.withPathElement(
|
|
LocatorPathElt::getNamedTupleElement(i))),
|
|
Failure::TupleNamePositionMismatch, tuple1, tuple2);
|
|
}
|
|
|
|
return SolutionKind::Error;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Variadic bit must match.
|
|
if (elt1.isVararg() != elt2.isVararg()) {
|
|
// Record this failure.
|
|
if (shouldRecordFailures()) {
|
|
recordFailure(getConstraintLocator(
|
|
locator.withPathElement(
|
|
LocatorPathElt::getNamedTupleElement(i))),
|
|
Failure::TupleVariadicMismatch, tuple1, tuple2);
|
|
}
|
|
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
// Compare the element types.
|
|
switch (matchTypes(elt1.getType(), elt2.getType(), kind, subFlags,
|
|
locator.withPathElement(
|
|
LocatorPathElt::getTupleElement(i)))) {
|
|
case SolutionKind::Error:
|
|
return SolutionKind::Error;
|
|
|
|
case SolutionKind::Solved:
|
|
case SolutionKind::Unsolved:
|
|
break;
|
|
}
|
|
}
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
assert(kind >= TypeMatchKind::Conversion);
|
|
TypeMatchKind subKind;
|
|
switch (kind) {
|
|
case TypeMatchKind::ArgumentTupleConversion:
|
|
subKind = TypeMatchKind::ArgumentConversion;
|
|
break;
|
|
|
|
case TypeMatchKind::OperatorArgumentTupleConversion:
|
|
subKind = TypeMatchKind::OperatorArgumentConversion;
|
|
break;
|
|
|
|
case TypeMatchKind::OperatorArgumentConversion:
|
|
case TypeMatchKind::ArgumentConversion:
|
|
case TypeMatchKind::ExplicitConversion:
|
|
case TypeMatchKind::Conversion:
|
|
subKind = TypeMatchKind::Conversion;
|
|
break;
|
|
|
|
case TypeMatchKind::BindType:
|
|
case TypeMatchKind::BindToPointerType:
|
|
case TypeMatchKind::SameType:
|
|
case TypeMatchKind::Subtype:
|
|
case TypeMatchKind::ConformsTo:
|
|
llvm_unreachable("Not a conversion");
|
|
}
|
|
|
|
// Compute the element shuffles for conversions.
|
|
SmallVector<int, 16> sources;
|
|
SmallVector<unsigned, 4> variadicArguments;
|
|
if (computeTupleShuffle(tuple1, tuple2, sources, variadicArguments)) {
|
|
// FIXME: Record why the tuple shuffle couldn't be computed.
|
|
if (shouldRecordFailures()) {
|
|
if (tuple1->getNumElements() != tuple2->getNumElements()) {
|
|
recordFailure(getConstraintLocator(locator),
|
|
Failure::TupleSizeMismatch, tuple1, tuple2);
|
|
}
|
|
}
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
// Check each of the elements.
|
|
bool hasVariadic = false;
|
|
unsigned variadicIdx = sources.size();
|
|
for (unsigned idx2 = 0, n = sources.size(); idx2 != n; ++idx2) {
|
|
// Default-initialization always allowed for conversions.
|
|
if (sources[idx2] == TupleShuffleExpr::DefaultInitialize) {
|
|
continue;
|
|
}
|
|
|
|
// Variadic arguments handled below.
|
|
if (sources[idx2] == TupleShuffleExpr::Variadic) {
|
|
assert(!hasVariadic && "Multiple variadic parameters");
|
|
hasVariadic = true;
|
|
variadicIdx = idx2;
|
|
continue;
|
|
}
|
|
|
|
assert(sources[idx2] >= 0);
|
|
unsigned idx1 = sources[idx2];
|
|
|
|
// Match up the types.
|
|
const auto &elt1 = tuple1->getElement(idx1);
|
|
const auto &elt2 = tuple2->getElement(idx2);
|
|
switch (matchTypes(elt1.getType(), elt2.getType(), subKind, subFlags,
|
|
locator.withPathElement(
|
|
LocatorPathElt::getTupleElement(idx1)))) {
|
|
case SolutionKind::Error:
|
|
return SolutionKind::Error;
|
|
|
|
case SolutionKind::Solved:
|
|
case SolutionKind::Unsolved:
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
// If we have variadic arguments to check, do so now.
|
|
if (hasVariadic) {
|
|
const auto &elt2 = tuple2->getElements()[variadicIdx];
|
|
auto eltType2 = elt2.getVarargBaseTy();
|
|
|
|
for (unsigned idx1 : variadicArguments) {
|
|
switch (matchTypes(tuple1->getElementType(idx1), eltType2, subKind,
|
|
subFlags,
|
|
locator.withPathElement(
|
|
LocatorPathElt::getTupleElement(idx1)))) {
|
|
case SolutionKind::Error:
|
|
return SolutionKind::Error;
|
|
|
|
case SolutionKind::Solved:
|
|
case SolutionKind::Unsolved:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::matchScalarToTupleTypes(Type type1, TupleType *tuple2,
|
|
TypeMatchKind kind, unsigned flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
int scalarFieldIdx = tuple2->getElementForScalarInit();
|
|
assert(scalarFieldIdx >= 0 && "Invalid tuple for scalar-to-tuple");
|
|
const auto &elt = tuple2->getElement(scalarFieldIdx);
|
|
auto scalarFieldTy = elt.isVararg()? elt.getVarargBaseTy() : elt.getType();
|
|
return matchTypes(type1, scalarFieldTy, kind, flags,
|
|
locator.withPathElement(ConstraintLocator::ScalarToTuple));
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::matchTupleToScalarTypes(TupleType *tuple1, Type type2,
|
|
TypeMatchKind kind, unsigned flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
assert(tuple1->getNumElements() == 1 && "Wrong number of elements");
|
|
assert(!tuple1->getElement(0).isVararg() && "Should not be variadic");
|
|
|
|
return matchTypes(tuple1->getElementType(0),
|
|
type2, kind, flags,
|
|
locator.withPathElement(
|
|
LocatorPathElt::getTupleElement(0)));
|
|
}
|
|
|
|
/// Determine whether this is a function type accepting no arguments as input.
|
|
static bool isFunctionTypeAcceptingNoArguments(Type type) {
|
|
// The type must be a function type.
|
|
auto fnType = type->getAs<AnyFunctionType>();
|
|
if (!fnType)
|
|
return false;
|
|
|
|
// Only tuple arguments make sense.
|
|
auto tupleTy = fnType->getInput()->getAs<TupleType>();
|
|
if (!tupleTy) return false;
|
|
|
|
// Look for any non-defaulted, non-variadic elements.
|
|
for (const auto &elt : tupleTy->getElements()) {
|
|
// Defaulted arguments are okay.
|
|
if (elt.getDefaultArgKind() != DefaultArgumentKind::None)
|
|
continue;
|
|
|
|
// Variadic arguments are okay.
|
|
if (elt.isVararg())
|
|
continue;
|
|
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::matchFunctionTypes(FunctionType *func1, FunctionType *func2,
|
|
TypeMatchKind kind, unsigned flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
// An @autoclosure function type can be a subtype of a
|
|
// non-@autoclosure function type.
|
|
if (func1->isAutoClosure() != func2->isAutoClosure()) {
|
|
if (func2->isAutoClosure() || kind < TypeMatchKind::Subtype) {
|
|
// If the second type is an autoclosure and the first type appears to
|
|
// accept no arguments, try to add the ().
|
|
if (func2->isAutoClosure() && shouldAttemptFixes() &&
|
|
kind >= TypeMatchKind::Conversion &&
|
|
isFunctionTypeAcceptingNoArguments(func1)) {
|
|
unsigned subFlags = (flags | TMF_GenerateConstraints) & ~TMF_ApplyingFix;
|
|
return simplifyFixConstraint(FixKind::NullaryCall, func1, func2, kind,
|
|
subFlags, locator);
|
|
}
|
|
|
|
// Record this failure.
|
|
if (shouldRecordFailures()) {
|
|
recordFailure(getConstraintLocator(locator),
|
|
Failure::FunctionAutoclosureMismatch, func1, func2);
|
|
}
|
|
|
|
return SolutionKind::Error;
|
|
}
|
|
}
|
|
|
|
// A non-throwing function can be a subtype of a throwing function.
|
|
if (func1->throws() != func2->throws()) {
|
|
// Cannot drop 'throws'.
|
|
if (func1->throws() ||
|
|
(func2->throws() && kind < TypeMatchKind::Subtype)) {
|
|
if (shouldRecordFailures()) {
|
|
recordFailure(getConstraintLocator(locator),
|
|
Failure::FunctionThrowsMismatch, func1, func2);
|
|
}
|
|
|
|
return SolutionKind::Error;
|
|
}
|
|
}
|
|
|
|
// A @noreturn function type can be a subtype of a non-@noreturn function
|
|
// type.
|
|
if (func1->isNoReturn() != func2->isNoReturn()) {
|
|
if (func2->isNoReturn() || kind < TypeMatchKind::SameType) {
|
|
// Record this failure.
|
|
if (shouldRecordFailures()) {
|
|
recordFailure(getConstraintLocator(locator),
|
|
Failure::FunctionNoReturnMismatch, func1, func2);
|
|
}
|
|
|
|
return SolutionKind::Error;
|
|
}
|
|
}
|
|
|
|
// A non-@noescape function type can be a subtype of a @noescape function
|
|
// type.
|
|
if (func1->isNoEscape() != func2->isNoEscape()) {
|
|
if (func1->isNoEscape() || kind < TypeMatchKind::Subtype) {
|
|
// Record this failure.
|
|
if (shouldRecordFailures()) {
|
|
recordFailure(getConstraintLocator(locator),
|
|
Failure::FunctionNoEscapeMismatch, func1, func2);
|
|
}
|
|
|
|
return SolutionKind::Error;
|
|
}
|
|
}
|
|
|
|
// Determine how we match up the input/result types.
|
|
TypeMatchKind subKind;
|
|
switch (kind) {
|
|
case TypeMatchKind::BindType:
|
|
case TypeMatchKind::BindToPointerType:
|
|
case TypeMatchKind::SameType:
|
|
subKind = kind;
|
|
break;
|
|
|
|
case TypeMatchKind::ConformsTo:
|
|
llvm_unreachable("Not sure if we can end up here");
|
|
|
|
case TypeMatchKind::Subtype:
|
|
case TypeMatchKind::Conversion:
|
|
case TypeMatchKind::ExplicitConversion:
|
|
case TypeMatchKind::ArgumentConversion:
|
|
case TypeMatchKind::ArgumentTupleConversion:
|
|
case TypeMatchKind::OperatorArgumentTupleConversion:
|
|
case TypeMatchKind::OperatorArgumentConversion:
|
|
subKind = TypeMatchKind::Subtype;
|
|
break;
|
|
}
|
|
|
|
unsigned subFlags = flags | TMF_GenerateConstraints;
|
|
|
|
// Input types can be contravariant (or equal).
|
|
SolutionKind result = matchTypes(func2->getInput(), func1->getInput(),
|
|
subKind, subFlags,
|
|
locator.withPathElement(
|
|
ConstraintLocator::FunctionArgument));
|
|
if (result == SolutionKind::Error)
|
|
return SolutionKind::Error;
|
|
|
|
// Result type can be covariant (or equal).
|
|
switch (matchTypes(func1->getResult(), func2->getResult(), subKind,
|
|
subFlags,
|
|
locator.withPathElement(
|
|
ConstraintLocator::FunctionResult))) {
|
|
case SolutionKind::Error:
|
|
return SolutionKind::Error;
|
|
|
|
case SolutionKind::Solved:
|
|
result = SolutionKind::Solved;
|
|
break;
|
|
|
|
case SolutionKind::Unsolved:
|
|
result = SolutionKind::Unsolved;
|
|
break;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/// \brief Map a failed type-matching kind to a failure kind, generically.
|
|
static Failure::FailureKind getRelationalFailureKind(TypeMatchKind kind) {
|
|
switch (kind) {
|
|
case TypeMatchKind::BindType:
|
|
case TypeMatchKind::BindToPointerType:
|
|
case TypeMatchKind::SameType:
|
|
return Failure::TypesNotEqual;
|
|
case TypeMatchKind::ConformsTo:
|
|
return Failure::DoesNotConformToProtocol;
|
|
case TypeMatchKind::Subtype:
|
|
return Failure::TypesNotSubtypes;
|
|
|
|
case TypeMatchKind::Conversion:
|
|
case TypeMatchKind::ExplicitConversion:
|
|
case TypeMatchKind::ArgumentConversion:
|
|
case TypeMatchKind::OperatorArgumentConversion:
|
|
case TypeMatchKind::ArgumentTupleConversion:
|
|
case TypeMatchKind::OperatorArgumentTupleConversion:
|
|
return Failure::TypesNotConvertible;
|
|
}
|
|
|
|
llvm_unreachable("unhandled type matching kind");
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::matchSuperclassTypes(Type type1, Type type2,
|
|
TypeMatchKind kind, unsigned flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
auto classDecl2 = type2->getClassOrBoundGenericClass();
|
|
bool done = false;
|
|
for (auto super1 = TC.getSuperClassOf(type1);
|
|
!done && super1;
|
|
super1 = TC.getSuperClassOf(super1)) {
|
|
if (super1->getClassOrBoundGenericClass() != classDecl2)
|
|
continue;
|
|
|
|
return matchTypes(super1, type2, TypeMatchKind::SameType,
|
|
TMF_GenerateConstraints, locator);
|
|
}
|
|
|
|
// Record this failure.
|
|
// FIXME: Specialize diagnostic.
|
|
if (shouldRecordFailures()) {
|
|
recordFailure(getConstraintLocator(locator),
|
|
getRelationalFailureKind(kind), type1, type2);
|
|
}
|
|
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::matchDeepEqualityTypes(Type type1, Type type2,
|
|
ConstraintLocatorBuilder locator) {
|
|
// Handle nominal types that are not directly generic.
|
|
if (auto nominal1 = type1->getAs<NominalType>()) {
|
|
auto nominal2 = type2->castTo<NominalType>();
|
|
|
|
assert((bool)nominal1->getParent() == (bool)nominal2->getParent() &&
|
|
"Mismatched parents of nominal types");
|
|
|
|
if (!nominal1->getParent())
|
|
return SolutionKind::Solved;
|
|
|
|
// Match up the parents, exactly.
|
|
return matchTypes(nominal1->getParent(), nominal2->getParent(),
|
|
TypeMatchKind::SameType, TMF_GenerateConstraints,
|
|
locator.withPathElement(ConstraintLocator::ParentType));
|
|
}
|
|
|
|
auto bound1 = type1->castTo<BoundGenericType>();
|
|
auto bound2 = type2->castTo<BoundGenericType>();
|
|
|
|
// Match up the parents, exactly, if there are parents.
|
|
assert((bool)bound1->getParent() == (bool)bound2->getParent() &&
|
|
"Mismatched parents of bound generics");
|
|
if (bound1->getParent()) {
|
|
switch (matchTypes(bound1->getParent(), bound2->getParent(),
|
|
TypeMatchKind::SameType, TMF_GenerateConstraints,
|
|
locator.withPathElement(ConstraintLocator::ParentType))){
|
|
case SolutionKind::Error:
|
|
return SolutionKind::Error;
|
|
|
|
case SolutionKind::Solved:
|
|
case SolutionKind::Unsolved:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Match up the generic arguments, exactly.
|
|
auto args1 = bound1->getGenericArgs();
|
|
auto args2 = bound2->getGenericArgs();
|
|
assert(args1.size() == args2.size() && "Mismatched generic args");
|
|
for (unsigned i = 0, n = args1.size(); i != n; ++i) {
|
|
switch (matchTypes(args1[i], args2[i], TypeMatchKind::SameType,
|
|
TMF_GenerateConstraints,
|
|
locator.withPathElement(
|
|
LocatorPathElt::getGenericArgument(i)))) {
|
|
case SolutionKind::Error:
|
|
return SolutionKind::Error;
|
|
|
|
case SolutionKind::Solved:
|
|
case SolutionKind::Unsolved:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::matchExistentialTypes(Type type1, Type type2,
|
|
ConstraintKind kind, unsigned flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
SmallVector<ProtocolDecl *, 4> protocols;
|
|
type2->getAnyExistentialTypeProtocols(protocols);
|
|
|
|
for (auto proto : protocols) {
|
|
switch (simplifyConformsToConstraint(type1, proto, kind, locator, flags)) {
|
|
case SolutionKind::Solved:
|
|
break;
|
|
|
|
case SolutionKind::Unsolved:
|
|
// Add the constraint.
|
|
addConstraint(kind, type1, proto->getDeclaredType(),
|
|
getConstraintLocator(locator));
|
|
break;
|
|
|
|
case SolutionKind::Error:
|
|
return SolutionKind::Error;
|
|
}
|
|
}
|
|
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
/// \brief Map a type-matching kind to a constraint kind.
|
|
static ConstraintKind getConstraintKind(TypeMatchKind kind) {
|
|
switch (kind) {
|
|
case TypeMatchKind::BindType:
|
|
case TypeMatchKind::BindToPointerType:
|
|
return ConstraintKind::Bind;
|
|
|
|
case TypeMatchKind::SameType:
|
|
return ConstraintKind::Equal;
|
|
|
|
case TypeMatchKind::ConformsTo:
|
|
return ConstraintKind::ConformsTo;
|
|
|
|
case TypeMatchKind::Subtype:
|
|
return ConstraintKind::Subtype;
|
|
|
|
case TypeMatchKind::Conversion:
|
|
return ConstraintKind::Conversion;
|
|
|
|
case TypeMatchKind::ExplicitConversion:
|
|
return ConstraintKind::ExplicitConversion;
|
|
|
|
case TypeMatchKind::ArgumentConversion:
|
|
return ConstraintKind::ArgumentConversion;
|
|
|
|
case TypeMatchKind::ArgumentTupleConversion:
|
|
return ConstraintKind::ArgumentTupleConversion;
|
|
|
|
case TypeMatchKind::OperatorArgumentTupleConversion:
|
|
return ConstraintKind::OperatorArgumentTupleConversion;
|
|
|
|
case TypeMatchKind::OperatorArgumentConversion:
|
|
return ConstraintKind::OperatorArgumentConversion;
|
|
}
|
|
|
|
llvm_unreachable("unhandled type matching kind");
|
|
}
|
|
|
|
static bool isStringCompatiblePointerBaseType(TypeChecker &TC,
|
|
DeclContext *DC,
|
|
Type baseType) {
|
|
// Allow strings to be passed to pointer-to-byte or pointer-to-void types.
|
|
if (baseType->isEqual(TC.getInt8Type(DC)))
|
|
return true;
|
|
if (baseType->isEqual(TC.getUInt8Type(DC)))
|
|
return true;
|
|
if (baseType->isEqual(TC.Context.TheEmptyTupleType))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Determine whether the given type is a value type to which we can bridge a
|
|
/// value of its corresponding class type, such as 'String' bridging from
|
|
/// NSString.
|
|
static bool allowsBridgingFromObjC(TypeChecker &tc, DeclContext *dc,
|
|
Type type) {
|
|
auto objcType = tc.getBridgedToObjC(dc, type);
|
|
if (!objcType)
|
|
return false;
|
|
|
|
auto objcClass = objcType->getClassOrBoundGenericClass();
|
|
if (!objcClass)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Check whether the given value type is one of a few specific
|
|
/// bridged types.
|
|
static bool isArrayDictionarySetOrString(const ASTContext &ctx, Type type) {
|
|
if (auto structDecl = type->getStructOrBoundGenericStruct()) {
|
|
return (structDecl == ctx.getStringDecl() ||
|
|
structDecl == ctx.getArrayDecl() ||
|
|
structDecl == ctx.getDictionaryDecl() ||
|
|
structDecl == ctx.getSetDecl());
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::matchTypes(Type type1, Type type2, TypeMatchKind kind,
|
|
unsigned flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
// If we have type variables that have been bound to fixed types, look through
|
|
// to the fixed type.
|
|
TypeVariableType *typeVar1;
|
|
bool isArgumentTupleConversion
|
|
= kind == TypeMatchKind::ArgumentTupleConversion ||
|
|
kind == TypeMatchKind::OperatorArgumentTupleConversion;
|
|
type1 = getFixedTypeRecursive(type1, typeVar1,
|
|
kind == TypeMatchKind::SameType,
|
|
isArgumentTupleConversion);
|
|
auto desugar1 = type1->getDesugaredType();
|
|
|
|
TypeVariableType *typeVar2;
|
|
type2 = getFixedTypeRecursive(type2, typeVar2,
|
|
kind == TypeMatchKind::SameType,
|
|
isArgumentTupleConversion);
|
|
auto desugar2 = type2->getDesugaredType();
|
|
|
|
// If the types are obviously equivalent, we're done.
|
|
if (kind != TypeMatchKind::ConformsTo && desugar1->isEqual(desugar2))
|
|
return SolutionKind::Solved;
|
|
|
|
// If either (or both) types are type variables, unify the type variables.
|
|
if (typeVar1 || typeVar2) {
|
|
switch (kind) {
|
|
case TypeMatchKind::BindType:
|
|
case TypeMatchKind::BindToPointerType:
|
|
case TypeMatchKind::SameType: {
|
|
if (typeVar1 && typeVar2) {
|
|
auto rep1 = getRepresentative(typeVar1);
|
|
auto rep2 = getRepresentative(typeVar2);
|
|
if (rep1 == rep2) {
|
|
// We already merged these two types, so this constraint is
|
|
// trivially solved.
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
// If exactly one of the type variables can bind to an lvalue, we
|
|
// can't merge these two type variables.
|
|
if (rep1->getImpl().canBindToLValue()
|
|
!= rep2->getImpl().canBindToLValue()) {
|
|
if (flags & TMF_GenerateConstraints) {
|
|
if (kind == TypeMatchKind::BindToPointerType) {
|
|
increaseScore(ScoreKind::SK_ScalarPointerConversion);
|
|
}
|
|
|
|
// Add a new constraint between these types. We consider the current
|
|
// type-matching problem to the "solved" by this addition, because
|
|
// this new constraint will be solved at a later point.
|
|
// Obviously, this must not happen at the top level, or the
|
|
// algorithm would not terminate.
|
|
addConstraint(getConstraintKind(kind), rep1, rep2,
|
|
getConstraintLocator(locator));
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
return SolutionKind::Unsolved;
|
|
}
|
|
|
|
// Merge the equivalence classes corresponding to these two variables.
|
|
mergeEquivalenceClasses(rep1, rep2);
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
// Provide a fixed type for the type variable.
|
|
bool wantRvalue = kind == TypeMatchKind::SameType;
|
|
if (typeVar1) {
|
|
// If we want an rvalue, get the rvalue.
|
|
if (wantRvalue)
|
|
type2 = type2->getRValueType();
|
|
|
|
// If the left-hand type variable cannot bind to an lvalue,
|
|
// but we still have an lvalue, fail.
|
|
if (!typeVar1->getImpl().canBindToLValue()) {
|
|
if (type2->isLValueType()) {
|
|
if (shouldRecordFailures()) {
|
|
recordFailure(getConstraintLocator(locator),
|
|
Failure::IsForbiddenLValue, type1, type2);
|
|
}
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
// Okay. Bind below.
|
|
}
|
|
|
|
// Check whether the type variable must be bound to a materializable
|
|
// type.
|
|
if (typeVar1->getImpl().mustBeMaterializable()) {
|
|
if (!type2->isMaterializable()) {
|
|
if (shouldRecordFailures()) {
|
|
// TODO: customize error message for closure vs. generic param
|
|
recordFailure(getConstraintLocator(locator),
|
|
Failure::IsNotMaterializable, type2);
|
|
}
|
|
return SolutionKind::Error;
|
|
} else {
|
|
setMustBeMaterializableRecursive(type2);
|
|
}
|
|
}
|
|
|
|
// A constraint that binds any pointer to a void pointer is
|
|
// ineffective, since any pointer can be converted to a void pointer.
|
|
if (kind == TypeMatchKind::BindToPointerType && desugar2->isVoid() &&
|
|
(flags & TMF_GenerateConstraints)) {
|
|
// Create a disjunction where the favored branch doesn't constrain
|
|
// anything but the unfavored branch binds type1 to Void. type1 only
|
|
// gets bound to Void as a last resort.
|
|
Constraint *trivialConstraint = Constraint::create(*this,
|
|
ConstraintKind::Bind, typeVar1, typeVar1, DeclName(),
|
|
getConstraintLocator(locator));
|
|
trivialConstraint->setFavored();
|
|
Constraint *bindingConstraint = Constraint::create(*this,
|
|
ConstraintKind::Bind, typeVar1, type2, DeclName(),
|
|
getConstraintLocator(locator));
|
|
Constraint *constraints[] = { trivialConstraint, bindingConstraint };
|
|
addConstraint(
|
|
Constraint::createDisjunction(*this, constraints,
|
|
getConstraintLocator(locator)));
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
assignFixedType(typeVar1, type2);
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
// If we want an rvalue, get the rvalue.
|
|
if (wantRvalue)
|
|
type1 = type1->getRValueType();
|
|
|
|
if (!typeVar2->getImpl().canBindToLValue()) {
|
|
if (type1->isLValueType()) {
|
|
if (shouldRecordFailures()) {
|
|
recordFailure(getConstraintLocator(locator),
|
|
Failure::IsForbiddenLValue, type1, type2);
|
|
}
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
// Okay. Bind below.
|
|
}
|
|
|
|
assignFixedType(typeVar2, type1);
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
// We need to be careful about mapping 'raw' argument type variables to
|
|
// parameter tuples containing default args. If we naively bind the type
|
|
// variable to the parameter tuple, we'll later end up looking to whatever
|
|
// expression created the type variable to find the declarations for default
|
|
// arguments. This can obviously be problematic if the expression in
|
|
// question is not an application. (For example, We don't want to introspect
|
|
// an 'if' expression to see if it has default arguments.) Instead, we
|
|
// should bind the type variable to the first element type of the tuple.
|
|
case TypeMatchKind::ArgumentTupleConversion:
|
|
if (typeVar1 &&
|
|
!typeVar1->getImpl().literalConformanceProto &&
|
|
kind == TypeMatchKind::ArgumentTupleConversion &&
|
|
(flags & TMF_GenerateConstraints) &&
|
|
dyn_cast<ParenType>(type1.getPointer())) {
|
|
|
|
auto tupleTy = type2->getAs<TupleType>();
|
|
|
|
if (tupleTy &&
|
|
tupleTy->getElementTypes().size() > 1 &&
|
|
tupleTy->hasAnyDefaultValues()) {
|
|
|
|
addConstraint(getConstraintKind(kind),
|
|
typeVar1,
|
|
tupleTy->getElementType(0),
|
|
getConstraintLocator(locator));
|
|
return SolutionKind::Solved;
|
|
}
|
|
}
|
|
SWIFT_FALLTHROUGH;
|
|
|
|
case TypeMatchKind::ConformsTo:
|
|
case TypeMatchKind::Subtype:
|
|
case TypeMatchKind::Conversion:
|
|
case TypeMatchKind::ExplicitConversion:
|
|
case TypeMatchKind::ArgumentConversion:
|
|
case TypeMatchKind::OperatorArgumentTupleConversion:
|
|
case TypeMatchKind::OperatorArgumentConversion:
|
|
if (flags & TMF_GenerateConstraints) {
|
|
// Add a new constraint between these types. We consider the current
|
|
// type-matching problem to the "solved" by this addition, because
|
|
// this new constraint will be solved at a later point.
|
|
// Obviously, this must not happen at the top level, or the algorithm
|
|
// would not terminate.
|
|
addConstraint(getConstraintKind(kind), type1, type2,
|
|
getConstraintLocator(locator));
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
// We couldn't solve this constraint. If only one of the types is a type
|
|
// variable, perhaps we can do something with it below.
|
|
if (typeVar1 && typeVar2)
|
|
return typeVar1 == typeVar2 ? SolutionKind::Solved
|
|
: SolutionKind::Unsolved;
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
llvm::SmallVector<RestrictionOrFix, 4> conversionsOrFixes;
|
|
bool concrete = !typeVar1 && !typeVar2;
|
|
|
|
// If this is an argument conversion, handle it directly. The rules are
|
|
// different from normal conversions.
|
|
if (kind == TypeMatchKind::ArgumentTupleConversion ||
|
|
kind == TypeMatchKind::OperatorArgumentTupleConversion) {
|
|
if (concrete) {
|
|
return ::matchCallArguments(*this, kind, type1, type2, locator);
|
|
}
|
|
|
|
if (flags & TMF_GenerateConstraints) {
|
|
// Add a new constraint between these types. We consider the current
|
|
// type-matching problem to the "solved" by this addition, because
|
|
// this new constraint will be solved at a later point.
|
|
// Obviously, this must not happen at the top level, or the algorithm
|
|
// would not terminate.
|
|
addConstraint(getConstraintKind(kind), type1, type2,
|
|
getConstraintLocator(locator));
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
return SolutionKind::Unsolved;
|
|
}
|
|
|
|
// Decompose parallel structure.
|
|
unsigned subFlags = (flags | TMF_GenerateConstraints) & ~TMF_ApplyingFix;
|
|
if (desugar1->getKind() == desugar2->getKind()) {
|
|
switch (desugar1->getKind()) {
|
|
#define SUGARED_TYPE(id, parent) case TypeKind::id:
|
|
#define TYPE(id, parent)
|
|
#include "swift/AST/TypeNodes.def"
|
|
llvm_unreachable("Type has not been desugared completely");
|
|
|
|
#define ARTIFICIAL_TYPE(id, parent) case TypeKind::id:
|
|
#define TYPE(id, parent)
|
|
#include "swift/AST/TypeNodes.def"
|
|
llvm_unreachable("artificial type in constraint");
|
|
|
|
#define BUILTIN_TYPE(id, parent) case TypeKind::id:
|
|
#define TYPE(id, parent)
|
|
#include "swift/AST/TypeNodes.def"
|
|
case TypeKind::Module:
|
|
if (desugar1 == desugar2) {
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
// Record this failure.
|
|
if (shouldRecordFailures()) {
|
|
recordFailure(getConstraintLocator(locator),
|
|
getRelationalFailureKind(kind), type1, type2);
|
|
}
|
|
|
|
return SolutionKind::Error;
|
|
|
|
case TypeKind::Error:
|
|
return SolutionKind::Error;
|
|
|
|
case TypeKind::GenericTypeParam:
|
|
case TypeKind::DependentMember:
|
|
llvm_unreachable("unmapped dependent type in type checker");
|
|
|
|
case TypeKind::TypeVariable:
|
|
case TypeKind::Archetype:
|
|
// Nothing to do here; handle type variables and archetypes below.
|
|
break;
|
|
|
|
case TypeKind::Tuple: {
|
|
// Try the tuple-to-tuple conversion.
|
|
conversionsOrFixes.push_back(ConversionRestrictionKind::TupleToTuple);
|
|
break;
|
|
}
|
|
|
|
case TypeKind::Enum:
|
|
case TypeKind::Struct:
|
|
case TypeKind::Class: {
|
|
auto nominal1 = cast<NominalType>(desugar1);
|
|
auto nominal2 = cast<NominalType>(desugar2);
|
|
if (nominal1->getDecl() == nominal2->getDecl()) {
|
|
conversionsOrFixes.push_back(ConversionRestrictionKind::DeepEquality);
|
|
}
|
|
|
|
// Check for CF <-> ObjectiveC bridging.
|
|
if (desugar1->getKind() == TypeKind::Class &&
|
|
kind >= TypeMatchKind::Subtype) {
|
|
auto class1 = cast<ClassDecl>(nominal1->getDecl());
|
|
auto class2 = cast<ClassDecl>(nominal2->getDecl());
|
|
|
|
// CF -> Objective-C via toll-free bridging.
|
|
if (class1->isForeign() && !class2->isForeign() &&
|
|
class1->getAttrs().hasAttribute<ObjCBridgedAttr>()) {
|
|
conversionsOrFixes.push_back(
|
|
ConversionRestrictionKind::CFTollFreeBridgeToObjC);
|
|
}
|
|
|
|
// Objective-C -> CF via toll-free bridging.
|
|
if (class2->isForeign() && !class1->isForeign() &&
|
|
class2->getAttrs().hasAttribute<ObjCBridgedAttr>()) {
|
|
conversionsOrFixes.push_back(
|
|
ConversionRestrictionKind::ObjCTollFreeBridgeToCF);
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case TypeKind::DynamicSelf:
|
|
// FIXME: Deep equality? What is the rule between two DynamicSelfs?
|
|
break;
|
|
|
|
case TypeKind::Protocol:
|
|
// Nothing to do here; try existential and user-defined conversions below.
|
|
break;
|
|
|
|
case TypeKind::Metatype:
|
|
case TypeKind::ExistentialMetatype: {
|
|
auto meta1 = cast<AnyMetatypeType>(desugar1);
|
|
auto meta2 = cast<AnyMetatypeType>(desugar2);
|
|
|
|
TypeMatchKind subKind = TypeMatchKind::SameType;
|
|
// A.Type < B.Type if A < B and both A and B are classes.
|
|
if (isa<MetatypeType>(desugar1) &&
|
|
kind != TypeMatchKind::SameType &&
|
|
meta1->getInstanceType()->mayHaveSuperclass() &&
|
|
meta2->getInstanceType()->getClassOrBoundGenericClass())
|
|
subKind = std::min(kind, TypeMatchKind::Subtype);
|
|
// P.Type < Q.Type if P < Q, both P and Q are protocols, and P.Type
|
|
// and Q.Type are both existential metatypes.
|
|
else if (isa<ExistentialMetatypeType>(meta1)
|
|
&& isa<ExistentialMetatypeType>(meta2))
|
|
subKind = std::min(kind, TypeMatchKind::Subtype);
|
|
|
|
return matchTypes(meta1->getInstanceType(), meta2->getInstanceType(),
|
|
subKind, subFlags,
|
|
locator.withPathElement(
|
|
ConstraintLocator::InstanceType));
|
|
}
|
|
|
|
case TypeKind::Function:
|
|
return matchFunctionTypes(cast<FunctionType>(desugar1),
|
|
cast<FunctionType>(desugar2),
|
|
kind, flags, locator);
|
|
|
|
case TypeKind::PolymorphicFunction:
|
|
case TypeKind::GenericFunction:
|
|
llvm_unreachable("Polymorphic function type should have been opened");
|
|
|
|
case TypeKind::ProtocolComposition:
|
|
// Existential types handled below.
|
|
break;
|
|
|
|
case TypeKind::LValue:
|
|
return matchTypes(cast<LValueType>(desugar1)->getObjectType(),
|
|
cast<LValueType>(desugar2)->getObjectType(),
|
|
TypeMatchKind::SameType, subFlags,
|
|
locator.withPathElement(
|
|
ConstraintLocator::ArrayElementType));
|
|
|
|
case TypeKind::InOut:
|
|
// If the RHS is an inout type, the LHS must be an @lvalue type.
|
|
if (kind >= TypeMatchKind::OperatorArgumentConversion) {
|
|
if (shouldRecordFailures())
|
|
recordFailure(getConstraintLocator(locator),
|
|
Failure::IsForbiddenLValue, type1, type2);
|
|
return SolutionKind::Error;
|
|
}
|
|
return matchTypes(cast<InOutType>(desugar1)->getObjectType(),
|
|
cast<InOutType>(desugar2)->getObjectType(),
|
|
TypeMatchKind::SameType, subFlags,
|
|
locator.withPathElement(ConstraintLocator::ArrayElementType));
|
|
|
|
case TypeKind::UnboundGeneric:
|
|
llvm_unreachable("Unbound generic type should have been opened");
|
|
|
|
case TypeKind::BoundGenericClass:
|
|
case TypeKind::BoundGenericEnum:
|
|
case TypeKind::BoundGenericStruct: {
|
|
auto bound1 = cast<BoundGenericType>(desugar1);
|
|
auto bound2 = cast<BoundGenericType>(desugar2);
|
|
|
|
if (bound1->getDecl() == bound2->getDecl()) {
|
|
conversionsOrFixes.push_back(ConversionRestrictionKind::DeepEquality);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (concrete && kind >= TypeMatchKind::Subtype) {
|
|
auto tuple1 = type1->getAs<TupleType>();
|
|
auto tuple2 = type2->getAs<TupleType>();
|
|
|
|
// Detect when the source and destination are both permit scalar
|
|
// conversions, but the source has a name and the destination does not have
|
|
// the same name.
|
|
bool tuplesWithMismatchedNames = false;
|
|
if (tuple1 && tuple2) {
|
|
int scalar1 = tuple1->getElementForScalarInit();
|
|
int scalar2 = tuple2->getElementForScalarInit();
|
|
if (scalar1 >= 0 && scalar2 >= 0) {
|
|
auto name1 = tuple1->getElement(scalar1).getName();
|
|
auto name2 = tuple2->getElement(scalar2).getName();
|
|
tuplesWithMismatchedNames = !name1.empty() && name1 != name2;
|
|
}
|
|
}
|
|
|
|
if (tuple2 && !tuplesWithMismatchedNames) {
|
|
// A scalar type is a trivial subtype of a one-element, non-variadic tuple
|
|
// containing a single element if the scalar type is a subtype of
|
|
// the type of that tuple's element.
|
|
//
|
|
// A scalar type can be converted to a tuple so long as there is at
|
|
// most one non-defaulted element.
|
|
if ((tuple2->getNumElements() == 1 &&
|
|
!tuple2->getElement(0).isVararg()) ||
|
|
(kind >= TypeMatchKind::Conversion &&
|
|
tuple2->getElementForScalarInit() >= 0)) {
|
|
conversionsOrFixes.push_back(
|
|
ConversionRestrictionKind::ScalarToTuple);
|
|
|
|
// FIXME: Prohibits some user-defined conversions for tuples.
|
|
goto commit_to_conversions;
|
|
}
|
|
}
|
|
|
|
if (tuple1 && !tuplesWithMismatchedNames) {
|
|
// A single-element tuple can be a trivial subtype of a scalar.
|
|
if (tuple1->getNumElements() == 1 &&
|
|
!tuple1->getElement(0).isVararg()) {
|
|
conversionsOrFixes.push_back(
|
|
ConversionRestrictionKind::TupleToScalar);
|
|
}
|
|
}
|
|
|
|
// Subclass-to-superclass conversion.
|
|
if (type1->mayHaveSuperclass() && type2->mayHaveSuperclass() &&
|
|
type2->getClassOrBoundGenericClass() &&
|
|
type1->getClassOrBoundGenericClass()
|
|
!= type2->getClassOrBoundGenericClass()) {
|
|
conversionsOrFixes.push_back(ConversionRestrictionKind::Superclass);
|
|
}
|
|
|
|
// Metatype to object conversion.
|
|
//
|
|
// Class and protocol metatypes are interoperable with certain Objective-C
|
|
// runtime classes, but only when ObjC interop is enabled.
|
|
|
|
if (TC.getLangOpts().EnableObjCInterop) {
|
|
// These conversions are between concrete types that don't need further
|
|
// resolution, so we can consider them immediately solved.
|
|
auto addSolvedRestrictedConstraint
|
|
= [&](ConversionRestrictionKind restriction) -> SolutionKind {
|
|
auto constraint = Constraint::createRestricted(*this,
|
|
ConstraintKind::Subtype,
|
|
restriction,
|
|
type1, type2,
|
|
getConstraintLocator(locator));
|
|
addConstraint(constraint);
|
|
return SolutionKind::Solved;
|
|
};
|
|
|
|
if (auto meta1 = type1->getAs<MetatypeType>()) {
|
|
if (meta1->getInstanceType()->mayHaveSuperclass()
|
|
&& type2->isAnyObject()) {
|
|
increaseScore(ScoreKind::SK_UserConversion);
|
|
return addSolvedRestrictedConstraint(
|
|
ConversionRestrictionKind::ClassMetatypeToAnyObject);
|
|
}
|
|
// Single @objc protocol value metatypes can be converted to the ObjC
|
|
// Protocol class type.
|
|
auto isProtocolClassType = [&](Type t) -> bool {
|
|
if (auto classDecl = t->getClassOrBoundGenericClass())
|
|
if (classDecl->getName() == getASTContext().Id_Protocol
|
|
&& classDecl->getModuleContext()->getName()
|
|
== getASTContext().Id_ObjectiveC)
|
|
return true;
|
|
return false;
|
|
};
|
|
|
|
if (auto protoTy = meta1->getInstanceType()->getAs<ProtocolType>()) {
|
|
if (protoTy->getDecl()->isObjC()
|
|
&& isProtocolClassType(type2)) {
|
|
increaseScore(ScoreKind::SK_UserConversion);
|
|
return addSolvedRestrictedConstraint(
|
|
ConversionRestrictionKind::ProtocolMetatypeToProtocolClass);
|
|
}
|
|
}
|
|
}
|
|
if (auto meta1 = type1->getAs<ExistentialMetatypeType>()) {
|
|
// Class-constrained existential metatypes can be converted to AnyObject.
|
|
if (meta1->getInstanceType()->isClassExistentialType()
|
|
&& type2->isAnyObject()) {
|
|
increaseScore(ScoreKind::SK_UserConversion);
|
|
return addSolvedRestrictedConstraint(
|
|
ConversionRestrictionKind::ExistentialMetatypeToAnyObject);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Implicit collection conversions.
|
|
if (kind >= TypeMatchKind::Conversion) {
|
|
if (isArrayType(desugar1) && isArrayType(desugar2)) {
|
|
conversionsOrFixes.push_back(ConversionRestrictionKind::ArrayUpcast);
|
|
} else if (isDictionaryType(desugar1) && isDictionaryType(desugar2)) {
|
|
conversionsOrFixes.push_back(
|
|
ConversionRestrictionKind::DictionaryUpcast);
|
|
} else if (isSetType(desugar1) && isSetType(desugar2)) {
|
|
conversionsOrFixes.push_back(
|
|
ConversionRestrictionKind::SetUpcast);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (kind == TypeMatchKind::BindToPointerType) {
|
|
if (desugar2->isEqual(getASTContext().TheEmptyTupleType))
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
if (concrete && kind >= TypeMatchKind::Conversion) {
|
|
// An lvalue of type T1 can be converted to a value of type T2 so long as
|
|
// T1 is convertible to T2 (by loading the value).
|
|
if (type1->is<LValueType>())
|
|
conversionsOrFixes.push_back(
|
|
ConversionRestrictionKind::LValueToRValue);
|
|
|
|
// An expression can be converted to an auto-closure function type, creating
|
|
// an implicit closure.
|
|
if (auto function2 = type2->getAs<FunctionType>()) {
|
|
if (function2->isAutoClosure())
|
|
return matchTypes(type1, function2->getResult(), kind, subFlags,
|
|
locator.withPathElement(ConstraintLocator::Load));
|
|
}
|
|
|
|
// Bridging from a value type to an Objective-C class type.
|
|
// FIXME: Banned for operator parameters, like user conversions are.
|
|
|
|
// NOTE: The plan for <rdar://problem/18311362> was to make such bridging
|
|
// conversions illegal except when explicitly converting with the 'as'
|
|
// operator. But using a String to subscript an [NSObject : AnyObject] is
|
|
// sufficiently common due to bridging that disallowing such conversions is
|
|
// not yet feasible, and a more targeted fix in the type checker is hard to
|
|
// justify.
|
|
|
|
if (type1->isPotentiallyBridgedValueType() &&
|
|
type1->getAnyNominal()
|
|
!= TC.Context.getImplicitlyUnwrappedOptionalDecl() &&
|
|
!(flags & TMF_ApplyingOperatorParameter)) {
|
|
|
|
auto isBridgeableTargetType = type2->isBridgeableObjectType();
|
|
|
|
// Allow bridged conversions to CVarArgType through NSObject.
|
|
if (!isBridgeableTargetType && type2->isExistentialType()) {
|
|
if (auto nominalType = type2->getAs<NominalType>())
|
|
isBridgeableTargetType = nominalType->getDecl()->getName() ==
|
|
TC.Context.Id_CVarArgType;
|
|
}
|
|
|
|
if (isBridgeableTargetType && TC.getBridgedToObjC(DC, type1)) {
|
|
conversionsOrFixes.push_back(ConversionRestrictionKind::BridgeToObjC);
|
|
}
|
|
}
|
|
|
|
if (kind == TypeMatchKind::ExplicitConversion) {
|
|
// Bridging from an Objective-C class type to a value type.
|
|
// Note that specifically require a class or class-constrained archetype
|
|
// here, because archetypes cannot be bridged.
|
|
if (type1->mayHaveSuperclass() && type2->isPotentiallyBridgedValueType() &&
|
|
type2->getAnyNominal()
|
|
!= TC.Context.getImplicitlyUnwrappedOptionalDecl() &&
|
|
allowsBridgingFromObjC(TC, DC, type2)) {
|
|
conversionsOrFixes.push_back(ConversionRestrictionKind::BridgeFromObjC);
|
|
}
|
|
|
|
// Bridging from an ErrorType to an Objective-C NSError.
|
|
auto errorType = TC.Context.getProtocol(KnownProtocolKind::ErrorType);
|
|
if (TC.containsProtocol(type1, errorType, DC,
|
|
ConformanceCheckFlags::InExpression))
|
|
if (auto NSErrorTy = TC.getNSErrorType(DC))
|
|
if (type2->isEqual(NSErrorTy))
|
|
conversionsOrFixes.push_back(
|
|
ConversionRestrictionKind::BridgeToNSError);
|
|
}
|
|
|
|
// Pointer arguments can be converted from pointer-compatible types.
|
|
if (kind >= TypeMatchKind::ArgumentConversion) {
|
|
if (auto bgt2 = type2->getAs<BoundGenericType>()) {
|
|
if (bgt2->getDecl() == getASTContext().getUnsafeMutablePointerDecl()
|
|
|| bgt2->getDecl() == getASTContext().getUnsafePointerDecl()) {
|
|
// UnsafeMutablePointer can be converted from an inout reference to a
|
|
// scalar or array.
|
|
if (auto inoutType1 = dyn_cast<InOutType>(desugar1)) {
|
|
auto inoutBaseType = inoutType1->getInOutObjectType();
|
|
|
|
auto isWrappedArray = isArrayType(inoutBaseType);
|
|
|
|
if (auto baseTyVar1 = dyn_cast<TypeVariableType>(inoutBaseType.
|
|
getPointer())) {
|
|
TypeVariableType *tv1;
|
|
auto bt1 = getFixedTypeRecursive(baseTyVar1, tv1,
|
|
kind == TypeMatchKind::SameType,
|
|
isArgumentTupleConversion);
|
|
|
|
isWrappedArray = isArrayType(bt1);
|
|
}
|
|
|
|
if (isWrappedArray) {
|
|
conversionsOrFixes.push_back(
|
|
ConversionRestrictionKind::ArrayToPointer);
|
|
}
|
|
conversionsOrFixes.push_back(
|
|
ConversionRestrictionKind::InoutToPointer);
|
|
}
|
|
|
|
if (!(flags & TMF_ApplyingOperatorParameter) &&
|
|
// Operators cannot use these implicit conversions.
|
|
(kind == TypeMatchKind::ArgumentConversion ||
|
|
kind == TypeMatchKind::ArgumentTupleConversion)) {
|
|
auto bgt1 = type1->getAs<BoundGenericType>();
|
|
|
|
// We can potentially convert from an UnsafeMutablePointer
|
|
// of a different type, if we're a void pointer.
|
|
if (bgt1 && bgt1->getDecl()
|
|
== getASTContext().getUnsafeMutablePointerDecl()) {
|
|
// Favor an UnsafeMutablePointer-to-UnsafeMutablePointer
|
|
// conversion.
|
|
if (bgt1->getDecl() != bgt2->getDecl())
|
|
increaseScore(ScoreKind::SK_ScalarPointerConversion);
|
|
conversionsOrFixes.push_back(
|
|
ConversionRestrictionKind::PointerToPointer);
|
|
}
|
|
|
|
// UnsafePointer can also be converted from an array
|
|
// or string value, or a UnsafePointer or
|
|
// AutoreleasingUnsafeMutablePointer.
|
|
if (bgt2->getDecl() == getASTContext().getUnsafePointerDecl()){
|
|
if (isArrayType(type1)) {
|
|
conversionsOrFixes.push_back(
|
|
ConversionRestrictionKind::ArrayToPointer);
|
|
}
|
|
|
|
// The pointer can be converted from a string, if the element type
|
|
// is compatible.
|
|
if (type1->isEqual(TC.getStringType(DC))) {
|
|
TypeVariableType *tv = nullptr;
|
|
auto baseTy = getFixedTypeRecursive(bgt2->getGenericArgs()[0],
|
|
tv, false, false);
|
|
|
|
if (tv || isStringCompatiblePointerBaseType(TC, DC, baseTy))
|
|
conversionsOrFixes.push_back(
|
|
ConversionRestrictionKind::StringToPointer);
|
|
}
|
|
|
|
if (bgt1 && bgt1->getDecl()
|
|
== getASTContext().getUnsafePointerDecl()) {
|
|
conversionsOrFixes.push_back(
|
|
ConversionRestrictionKind::PointerToPointer);
|
|
}
|
|
if (bgt1 && bgt1->getDecl() == getASTContext()
|
|
.getAutoreleasingUnsafeMutablePointerDecl()) {
|
|
conversionsOrFixes.push_back(
|
|
ConversionRestrictionKind::PointerToPointer);
|
|
}
|
|
}
|
|
}
|
|
} else if (
|
|
bgt2->getDecl() == getASTContext()
|
|
.getAutoreleasingUnsafeMutablePointerDecl()) {
|
|
// AutoUnsafeMutablePointer can be converted from an inout
|
|
// reference to a scalar.
|
|
if (type1->is<InOutType>()) {
|
|
conversionsOrFixes.push_back(
|
|
ConversionRestrictionKind::InoutToPointer);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (concrete && kind >= TypeMatchKind::OperatorArgumentConversion) {
|
|
// If the RHS is an inout type, the LHS must be an @lvalue type.
|
|
if (auto *iot = type2->getAs<InOutType>()) {
|
|
return matchTypes(type1, LValueType::get(iot->getObjectType()),
|
|
kind, subFlags,
|
|
locator.withPathElement(
|
|
ConstraintLocator::ArrayElementType));
|
|
}
|
|
}
|
|
|
|
// Conformance of a metatype to an existential metatype is actually
|
|
// equivalent to a conformance relationship on the instance types.
|
|
// This applies to nested metatype levels, so if A : P then
|
|
// A.Type : P.Type.
|
|
if (concrete && kind >= TypeMatchKind::ConformsTo) {
|
|
if (auto meta1 = type1->getAs<MetatypeType>()) {
|
|
if (auto meta2 = type2->getAs<ExistentialMetatypeType>()) {
|
|
return matchTypes(meta1->getInstanceType(),
|
|
meta2->getInstanceType(),
|
|
TypeMatchKind::ConformsTo, subFlags,
|
|
locator.withPathElement(
|
|
ConstraintLocator::InstanceType));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Instance type check for the above. We are going to check conformance once
|
|
// we hit commit_to_conversions below, but we have to add a token restriction
|
|
// to ensure we wrap the metatype value in a metatype erasure.
|
|
if (concrete && type2->isExistentialType()) {
|
|
if (kind == TypeMatchKind::ConformsTo)
|
|
conversionsOrFixes.push_back(ConversionRestrictionKind::MetatypeToExistentialMetatype);
|
|
else if (kind >= TypeMatchKind::Subtype)
|
|
conversionsOrFixes.push_back(ConversionRestrictionKind::Existential);
|
|
}
|
|
|
|
// A value of type T can be converted to type U? if T is convertible to U.
|
|
// A value of type T? can be converted to type U? if T is convertible to U.
|
|
// The above conversions also apply to implicitly unwrapped optional types, except
|
|
// that there is no implicit conversion from T? to T!.
|
|
{
|
|
BoundGenericType *boundGenericType2;
|
|
|
|
if (concrete && kind >= TypeMatchKind::Subtype &&
|
|
(boundGenericType2 = type2->getAs<BoundGenericType>())) {
|
|
auto decl2 = boundGenericType2->getDecl();
|
|
if (auto optionalKind2 = decl2->classifyAsOptionalType()) {
|
|
assert(boundGenericType2->getGenericArgs().size() == 1);
|
|
|
|
BoundGenericType *boundGenericType1 = type1->getAs<BoundGenericType>();
|
|
if (boundGenericType1) {
|
|
auto decl1 = boundGenericType1->getDecl();
|
|
if (decl1 == decl2) {
|
|
assert(boundGenericType1->getGenericArgs().size() == 1);
|
|
conversionsOrFixes.push_back(
|
|
ConversionRestrictionKind::OptionalToOptional);
|
|
} else if (optionalKind2 == OTK_Optional &&
|
|
decl1 == TC.Context.getImplicitlyUnwrappedOptionalDecl()) {
|
|
assert(boundGenericType1->getGenericArgs().size() == 1);
|
|
conversionsOrFixes.push_back(
|
|
ConversionRestrictionKind::ImplicitlyUnwrappedOptionalToOptional);
|
|
} else if (optionalKind2 == OTK_ImplicitlyUnwrappedOptional &&
|
|
kind >= TypeMatchKind::Conversion &&
|
|
decl1 == TC.Context.getOptionalDecl()) {
|
|
assert(boundGenericType1->getGenericArgs().size() == 1);
|
|
conversionsOrFixes.push_back(
|
|
ConversionRestrictionKind::OptionalToImplicitlyUnwrappedOptional);
|
|
}
|
|
}
|
|
|
|
// Do not attempt a value-to-optional conversion when resolving the
|
|
// applicable overloads for an operator application with nil operands.
|
|
if (!(subFlags & TMF_ApplyingOperatorWithNil)) {
|
|
conversionsOrFixes.push_back(
|
|
ConversionRestrictionKind::ValueToOptional);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// A value of type T! can be (unsafely) forced to U if T
|
|
// is convertible to U.
|
|
{
|
|
Type objectType1;
|
|
if (concrete && kind >= TypeMatchKind::Conversion &&
|
|
(objectType1 = lookThroughImplicitlyUnwrappedOptionalType(type1))) {
|
|
conversionsOrFixes.push_back(
|
|
ConversionRestrictionKind::ForceUnchecked);
|
|
}
|
|
}
|
|
|
|
// If the types disagree, but we're comparing a non-void, single-expression
|
|
// closure result type to a void function result type, allow the conversion.
|
|
{
|
|
if (concrete && kind >= TypeMatchKind::Subtype && type2->isVoid()) {
|
|
SmallVector<LocatorPathElt, 2> parts;
|
|
locator.getLocatorParts(parts);
|
|
|
|
while (!parts.empty()) {
|
|
if (parts.back().getKind() == ConstraintLocator::ClosureResult) {
|
|
increaseScore(SK_FunctionConversion);
|
|
return SolutionKind::Solved;
|
|
}
|
|
parts.pop_back();
|
|
}
|
|
}
|
|
}
|
|
|
|
commit_to_conversions:
|
|
// When we hit this point, we're committed to the set of potential
|
|
// conversions recorded thus far.
|
|
//
|
|
//
|
|
// FIXME: One should only jump to this label in the case where we want to
|
|
// cut off other potential conversions because we know none of them apply.
|
|
// Gradually, those gotos should go away as we can handle more kinds of
|
|
// conversions via disjunction constraints.
|
|
|
|
// If we should attempt fixes, add those to the list. They'll only be visited
|
|
// if there are no other possible solutions.
|
|
if (shouldAttemptFixes() && !typeVar1 && !typeVar2 &&
|
|
!(flags & TMF_ApplyingFix) && kind >= TypeMatchKind::Conversion) {
|
|
Type objectType1 = type1->getRValueObjectType();
|
|
|
|
// If the source type is a function type that could be applied with (),
|
|
// try it.
|
|
if (isFunctionTypeAcceptingNoArguments(objectType1)) {
|
|
conversionsOrFixes.push_back(FixKind::NullaryCall);
|
|
}
|
|
|
|
// If we have an optional type, try to force-unwrap it.
|
|
// FIXME: Should we also try '?'?
|
|
if (objectType1->getOptionalObjectType()) {
|
|
conversionsOrFixes.push_back(FixKind::ForceOptional);
|
|
}
|
|
|
|
// If we have a value of type AnyObject that we're trying to convert to
|
|
// a class, force a downcast.
|
|
// FIXME: Also allow types bridged through Objective-C classes.
|
|
if (objectType1->isAnyObject() &&
|
|
type2->getClassOrBoundGenericClass()) {
|
|
conversionsOrFixes.push_back(Fix::getForcedDowncast(*this, type2));
|
|
}
|
|
|
|
// Look through IUO's.
|
|
auto type1WithoutIUO = objectType1;
|
|
if (auto elt = type1WithoutIUO->getImplicitlyUnwrappedOptionalObjectType())
|
|
type1WithoutIUO = elt;
|
|
|
|
// If we could perform a bridging cast, try it.
|
|
if (isArrayDictionarySetOrString(TC.Context, type2) &&
|
|
TC.getDynamicBridgedThroughObjCClass(DC, type1WithoutIUO, type2)){
|
|
conversionsOrFixes.push_back(Fix::getForcedDowncast(*this, type2));
|
|
}
|
|
|
|
// If we're converting an lvalue to an inout type, add the missing '&'.
|
|
if (type2->getRValueType()->is<InOutType>() && type1->is<LValueType>()) {
|
|
conversionsOrFixes.push_back(FixKind::AddressOf);
|
|
}
|
|
}
|
|
|
|
if (conversionsOrFixes.empty()) {
|
|
// If one of the types is a type variable, we leave this unsolved.
|
|
if (typeVar1 || typeVar2)
|
|
return SolutionKind::Unsolved;
|
|
|
|
// If we are supposed to record failures, do so.
|
|
if (shouldRecordFailures()) {
|
|
recordFailure(getConstraintLocator(locator),
|
|
getRelationalFailureKind(kind), type1, type2);
|
|
}
|
|
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
// Where there is more than one potential conversion, create a disjunction
|
|
// so that we'll explore all of the options.
|
|
if (conversionsOrFixes.size() > 1) {
|
|
auto fixedLocator = getConstraintLocator(locator);
|
|
SmallVector<Constraint *, 2> constraints;
|
|
for (auto potential : conversionsOrFixes) {
|
|
auto constraintKind = getConstraintKind(kind);
|
|
|
|
if (auto restriction = potential.getRestriction()) {
|
|
// Determine the constraint kind. For a deep equality constraint, only
|
|
// perform equality.
|
|
if (*restriction == ConversionRestrictionKind::DeepEquality)
|
|
constraintKind = ConstraintKind::Equal;
|
|
|
|
constraints.push_back(
|
|
Constraint::createRestricted(*this, constraintKind, *restriction,
|
|
type1, type2, fixedLocator));
|
|
continue;
|
|
}
|
|
|
|
// If the first thing we found is a fix, add a "don't fix" marker.
|
|
if (conversionsOrFixes.empty()) {
|
|
constraints.push_back(
|
|
Constraint::createFixed(*this, constraintKind, FixKind::None,
|
|
type1, type2, fixedLocator));
|
|
}
|
|
|
|
auto fix = *potential.getFix();
|
|
constraints.push_back(
|
|
Constraint::createFixed(*this, constraintKind, fix, type1, type2,
|
|
fixedLocator));
|
|
}
|
|
addConstraint(Constraint::createDisjunction(*this, constraints,
|
|
fixedLocator));
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
// For a single potential conversion, directly recurse, so that we
|
|
// don't allocate a new constraint or constraint locator.
|
|
|
|
// Handle restrictions.
|
|
if (auto restriction = conversionsOrFixes[0].getRestriction()) {
|
|
ConstraintRestrictions.push_back(
|
|
std::make_tuple(type1, type2, *restriction));
|
|
|
|
if (flags & TMF_UnwrappingOptional) {
|
|
subFlags |= TMF_UnwrappingOptional;
|
|
}
|
|
|
|
return simplifyRestrictedConstraint(*restriction, type1, type2,
|
|
kind, subFlags, locator);
|
|
}
|
|
|
|
// Handle fixes.
|
|
auto fix = *conversionsOrFixes[0].getFix();
|
|
return simplifyFixConstraint(fix, type1, type2, kind, subFlags, locator);
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::simplifyConstructionConstraint(Type valueType,
|
|
FunctionType *fnType,
|
|
unsigned flags,
|
|
ConstraintLocator *locator) {
|
|
// Desugar the value type.
|
|
auto desugarValueType = valueType->getDesugaredType();
|
|
|
|
// If we have a type variable that has been bound to a fixed type,
|
|
// look through to that fixed type.
|
|
auto desugarValueTypeVar = dyn_cast<TypeVariableType>(desugarValueType);
|
|
if (desugarValueTypeVar) {
|
|
if (auto fixed = getFixedType(desugarValueTypeVar)) {
|
|
valueType = fixed;
|
|
desugarValueType = fixed->getDesugaredType();
|
|
desugarValueTypeVar = nullptr;
|
|
}
|
|
}
|
|
|
|
Type argType = fnType->getInput();
|
|
Type resultType = fnType->getResult();
|
|
|
|
switch (desugarValueType->getKind()) {
|
|
#define SUGARED_TYPE(id, parent) case TypeKind::id:
|
|
#define TYPE(id, parent)
|
|
#include "swift/AST/TypeNodes.def"
|
|
llvm_unreachable("Type has not been desugared completely");
|
|
|
|
#define ARTIFICIAL_TYPE(id, parent) case TypeKind::id:
|
|
#define TYPE(id, parent)
|
|
#include "swift/AST/TypeNodes.def"
|
|
llvm_unreachable("artificial type in constraint");
|
|
|
|
case TypeKind::Error:
|
|
return SolutionKind::Error;
|
|
|
|
case TypeKind::GenericFunction:
|
|
case TypeKind::GenericTypeParam:
|
|
case TypeKind::DependentMember:
|
|
llvm_unreachable("unmapped dependent type");
|
|
|
|
case TypeKind::TypeVariable:
|
|
return SolutionKind::Unsolved;
|
|
|
|
case TypeKind::Tuple: {
|
|
// Tuple construction is simply tuple conversion.
|
|
if (matchTypes(resultType, desugarValueType,
|
|
TypeMatchKind::BindType,
|
|
flags,
|
|
ConstraintLocatorBuilder(locator)
|
|
.withPathElement(ConstraintLocator::ApplyFunction))
|
|
== SolutionKind::Error)
|
|
return SolutionKind::Error;
|
|
|
|
return matchTypes(argType, valueType, TypeMatchKind::Conversion,
|
|
flags|TMF_GenerateConstraints, locator);
|
|
}
|
|
|
|
case TypeKind::Enum:
|
|
case TypeKind::Struct:
|
|
case TypeKind::Class:
|
|
case TypeKind::BoundGenericClass:
|
|
case TypeKind::BoundGenericEnum:
|
|
case TypeKind::BoundGenericStruct:
|
|
case TypeKind::Archetype:
|
|
case TypeKind::DynamicSelf:
|
|
case TypeKind::ProtocolComposition:
|
|
case TypeKind::Protocol:
|
|
// Break out to handle the actual construction below.
|
|
break;
|
|
|
|
case TypeKind::PolymorphicFunction:
|
|
llvm_unreachable("Polymorphic function type should have been opened");
|
|
|
|
case TypeKind::UnboundGeneric:
|
|
llvm_unreachable("Unbound generic type should have been opened");
|
|
|
|
#define BUILTIN_TYPE(id, parent) case TypeKind::id:
|
|
#define TYPE(id, parent)
|
|
#include "swift/AST/TypeNodes.def"
|
|
case TypeKind::ExistentialMetatype:
|
|
case TypeKind::Metatype:
|
|
case TypeKind::Function:
|
|
case TypeKind::LValue:
|
|
case TypeKind::InOut:
|
|
case TypeKind::Module:
|
|
// If we are supposed to record failures, do so.
|
|
if (shouldRecordFailures()) {
|
|
recordFailure(locator, Failure::TypesNotConstructible,
|
|
valueType, argType);
|
|
}
|
|
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
NameLookupOptions lookupOptions = defaultConstructorLookupOptions;
|
|
if (isa<AbstractFunctionDecl>(DC))
|
|
lookupOptions |= NameLookupFlags::KnownPrivate;
|
|
auto ctors = TC.lookupConstructors(DC, valueType, lookupOptions);
|
|
if (!ctors) {
|
|
// If we are supposed to record failures, do so.
|
|
if (shouldRecordFailures()) {
|
|
recordFailure(locator, Failure::NoPublicInitializers, valueType);
|
|
}
|
|
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
auto &context = getASTContext();
|
|
auto name = context.Id_init;
|
|
auto applyLocator = getConstraintLocator(locator,
|
|
ConstraintLocator::ApplyArgument);
|
|
auto tv = createTypeVariable(applyLocator,
|
|
TVO_CanBindToLValue|TVO_PrefersSubtypeBinding);
|
|
|
|
// The constructor will have function type T -> T2, for a fresh type
|
|
// variable T. T2 is the result type provided via the construction
|
|
// constraint itself.
|
|
addValueMemberConstraint(MetatypeType::get(valueType, TC.Context), name,
|
|
FunctionType::get(tv, resultType),
|
|
getConstraintLocator(
|
|
locator,
|
|
ConstraintLocator::ConstructorMember));
|
|
|
|
// The first type must be convertible to the constructor's argument type.
|
|
addConstraint(ConstraintKind::ArgumentTupleConversion, argType, tv,
|
|
applyLocator);
|
|
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind ConstraintSystem::simplifyConformsToConstraint(
|
|
Type type,
|
|
Type protocol,
|
|
ConstraintKind kind,
|
|
ConstraintLocatorBuilder locator,
|
|
unsigned flags) {
|
|
if (auto proto = protocol->getAs<ProtocolType>()) {
|
|
return simplifyConformsToConstraint(type, proto->getDecl(), kind,
|
|
locator, flags);
|
|
}
|
|
|
|
return matchExistentialTypes(type, protocol, kind, flags, locator);
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind ConstraintSystem::simplifyConformsToConstraint(
|
|
Type type,
|
|
ProtocolDecl *protocol,
|
|
ConstraintKind kind,
|
|
ConstraintLocatorBuilder locator,
|
|
unsigned flags) {
|
|
// Dig out the fixed type to which this type refers.
|
|
TypeVariableType *typeVar;
|
|
type = getFixedTypeRecursive(type, typeVar, /*wantRValue=*/true);
|
|
|
|
// If we hit a type variable without a fixed type, we can't
|
|
// solve this yet.
|
|
if (typeVar)
|
|
return SolutionKind::Unsolved;
|
|
|
|
// For purposes of argument type matching, existential types don't need to
|
|
// conform -- they only need to contain the protocol, so check that
|
|
// separately.
|
|
switch (kind) {
|
|
case ConstraintKind::SelfObjectOfProtocol:
|
|
if (TC.containsProtocol(type, protocol, DC,
|
|
ConformanceCheckFlags::InExpression))
|
|
return SolutionKind::Solved;
|
|
break;
|
|
case ConstraintKind::ConformsTo:
|
|
// Check whether this type conforms to the protocol.
|
|
if (TC.conformsToProtocol(type, protocol, DC,
|
|
ConformanceCheckFlags::InExpression))
|
|
return SolutionKind::Solved;
|
|
break;
|
|
default:
|
|
llvm_unreachable("bad constraint kind");
|
|
}
|
|
|
|
if (!type->getAnyOptionalObjectType().isNull() &&
|
|
(protocol == TC.getProtocol(SourceLoc(),
|
|
KnownProtocolKind::BooleanType))) {
|
|
|
|
Fixes.push_back({FixKind::OptionalToBoolean,
|
|
getConstraintLocator(locator)});
|
|
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
// There's nothing more we can do; fail.
|
|
if (shouldRecordFailures()) {
|
|
recordFailure(getConstraintLocator(locator),
|
|
Failure::DoesNotConformToProtocol, type,
|
|
protocol->getDeclaredType());
|
|
}
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
/// Determine the kind of checked cast to perform from the given type to
|
|
/// the given type.
|
|
///
|
|
/// This routine does not attempt to check whether the cast can actually
|
|
/// succeed; that's the caller's responsibility.
|
|
static CheckedCastKind getCheckedCastKind(ConstraintSystem *cs,
|
|
Type fromType,
|
|
Type toType) {
|
|
// Array downcasts are handled specially.
|
|
if (cs->isArrayType(fromType) && cs->isArrayType(toType)) {
|
|
return CheckedCastKind::ArrayDowncast;
|
|
}
|
|
|
|
// Dictionary downcasts are handled specially.
|
|
if (cs->isDictionaryType(fromType) && cs->isDictionaryType(toType)) {
|
|
return CheckedCastKind::DictionaryDowncast;
|
|
}
|
|
|
|
// Set downcasts are handled specially.
|
|
if (cs->isSetType(fromType) && cs->isSetType(toType)) {
|
|
return CheckedCastKind::SetDowncast;
|
|
}
|
|
|
|
// If we can bridge through an Objective-C class, do so.
|
|
auto &tc = cs->getTypeChecker();
|
|
if (tc.getDynamicBridgedThroughObjCClass(cs->DC, fromType, toType)) {
|
|
return CheckedCastKind::BridgeFromObjectiveC;
|
|
}
|
|
|
|
return CheckedCastKind::ValueCast;
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::simplifyCheckedCastConstraint(
|
|
Type fromType, Type toType,
|
|
ConstraintLocatorBuilder locator) {
|
|
do {
|
|
// Dig out the fixed type to which this type refers.
|
|
TypeVariableType *typeVar1;
|
|
fromType = getFixedTypeRecursive(fromType, typeVar1, /*wantRValue=*/true);
|
|
|
|
// If we hit a type variable without a fixed type, we can't
|
|
// solve this yet.
|
|
if (typeVar1)
|
|
return SolutionKind::Unsolved;
|
|
|
|
// Dig out the fixed type to which this type refers.
|
|
TypeVariableType *typeVar2;
|
|
toType = getFixedTypeRecursive(toType, typeVar2, /*wantRValue=*/true);
|
|
|
|
// If we hit a type variable without a fixed type, we can't
|
|
// solve this yet.
|
|
if (typeVar2)
|
|
return SolutionKind::Unsolved;
|
|
|
|
Type origFromType = fromType;
|
|
Type origToType = toType;
|
|
|
|
// Peel off optionals metatypes from the types, because we might cast through
|
|
// them.
|
|
toType = toType->lookThroughAllAnyOptionalTypes();
|
|
fromType = fromType->lookThroughAllAnyOptionalTypes();
|
|
|
|
// Peel off metatypes, since if we can cast two types, we can cast their
|
|
// metatypes.
|
|
while (auto toMetatype = toType->getAs<MetatypeType>()) {
|
|
auto fromMetatype = fromType->getAs<MetatypeType>();
|
|
if (!fromMetatype)
|
|
break;
|
|
toType = toMetatype->getInstanceType();
|
|
fromType = fromMetatype->getInstanceType();
|
|
}
|
|
|
|
// Peel off a potential layer of existential<->concrete metatype conversion.
|
|
if (auto toMetatype = toType->getAs<AnyMetatypeType>()) {
|
|
if (auto fromMetatype = fromType->getAs<MetatypeType>()) {
|
|
toType = toMetatype->getInstanceType();
|
|
fromType = fromMetatype->getInstanceType();
|
|
}
|
|
}
|
|
|
|
// If nothing changed, we're done.
|
|
if (fromType.getPointer() == origFromType.getPointer() &&
|
|
toType.getPointer() == origToType.getPointer())
|
|
break;
|
|
} while (true);
|
|
|
|
auto kind = getCheckedCastKind(this, fromType, toType);
|
|
switch (kind) {
|
|
case CheckedCastKind::ArrayDowncast: {
|
|
auto fromBaseType = getBaseTypeForArrayType(fromType.getPointer());
|
|
auto toBaseType = getBaseTypeForArrayType(toType.getPointer());
|
|
|
|
// FIXME: Deal with from/to base types that haven't been solved
|
|
// down to type variables yet.
|
|
|
|
// Check whether we need to bridge through an Objective-C class.
|
|
if (auto classType = TC.getDynamicBridgedThroughObjCClass(DC,
|
|
fromBaseType,
|
|
toBaseType)) {
|
|
// The class we're bridging through must be a subtype of the type we're
|
|
// coming from.
|
|
addConstraint(ConstraintKind::Subtype, classType, fromBaseType,
|
|
getConstraintLocator(locator));
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
addConstraint(ConstraintKind::Subtype, toBaseType, fromBaseType,
|
|
getConstraintLocator(locator));
|
|
return SolutionKind::Solved;
|
|
}
|
|
case CheckedCastKind::DictionaryDowncast:
|
|
case CheckedCastKind::DictionaryDowncastBridged: {
|
|
Type fromKeyType, fromValueType;
|
|
std::tie(fromKeyType, fromValueType) = *isDictionaryType(fromType);
|
|
|
|
Type toKeyType, toValueType;
|
|
std::tie(toKeyType, toValueType) = *isDictionaryType(toType);
|
|
|
|
// FIXME: Deal with from/to base types that haven't been solved
|
|
// down to type variables yet.
|
|
|
|
// Check whether we need to bridge the key through an Objective-C class.
|
|
if (auto bridgedKey = TC.getDynamicBridgedThroughObjCClass(DC,
|
|
fromKeyType,
|
|
toKeyType)) {
|
|
toKeyType = bridgedKey;
|
|
}
|
|
|
|
// Perform subtype check on the possibly-bridged-through key type.
|
|
unsigned subFlags = TMF_GenerateConstraints;
|
|
auto result = matchTypes(toKeyType, fromKeyType, TypeMatchKind::Subtype,
|
|
subFlags, locator);
|
|
if (result == SolutionKind::Error)
|
|
return result;
|
|
|
|
// Check whether we need to bridge the value through an Objective-C class.
|
|
if (auto bridgedValue = TC.getDynamicBridgedThroughObjCClass(DC,
|
|
fromValueType,
|
|
toValueType)) {
|
|
toValueType = bridgedValue;
|
|
}
|
|
|
|
// Perform subtype check on the possibly-bridged-through value type.
|
|
switch (matchTypes(toValueType, fromValueType, TypeMatchKind::Subtype,
|
|
subFlags, locator)) {
|
|
case SolutionKind::Solved:
|
|
return result;
|
|
|
|
case SolutionKind::Unsolved:
|
|
return SolutionKind::Unsolved;
|
|
|
|
case SolutionKind::Error:
|
|
return SolutionKind::Error;
|
|
}
|
|
}
|
|
|
|
case CheckedCastKind::SetDowncast:
|
|
case CheckedCastKind::SetDowncastBridged: {
|
|
auto fromBaseType = getBaseTypeForSetType(fromType.getPointer());
|
|
auto toBaseType = getBaseTypeForSetType(toType.getPointer());
|
|
// FIXME: Deal with from/to base types that haven't been solved
|
|
// down to type variables yet.
|
|
|
|
// Check whether we need to bridge through an Objective-C class.
|
|
if (auto classType = TC.getDynamicBridgedThroughObjCClass(DC,
|
|
fromBaseType,
|
|
toBaseType)) {
|
|
// The class we're bridging through must be a subtype of the type we're
|
|
// coming from.
|
|
addConstraint(ConstraintKind::Subtype, classType, fromBaseType,
|
|
getConstraintLocator(locator));
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
addConstraint(ConstraintKind::Subtype, toBaseType, fromBaseType,
|
|
getConstraintLocator(locator));
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
case CheckedCastKind::ValueCast: {
|
|
// If casting among classes, and there are open
|
|
// type variables remaining, introduce a subtype constraint to help resolve
|
|
// them.
|
|
if (fromType->getClassOrBoundGenericClass()
|
|
&& toType->getClassOrBoundGenericClass()
|
|
&& (fromType->hasTypeVariable() || toType->hasTypeVariable())) {
|
|
addConstraint(ConstraintKind::Subtype, toType, fromType,
|
|
getConstraintLocator(locator));
|
|
}
|
|
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
case CheckedCastKind::BridgeFromObjectiveC: {
|
|
// This existential-to-concrete cast might bridge through an Objective-C
|
|
// class type.
|
|
Type objCClass = TC.getDynamicBridgedThroughObjCClass(DC,
|
|
fromType,
|
|
toType);
|
|
assert(objCClass && "Type must be bridged");
|
|
(void)objCClass;
|
|
// Otherwise no constraint is necessary; as long as both objCClass and
|
|
// fromType are Objective-C types, they can't have any open type variables,
|
|
// and conversion between unrelated classes will be diagnosed in
|
|
// typeCheckCheckedCast.
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
case CheckedCastKind::Coercion:
|
|
case CheckedCastKind::Unresolved:
|
|
llvm_unreachable("Not a valid result");
|
|
}
|
|
}
|
|
|
|
/// Determine whether the given type is the Self type of the protocol.
|
|
static bool isProtocolSelf(Type type) {
|
|
if (auto genericParam = type->getAs<GenericTypeParamType>())
|
|
return genericParam->getDepth() == 0;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Determine whether the given type contains a reference to the 'Self' type
|
|
/// of a protocol.
|
|
static bool containsProtocolSelf(Type type) {
|
|
// If the type is not dependent, it doesn't refer to 'Self'.
|
|
if (!type->hasTypeParameter())
|
|
return false;
|
|
|
|
return type.findIf([](Type type) -> bool {
|
|
return isProtocolSelf(type);
|
|
});
|
|
}
|
|
|
|
/// Determine whether the given protocol member's signature prevents
|
|
/// it from being used in an existential reference.
|
|
static bool isUnavailableInExistential(TypeChecker &tc, ValueDecl *decl) {
|
|
Type type = decl->getInterfaceType();
|
|
if (!type) // FIXME: deal with broken recursion
|
|
return true;
|
|
|
|
// For a function or constructor, skip the implicit 'this'.
|
|
if (auto afd = dyn_cast<AbstractFunctionDecl>(decl)) {
|
|
type = type->castTo<AnyFunctionType>()->getResult();
|
|
|
|
// Allow functions to return Self, but not have Self anywhere in
|
|
// their argument types.
|
|
for (unsigned i = 1, n = afd->getNumParamPatterns(); i != n; ++i) {
|
|
// Check whether the input type contains Self anywhere.
|
|
auto fnType = type->castTo<AnyFunctionType>();
|
|
if (containsProtocolSelf(fnType->getInput()))
|
|
return true;
|
|
|
|
type = fnType->getResult();
|
|
}
|
|
|
|
// Look through one level of optional on the result type.
|
|
if (auto valueType = type->getAnyOptionalObjectType())
|
|
type = valueType;
|
|
|
|
if (isProtocolSelf(type) || type->is<DynamicSelfType>())
|
|
return false;
|
|
|
|
return containsProtocolSelf(type);
|
|
}
|
|
|
|
return containsProtocolSelf(type);
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::simplifyOptionalObjectConstraint(const Constraint &constraint)
|
|
{
|
|
// Resolve the optional type.
|
|
Type optLValueTy = simplifyType(constraint.getFirstType());
|
|
Type optTy = optLValueTy->getRValueType();
|
|
|
|
if (optTy->is<TypeVariableType>()) {
|
|
return SolutionKind::Unsolved;
|
|
}
|
|
|
|
// If the base type is not optional, the constraint fails.
|
|
Type objectTy = optTy->getAnyOptionalObjectType();
|
|
if (!objectTy) {
|
|
recordFailure(constraint.getLocator(), Failure::IsNotOptional,
|
|
optTy);
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
// The object type is an lvalue if the optional was.
|
|
if (optLValueTy->is<LValueType>()) {
|
|
objectTy = LValueType::get(objectTy);
|
|
}
|
|
|
|
// Equate it to the other type in the constraint.
|
|
addConstraint(ConstraintKind::Bind, objectTy, constraint.getSecondType(),
|
|
constraint.getLocator());
|
|
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
/// If the given type conforms to the RawRepresentable protocol,
|
|
/// return its underlying raw type.
|
|
static Type getRawRepresentableValueType(TypeChecker &tc, DeclContext *dc,
|
|
Type type) {
|
|
auto proto = tc.Context.getProtocol(KnownProtocolKind::RawRepresentable);
|
|
if (!proto)
|
|
return nullptr;
|
|
|
|
if (type->hasTypeVariable())
|
|
return nullptr;
|
|
|
|
ProtocolConformance *conformance = nullptr;
|
|
if (!tc.conformsToProtocol(type, proto, dc,
|
|
ConformanceCheckFlags::InExpression, &conformance))
|
|
return nullptr;
|
|
|
|
return tc.getWitnessType(type, proto, conformance, tc.Context.Id_RawValue,
|
|
diag::broken_raw_representable_requirement);
|
|
}
|
|
|
|
/// Retrieve the argument labels that are provided for a member
|
|
/// reference at the given locator.
|
|
static Optional<ArrayRef<Identifier>>
|
|
getArgumentLabels(ConstraintSystem &cs, ConstraintLocatorBuilder locator) {
|
|
SmallVector<LocatorPathElt, 2> parts;
|
|
Expr *anchor = locator.getLocatorParts(parts);
|
|
if (!anchor)
|
|
return None;
|
|
|
|
while (!parts.empty()) {
|
|
if (parts.back().getKind() == ConstraintLocator::Member ||
|
|
parts.back().getKind() == ConstraintLocator::SubscriptMember) {
|
|
parts.pop_back();
|
|
continue;
|
|
}
|
|
|
|
if (parts.back().getKind() == ConstraintLocator::ConstructorMember) {
|
|
// FIXME: Workaround for strange anchor on ConstructorMember locators.
|
|
if (auto call = dyn_cast<CallExpr>(anchor)) {
|
|
anchor = call->getFn()->getSemanticsProvidingExpr();
|
|
|
|
if (auto optionalWrapper = dyn_cast<BindOptionalExpr>(anchor))
|
|
anchor = optionalWrapper->getSubExpr();
|
|
else if (auto forceWrapper = dyn_cast<ForceValueExpr>(anchor))
|
|
anchor = forceWrapper->getSubExpr();
|
|
}
|
|
|
|
parts.pop_back();
|
|
continue;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
if (!parts.empty())
|
|
return None;
|
|
|
|
auto known = cs.ArgumentLabels.find(cs.getConstraintLocator(anchor));
|
|
if (known == cs.ArgumentLabels.end())
|
|
return None;
|
|
|
|
return known->second;
|
|
}
|
|
|
|
/// Given a ValueMember, UnresolvedValueMember, or TypeMember constraint,
|
|
/// perform a lookup into the specified base type to find a candidate list.
|
|
/// The list returned includes the viable candidates as well as the unviable
|
|
/// ones (along with reasons why they aren't viable).
|
|
MemberLookupResult ConstraintSystem::
|
|
performMemberLookup(Type baseTy, const Constraint &constraint) {
|
|
Type baseObjTy = baseTy->getRValueType();
|
|
DeclName name = constraint.getMember();
|
|
|
|
// Dig out the instance type and figure out what members of the instance type
|
|
// we are going to see.
|
|
bool isMetatype = false;
|
|
bool hasInstanceMembers = false;
|
|
bool hasInstanceMethods = false;
|
|
bool hasStaticMembers = false;
|
|
Type instanceTy = baseObjTy;
|
|
if (baseObjTy->is<ModuleType>()) {
|
|
hasStaticMembers = true;
|
|
} else if (auto baseObjMeta = baseObjTy->getAs<AnyMetatypeType>()) {
|
|
instanceTy = baseObjMeta->getInstanceType();
|
|
isMetatype = true;
|
|
if (baseObjMeta->is<ExistentialMetatypeType>()) {
|
|
// An instance of an existential metatype is a concrete type conforming
|
|
// to the existential, say Self. Instance members of the concrete type
|
|
// have type Self -> T -> U, but we don't know what Self is at compile
|
|
// time so we cannot refer to them. Static methods are fine, on the other
|
|
// hand -- we already know that they do not have Self or associated type
|
|
// requirements, since otherwise we would not be able to refer to the
|
|
// existential metatype in the first place.
|
|
hasStaticMembers = true;
|
|
} else if (instanceTy->isExistentialType()) {
|
|
// A protocol metatype has instance methods with type P -> T -> U, but
|
|
// not instance properties or static members -- the metatype value itself
|
|
// doesn't give us a witness so there's no static method to bind.
|
|
hasInstanceMethods = true;
|
|
} else {
|
|
// Metatypes of nominal types and archetypes have instance methods and
|
|
// static members, but not instance properties.
|
|
// FIXME: partial application of properties
|
|
hasInstanceMethods = true;
|
|
hasStaticMembers = true;
|
|
}
|
|
} else {
|
|
// Otherwise, we can access all instance members.
|
|
hasInstanceMembers = true;
|
|
hasInstanceMethods = true;
|
|
}
|
|
|
|
bool isExistential = instanceTy->isExistentialType();
|
|
|
|
if (instanceTy->is<TypeVariableType>()) {
|
|
MemberLookupResult result;
|
|
result.OverallResult = MemberLookupResult::Unsolved;
|
|
return result;
|
|
}
|
|
|
|
|
|
// Okay, start building up the result list.
|
|
MemberLookupResult result;
|
|
result.OverallResult = MemberLookupResult::HasResults;
|
|
|
|
// If the base type is a tuple type, look for the named or indexed member
|
|
// of the tuple.
|
|
if (auto baseTuple = baseObjTy->getAs<TupleType>()) {
|
|
// Tuples don't have compound-name members.
|
|
if (!name.isSimpleName())
|
|
return result; // No result.
|
|
|
|
StringRef nameStr = name.getBaseName().str();
|
|
int fieldIdx = -1;
|
|
// Resolve a number reference into the tuple type.
|
|
unsigned Value = 0;
|
|
if (!nameStr.getAsInteger(10, Value) &&
|
|
Value < baseTuple->getNumElements()) {
|
|
fieldIdx = Value;
|
|
} else {
|
|
fieldIdx = baseTuple->getNamedElementId(name.getBaseName());
|
|
}
|
|
|
|
if (fieldIdx == -1)
|
|
return result; // No result.
|
|
|
|
// Add an overload set that selects this field.
|
|
result.ViableCandidates.push_back(OverloadChoice(baseTy, fieldIdx));
|
|
return result;
|
|
}
|
|
|
|
|
|
// If we have a simple name, determine whether there are argument
|
|
// labels we can use to restrict the set of lookup results.
|
|
Optional<ArrayRef<Identifier>> argumentLabels;
|
|
if (name.isSimpleName()) {
|
|
argumentLabels = getArgumentLabels(*this,
|
|
ConstraintLocatorBuilder(constraint.getLocator()));
|
|
|
|
// If we're referencing AnyObject and we have argument labels, put
|
|
// the argument labels into the name: we don't want to look for
|
|
// anything else, because the cost of the general search is so
|
|
// high.
|
|
if (baseObjTy->isAnyObject() && argumentLabels) {
|
|
name = DeclName(TC.Context, name.getBaseName(), *argumentLabels);
|
|
argumentLabels.reset();
|
|
}
|
|
}
|
|
|
|
/// Determine whether the given declaration has compatible argument
|
|
/// labels.
|
|
auto hasCompatibleArgumentLabels = [&](ValueDecl *decl) -> bool {
|
|
if (!argumentLabels)
|
|
return true;
|
|
|
|
auto name = decl->getFullName();
|
|
if (name.isSimpleName())
|
|
return true;
|
|
|
|
for (auto argLabel : *argumentLabels) {
|
|
if (argLabel.empty())
|
|
continue;
|
|
|
|
if (std::find(name.getArgumentNames().begin(),
|
|
name.getArgumentNames().end(),
|
|
argLabel) == name.getArgumentNames().end()) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
};
|
|
|
|
|
|
// Handle initializers, they have their own approach to name lookup.
|
|
if (name.isSimpleName(TC.Context.Id_init)) {
|
|
NameLookupOptions lookupOptions = defaultConstructorLookupOptions;
|
|
if (isa<AbstractFunctionDecl>(DC))
|
|
lookupOptions |= NameLookupFlags::KnownPrivate;
|
|
LookupResult ctors = TC.lookupConstructors(DC, baseObjTy, lookupOptions);
|
|
if (!ctors)
|
|
return result; // No result.
|
|
|
|
// The constructors are only found on the metatype.
|
|
if (!isMetatype) {
|
|
result.OverallResult = MemberLookupResult::ErrorDoesNotHaveInitOnInstance;
|
|
return result;
|
|
}
|
|
|
|
TypeBase *favoredType = nullptr;
|
|
if (auto anchor = constraint.getLocator()->getAnchor()) {
|
|
if (auto applyExpr = dyn_cast<ApplyExpr>(anchor)) {
|
|
auto argExpr = applyExpr->getArg();
|
|
favoredType = getFavoredType(argExpr);
|
|
|
|
if (!favoredType) {
|
|
optimizeConstraints(argExpr);
|
|
favoredType = getFavoredType(argExpr);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Introduce a new overload set.
|
|
retry_ctors_after_fail:
|
|
bool labelMismatch = false;
|
|
for (auto constructor : ctors) {
|
|
// If the constructor is invalid, we fail entirely to avoid error cascade.
|
|
TC.validateDecl(constructor, true);
|
|
if (constructor->isInvalid())
|
|
return result.markErrorAlreadyDiagnosed();
|
|
|
|
// If the argument labels for this result are incompatible with
|
|
// the call site, skip it.
|
|
if (!hasCompatibleArgumentLabels(constructor)) {
|
|
labelMismatch = true;
|
|
result.addUnviable(constructor, MemberLookupResult::UR_LabelMismatch);
|
|
continue;
|
|
}
|
|
|
|
// If our base is an existential type, we can't make use of any
|
|
// constructor whose signature involves associated types.
|
|
if (isExistential &&
|
|
isUnavailableInExistential(getTypeChecker(), constructor)) {
|
|
result.addUnviable(constructor,
|
|
MemberLookupResult::UR_UnavailableInExistential);
|
|
continue;
|
|
}
|
|
|
|
// If the invocation's argument expression has a favored constraint,
|
|
// use that information to determine whether a specific overload for
|
|
// the initializer should be favored.
|
|
if (favoredType && result.FavoredChoice == ~0U) {
|
|
// Only try and favor monomorphic initializers.
|
|
if (auto fnTypeWithSelf =
|
|
constructor->getType()->getAs<FunctionType>()) {
|
|
|
|
if (auto fnType =
|
|
fnTypeWithSelf->getResult()->getAs<FunctionType>()) {
|
|
|
|
auto argType = fnType->getInput();
|
|
|
|
if (auto parenType =
|
|
dyn_cast<ParenType>(argType.getPointer())) {
|
|
argType = parenType->getUnderlyingType();
|
|
}
|
|
|
|
if (argType->isEqual(favoredType))
|
|
result.FavoredChoice = result.ViableCandidates.size();
|
|
}
|
|
}
|
|
}
|
|
|
|
result.addViable(OverloadChoice(baseTy, constructor,
|
|
/*isSpecialized=*/false, *this));
|
|
}
|
|
|
|
|
|
// If we rejected some possibilities due to an argument-label
|
|
// mismatch and ended up with nothing, try again ignoring the
|
|
// labels. This allows us to perform typo correction on the labels.
|
|
if (result.ViableCandidates.empty() && labelMismatch &&
|
|
shouldAttemptFixes()) {
|
|
argumentLabels.reset();
|
|
goto retry_ctors_after_fail;
|
|
}
|
|
|
|
// FIXME: Should we look for constructors in bridged types?
|
|
return result;
|
|
}
|
|
|
|
// If we want member types only, use member type lookup.
|
|
if (constraint.getKind() == ConstraintKind::TypeMember) {
|
|
// Types don't have compound names.
|
|
// FIXME: Customize diagnostic to mention types and compound names.
|
|
if (!name.isSimpleName())
|
|
return result; // No result.
|
|
|
|
NameLookupOptions lookupOptions = defaultMemberTypeLookupOptions;
|
|
if (isa<AbstractFunctionDecl>(DC))
|
|
lookupOptions |= NameLookupFlags::KnownPrivate;
|
|
auto lookup = TC.lookupMemberType(DC, baseObjTy, name.getBaseName(),
|
|
lookupOptions);
|
|
// Form the overload set.
|
|
for (auto candidate : lookup) {
|
|
// If the result is invalid, don't cascade errors.
|
|
TC.validateDecl(candidate.first, true);
|
|
if (candidate.first->isInvalid())
|
|
return result.markErrorAlreadyDiagnosed();
|
|
|
|
result.addViable(OverloadChoice(baseTy, candidate.first,
|
|
/*isSpecialized=*/false));
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
// Look for members within the base.
|
|
LookupResult &lookup = lookupMember(baseObjTy, name);
|
|
|
|
// The set of directly accessible types, which is only used when
|
|
// we're performing dynamic lookup into an existential type.
|
|
bool isDynamicLookup = instanceTy->isAnyObject();
|
|
|
|
// If the instance type is String bridged to NSString, compute
|
|
// the type we'll look in for bridging.
|
|
Type bridgedClass;
|
|
Type bridgedType;
|
|
if (instanceTy->getAnyNominal() == TC.Context.getStringDecl()) {
|
|
if (Type classType = TC.getBridgedToObjC(DC, instanceTy)) {
|
|
bridgedClass = classType;
|
|
bridgedType = isMetatype ? MetatypeType::get(classType) : classType;
|
|
}
|
|
}
|
|
bool labelMismatch = false;
|
|
|
|
// Local function that adds the given declaration if it is a
|
|
// reasonable choice.
|
|
auto addChoice = [&](ValueDecl *cand, bool isBridged,
|
|
bool isUnwrappedOptional) {
|
|
// If the result is invalid, skip it.
|
|
TC.validateDecl(cand, true);
|
|
if (cand->isInvalid()) {
|
|
result.markErrorAlreadyDiagnosed();
|
|
return;
|
|
}
|
|
|
|
// If the argument labels for this result are incompatible with
|
|
// the call site, skip it.
|
|
if (!hasCompatibleArgumentLabels(cand)) {
|
|
labelMismatch = true;
|
|
result.addUnviable(cand, MemberLookupResult::UR_LabelMismatch);
|
|
return;
|
|
}
|
|
|
|
|
|
// If our base is an existential type, we can't make use of any
|
|
// member whose signature involves associated types.
|
|
if (isExistential && isUnavailableInExistential(getTypeChecker(), cand)) {
|
|
result.addUnviable(cand, MemberLookupResult::UR_UnavailableInExistential);
|
|
return;
|
|
}
|
|
|
|
// See if we have an instance method, instance member or static method,
|
|
// and check if it can be accessed on our base type.
|
|
if (cand->isInstanceMember()) {
|
|
if ((isa<FuncDecl>(cand) && !hasInstanceMethods) ||
|
|
(!isa<FuncDecl>(cand) && !hasInstanceMembers)) {
|
|
result.addUnviable(cand, MemberLookupResult::UR_InstanceMemberOnType);
|
|
return;
|
|
}
|
|
|
|
} else {
|
|
if (!hasStaticMembers) {
|
|
result.addUnviable(cand, MemberLookupResult::UR_TypeMemberOnInstance);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If we have an rvalue base, make sure that the result isn't 'mutating'
|
|
// (only valid on lvalues).
|
|
if (!isMetatype &&
|
|
!baseTy->is<LValueType>() && cand->isInstanceMember()) {
|
|
if (auto *FD = dyn_cast<FuncDecl>(cand))
|
|
if (FD->isMutating()) {
|
|
result.addUnviable(cand,
|
|
MemberLookupResult::UR_MutatingMemberOnRValue);
|
|
return;
|
|
}
|
|
|
|
// Subscripts and computed properties are ok on rvalues so long
|
|
// as the getter is nonmutating.
|
|
if (auto storage = dyn_cast<AbstractStorageDecl>(cand)) {
|
|
if (storage->isGetterMutating()) {
|
|
result.addUnviable(cand,
|
|
MemberLookupResult::UR_MutatingGetterOnRValue);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the result's type contains delayed members, we need to force them now.
|
|
if (auto NT = dyn_cast<NominalType>(cand->getType().getPointer())) {
|
|
if (auto *NTD = dyn_cast<NominalTypeDecl>(NT->getDecl())) {
|
|
TC.forceExternalDeclMembers(NTD);
|
|
}
|
|
}
|
|
|
|
// If we're looking into an existential type, check whether this
|
|
// result was found via dynamic lookup.
|
|
if (isDynamicLookup) {
|
|
assert(cand->getDeclContext()->isTypeContext() && "Dynamic lookup bug");
|
|
|
|
// We found this declaration via dynamic lookup, record it as such.
|
|
result.addViable(OverloadChoice::getDeclViaDynamic(baseTy, cand));
|
|
return;
|
|
}
|
|
|
|
// If we have a bridged type, we found this declaration via bridging.
|
|
if (isBridged) {
|
|
result.addViable(OverloadChoice::getDeclViaBridge(bridgedType, cand));
|
|
return;
|
|
}
|
|
|
|
// If we got the choice by unwrapping an optional type, unwrap the base
|
|
// type.
|
|
Type ovlBaseTy = baseTy;
|
|
if (isUnwrappedOptional) {
|
|
ovlBaseTy = MetatypeType::get(baseTy->castTo<MetatypeType>()
|
|
->getInstanceType()
|
|
->getAnyOptionalObjectType());
|
|
result.addViable(OverloadChoice::getDeclViaUnwrappedOptional(ovlBaseTy,
|
|
cand));
|
|
} else {
|
|
result.addViable(OverloadChoice(ovlBaseTy, cand,
|
|
/*isSpecialized=*/false, *this));
|
|
}
|
|
};
|
|
|
|
// Add all results from this lookup.
|
|
retry_after_fail:
|
|
labelMismatch = false;
|
|
for (auto result : lookup)
|
|
addChoice(result, /*isBridged=*/false, /*isUnwrappedOptional=*/false);
|
|
|
|
// If the instance type is a bridged to an Objective-C type, perform
|
|
// a lookup into that Objective-C type.
|
|
if (bridgedType) {
|
|
LookupResult &bridgedLookup = lookupMember(bridgedClass, name);
|
|
Module *foundationModule = nullptr;
|
|
for (auto result : bridgedLookup) {
|
|
// Ignore results from the Objective-C "Foundation"
|
|
// module. Those core APIs are explicitly provided by the
|
|
// Foundation module overlay.
|
|
auto module = result->getModuleContext();
|
|
if (foundationModule) {
|
|
if (module == foundationModule)
|
|
continue;
|
|
} else if (ClangModuleUnit::hasClangModule(module) &&
|
|
module->getName().str() == "Foundation") {
|
|
// Cache the foundation module name so we don't need to look
|
|
// for it again.
|
|
foundationModule = module;
|
|
continue;
|
|
}
|
|
|
|
addChoice(result, /*isBridged=*/true, /*isUnwrappedOptional=*/false);
|
|
}
|
|
}
|
|
|
|
// If we're looking into a metatype for an unresolved member lookup, look
|
|
// through optional types.
|
|
//
|
|
// FIXME: The short-circuit here is lame.
|
|
if (result.ViableCandidates.empty() && isMetatype &&
|
|
constraint.getKind() == ConstraintKind::UnresolvedValueMember) {
|
|
if (auto objectType = instanceTy->getAnyOptionalObjectType()) {
|
|
LookupResult &optionalLookup = lookupMember(MetatypeType::get(objectType),
|
|
name);
|
|
for (auto result : optionalLookup)
|
|
addChoice(result, /*bridged*/false, /*isUnwrappedOptional=*/true);
|
|
}
|
|
}
|
|
|
|
// If we rejected some possibilities due to an argument-label
|
|
// mismatch and ended up with nothing, try again ignoring the
|
|
// labels. This allows us to perform typo correction on the labels.
|
|
if (result.ViableCandidates.empty() && labelMismatch && shouldAttemptFixes()){
|
|
argumentLabels.reset();
|
|
goto retry_after_fail;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::simplifyMemberConstraint(const Constraint &constraint) {
|
|
// Resolve the base type, if we can. If we can't resolve the base type,
|
|
// then we can't solve this constraint.
|
|
Type baseTy = simplifyType(constraint.getFirstType());
|
|
Type baseObjTy = baseTy->getRValueType();
|
|
|
|
// Try to look through ImplicitlyUnwrappedOptional<T>; the result is
|
|
// always an l-value if the input was.
|
|
if (auto objTy = lookThroughImplicitlyUnwrappedOptionalType(baseObjTy)) {
|
|
increaseScore(SK_ForceUnchecked);
|
|
|
|
baseObjTy = objTy;
|
|
if (baseTy->is<LValueType>())
|
|
baseTy = LValueType::get(objTy);
|
|
else
|
|
baseTy = objTy;
|
|
}
|
|
|
|
// FIXME: The third bool argument should be eliminated here.
|
|
MemberLookupResult result = performMemberLookup(baseTy, constraint);
|
|
|
|
DeclName name = constraint.getMember();
|
|
Type memberTy = constraint.getSecondType();
|
|
|
|
switch (result.OverallResult) {
|
|
case MemberLookupResult::Unsolved:
|
|
return SolutionKind::Unsolved;
|
|
case MemberLookupResult::ErrorAlreadyDiagnosed:
|
|
return SolutionKind::Error;
|
|
|
|
case MemberLookupResult::ErrorDoesNotHaveInitOnInstance:
|
|
recordFailure(constraint.getLocator(), Failure::DoesNotHaveInitOnInstance,
|
|
baseObjTy, name);
|
|
return SolutionKind::Error;
|
|
|
|
case MemberLookupResult::HasResults:
|
|
// Keep going!
|
|
break;
|
|
}
|
|
|
|
// If we found viable candidates, then we're done!
|
|
if (!result.ViableCandidates.empty()) {
|
|
addOverloadSet(memberTy, result.ViableCandidates, constraint.getLocator(),
|
|
result.getFavoredChoice());
|
|
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
|
|
// If we found some unviable results, then fail, but without recovery.
|
|
if (!result.UnviableCandidates.empty()) {
|
|
recordFailure(constraint.getLocator(), Failure::DoesNotHaveMember,
|
|
baseObjTy, name);
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
|
|
// If the lookup found no hits at all (either viable or unviable), diagnose it
|
|
// as such and try to recover in various ways.
|
|
|
|
if (constraint.getKind() == ConstraintKind::TypeMember) {
|
|
// If the base type was an optional, try to look through it.
|
|
if (shouldAttemptFixes() && baseObjTy->getOptionalObjectType()) {
|
|
// Note the fix.
|
|
increaseScore(SK_Fix);
|
|
if (worseThanBestSolution())
|
|
return SolutionKind::Error;
|
|
|
|
Fixes.push_back({FixKind::ForceOptional, constraint.getLocator()});
|
|
|
|
// Look through one level of optional.
|
|
addConstraint(Constraint::create(*this, ConstraintKind::TypeMember,
|
|
baseObjTy->getOptionalObjectType(),
|
|
constraint.getSecondType(),
|
|
constraint.getMember(),
|
|
constraint.getLocator()));
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
// FIXME: Customize diagnostic to mention types.
|
|
recordFailure(constraint.getLocator(), Failure::DoesNotHaveMember,
|
|
baseObjTy, name);
|
|
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
|
|
auto instanceTy = baseObjTy;
|
|
if (auto MTT = instanceTy->getAs<MetatypeType>())
|
|
instanceTy = MTT->getInstanceType();
|
|
|
|
// Value member lookup has some hacks too.
|
|
Type rawValueType;
|
|
if (shouldAttemptFixes() && name == TC.Context.Id_fromRaw &&
|
|
(rawValueType = getRawRepresentableValueType(TC, DC, instanceTy))) {
|
|
// Replace a reference to ".fromRaw" with a reference to init(rawValue:).
|
|
// FIXME: This is temporary.
|
|
|
|
// Record this fix.
|
|
increaseScore(SK_Fix);
|
|
if (worseThanBestSolution())
|
|
return SolutionKind::Error;
|
|
|
|
auto locator = constraint.getLocator();
|
|
Fixes.push_back({FixKind::FromRawToInit,getConstraintLocator(locator)});
|
|
|
|
// Form the type that "fromRaw" would have had and bind the
|
|
// member type to it.
|
|
Type fromRawType = FunctionType::get(ParenType::get(TC.Context,
|
|
rawValueType),
|
|
OptionalType::get(instanceTy));
|
|
addConstraint(ConstraintKind::Bind, memberTy, fromRawType, locator);
|
|
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
if (shouldAttemptFixes() && name == TC.Context.Id_toRaw &&
|
|
(rawValueType = getRawRepresentableValueType(TC, DC, instanceTy))) {
|
|
// Replace a call to "toRaw" with a reference to rawValue.
|
|
// FIXME: This is temporary.
|
|
|
|
// Record this fix.
|
|
increaseScore(SK_Fix);
|
|
if (worseThanBestSolution())
|
|
return SolutionKind::Error;
|
|
|
|
auto locator = constraint.getLocator();
|
|
Fixes.push_back({FixKind::ToRawToRawValue,getConstraintLocator(locator)});
|
|
|
|
// Form the type that "toRaw" would have had and bind the member
|
|
// type to it.
|
|
Type toRawType = FunctionType::get(TupleType::getEmpty(TC.Context),
|
|
rawValueType);
|
|
addConstraint(ConstraintKind::Bind, memberTy, toRawType, locator);
|
|
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
if (shouldAttemptFixes() && name.isSimpleName("allZeros") &&
|
|
(rawValueType = getRawRepresentableValueType(TC, DC, instanceTy))) {
|
|
// Replace a reference to "X.allZeros" with a reference to X().
|
|
// FIXME: This is temporary.
|
|
|
|
// Record this fix.
|
|
increaseScore(SK_Fix);
|
|
if (worseThanBestSolution())
|
|
return SolutionKind::Error;
|
|
|
|
auto locator = constraint.getLocator();
|
|
Fixes.push_back({FixKind::AllZerosToInit,getConstraintLocator(locator)});
|
|
|
|
// Form the type that "allZeros" would have had and bind the
|
|
// member type to it.
|
|
addConstraint(ConstraintKind::Bind, memberTy, rawValueType, locator);
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
if (shouldAttemptFixes() && baseObjTy->getOptionalObjectType()) {
|
|
// If the base type was an optional, look through it.
|
|
|
|
// Note the fix.
|
|
increaseScore(SK_Fix);
|
|
if (worseThanBestSolution())
|
|
return SolutionKind::Error;
|
|
|
|
Fixes.push_back({FixKind::ForceOptional, constraint.getLocator()});
|
|
|
|
// Look through one level of optional.
|
|
addValueMemberConstraint(baseObjTy->getOptionalObjectType(),
|
|
constraint.getMember(),
|
|
constraint.getSecondType(),
|
|
constraint.getLocator());
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
recordFailure(constraint.getLocator(), Failure::DoesNotHaveMember,
|
|
baseObjTy, name);
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::simplifyArchetypeConstraint(const Constraint &constraint) {
|
|
// Resolve the base type, if we can. If we can't resolve the base type,
|
|
// then we can't solve this constraint.
|
|
Type baseTy = constraint.getFirstType()->getRValueType();
|
|
if (auto tv = dyn_cast<TypeVariableType>(baseTy.getPointer())) {
|
|
auto fixed = getFixedType(tv);
|
|
if (!fixed)
|
|
return SolutionKind::Unsolved;
|
|
|
|
// Continue with the fixed type.
|
|
baseTy = fixed->getRValueType();
|
|
}
|
|
|
|
if (baseTy->is<ArchetypeType>()) {
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
// Record this failure.
|
|
recordFailure(constraint.getLocator(), Failure::IsNotArchetype, baseTy);
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
/// Simplify the given type for use in a type property constraint.
|
|
static Type simplifyForTypePropertyConstraint(ConstraintSystem &cs, Type type) {
|
|
if (auto tv = type->getAs<TypeVariableType>()) {
|
|
auto fixed = cs.getFixedType(tv);
|
|
if (!fixed)
|
|
return Type();
|
|
|
|
// Continue with the fixed type.
|
|
type = fixed;
|
|
|
|
// Look through parentheses.
|
|
while (auto paren = dyn_cast<ParenType>(type.getPointer()))
|
|
type = paren->getUnderlyingType();
|
|
}
|
|
|
|
return type;
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::simplifyClassConstraint(const Constraint &constraint){
|
|
auto baseTy = simplifyForTypePropertyConstraint(*this,
|
|
constraint.getFirstType());
|
|
if (!baseTy)
|
|
return SolutionKind::Unsolved;
|
|
|
|
if (baseTy->getClassOrBoundGenericClass())
|
|
return SolutionKind::Solved;
|
|
|
|
if (auto archetype = baseTy->getAs<ArchetypeType>()) {
|
|
if (archetype->requiresClass())
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
// Record this failure.
|
|
recordFailure(constraint.getLocator(), Failure::IsNotClass, baseTy);
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::simplifyBridgedToObjectiveCConstraint(
|
|
const Constraint &constraint)
|
|
{
|
|
auto baseTy = simplifyForTypePropertyConstraint(*this,
|
|
constraint.getFirstType());
|
|
if (!baseTy)
|
|
return SolutionKind::Unsolved;
|
|
|
|
if (TC.getBridgedToObjC(DC, baseTy)) {
|
|
increaseScore(SK_UserConversion);
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
// Record this failure.
|
|
recordFailure(constraint.getLocator(),
|
|
Failure::IsNotBridgedToObjectiveC,
|
|
baseTy);
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::simplifyDefaultableConstraint(const Constraint &constraint) {
|
|
// Leave the constraint around if the first variable is still opaque.
|
|
auto baseTy = simplifyForTypePropertyConstraint(*this,
|
|
constraint.getFirstType());
|
|
if (!baseTy)
|
|
return SolutionKind::Unsolved;
|
|
|
|
// Otherwise, any type is fine.
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::simplifyDynamicTypeOfConstraint(const Constraint &constraint) {
|
|
// Solve forward.
|
|
TypeVariableType *typeVar2;
|
|
Type type2 = getFixedTypeRecursive(constraint.getSecondType(), typeVar2,
|
|
/*wantRValue=*/ true);
|
|
if (!typeVar2) {
|
|
Type dynamicType2;
|
|
if (type2->isAnyExistentialType()) {
|
|
dynamicType2 = ExistentialMetatypeType::get(type2);
|
|
} else {
|
|
dynamicType2 = MetatypeType::get(type2);
|
|
}
|
|
return matchTypes(constraint.getFirstType(), dynamicType2,
|
|
TypeMatchKind::BindType, TMF_GenerateConstraints,
|
|
constraint.getLocator());
|
|
}
|
|
|
|
// Okay, can't solve forward. See what we can do backwards.
|
|
TypeVariableType *typeVar1;
|
|
Type type1 = getFixedTypeRecursive(constraint.getFirstType(), typeVar1, true);
|
|
|
|
// If we have an existential metatype, that's good enough to solve
|
|
// the constraint.
|
|
if (auto metatype1 = type1->getAs<ExistentialMetatypeType>())
|
|
return matchTypes(metatype1->getInstanceType(), type2,
|
|
TypeMatchKind::BindType,
|
|
TMF_GenerateConstraints, constraint.getLocator());
|
|
|
|
// If we have a normal metatype, we can't solve backwards unless we
|
|
// know what kind of object it is.
|
|
if (auto metatype1 = type1->getAs<MetatypeType>()) {
|
|
TypeVariableType *instanceTypeVar1;
|
|
Type instanceType1 = getFixedTypeRecursive(metatype1->getInstanceType(),
|
|
instanceTypeVar1, true);
|
|
if (!instanceTypeVar1) {
|
|
return matchTypes(instanceType1, type2,
|
|
TypeMatchKind::BindType,
|
|
TMF_GenerateConstraints, constraint.getLocator());
|
|
}
|
|
|
|
// If it's definitely not either kind of metatype, then we can
|
|
// report failure right away.
|
|
} else if (!typeVar1) {
|
|
recordFailure(constraint.getLocator(), Failure::IsNotMetatype, type1);
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
return SolutionKind::Unsolved;
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::simplifyApplicableFnConstraint(const Constraint &constraint) {
|
|
|
|
// By construction, the left hand side is a type that looks like the
|
|
// following: $T1 -> $T2.
|
|
Type type1 = constraint.getFirstType();
|
|
assert(type1->is<FunctionType>());
|
|
|
|
// Drill down to the concrete type on the right hand side.
|
|
TypeVariableType *typeVar2;
|
|
Type type2 = getFixedTypeRecursive(constraint.getSecondType(), typeVar2,
|
|
/*wantRValue=*/true);
|
|
auto desugar2 = type2->getDesugaredType();
|
|
|
|
// Try to look through ImplicitlyUnwrappedOptional<T>: the result is always an
|
|
// r-value.
|
|
if (auto objTy = lookThroughImplicitlyUnwrappedOptionalType(desugar2)) {
|
|
type2 = objTy;
|
|
desugar2 = type2->getDesugaredType();
|
|
}
|
|
|
|
// Force the right-hand side to be an rvalue.
|
|
unsigned flags = TMF_GenerateConstraints;
|
|
|
|
// If the types are obviously equivalent, we're done.
|
|
if (type1.getPointer() == desugar2)
|
|
return SolutionKind::Solved;
|
|
|
|
// If right-hand side is a type variable, the constraint is unsolved.
|
|
if (typeVar2)
|
|
return SolutionKind::Unsolved;
|
|
|
|
// Strip the 'ApplyFunction' off the locator.
|
|
// FIXME: Perhaps ApplyFunction can go away entirely?
|
|
ConstraintLocatorBuilder locator = constraint.getLocator();
|
|
SmallVector<LocatorPathElt, 2> parts;
|
|
Expr *anchor = locator.getLocatorParts(parts);
|
|
assert(!parts.empty() && "Nonsensical applicable-function locator");
|
|
assert(parts.back().getKind() == ConstraintLocator::ApplyFunction);
|
|
assert(parts.back().getNewSummaryFlags() == 0);
|
|
parts.pop_back();
|
|
ConstraintLocatorBuilder outerLocator =
|
|
getConstraintLocator(anchor, parts, locator.getSummaryFlags());
|
|
|
|
retry:
|
|
// For a function, bind the output and convert the argument to the input.
|
|
auto func1 = type1->castTo<FunctionType>();
|
|
if (desugar2->getKind() == TypeKind::Function) {
|
|
auto func2 = cast<FunctionType>(desugar2);
|
|
|
|
// If this application is part of an operator, then we allow an implicit
|
|
// lvalue to be compatible with inout arguments. This is used by
|
|
// assignment operators.
|
|
TypeMatchKind ArgConv = TypeMatchKind::ArgumentTupleConversion;
|
|
if (isa<PrefixUnaryExpr>(anchor) || isa<PostfixUnaryExpr>(anchor) ||
|
|
isa<BinaryExpr>(anchor))
|
|
ArgConv = TypeMatchKind::OperatorArgumentTupleConversion;
|
|
|
|
// The argument type must be convertible to the input type.
|
|
if (matchTypes(func1->getInput(), func2->getInput(),
|
|
ArgConv, flags,
|
|
outerLocator.withPathElement(
|
|
ConstraintLocator::ApplyArgument))
|
|
== SolutionKind::Error)
|
|
return SolutionKind::Error;
|
|
|
|
// The result types are equivalent.
|
|
if (matchTypes(func1->getResult(), func2->getResult(),
|
|
TypeMatchKind::BindType,
|
|
flags,
|
|
locator.withPathElement(ConstraintLocator::FunctionResult))
|
|
== SolutionKind::Error)
|
|
return SolutionKind::Error;
|
|
|
|
// If our type constraints is for a FunctionType, move over the @noescape
|
|
// flag.
|
|
if (func1->isNoEscape() && !func2->isNoEscape()) {
|
|
auto &extraExtInfo = extraFunctionAttrs[func2];
|
|
extraExtInfo = extraExtInfo.withNoEscape();
|
|
}
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
// For a metatype, perform a construction.
|
|
if (auto meta2 = dyn_cast<AnyMetatypeType>(desugar2)) {
|
|
// Construct the instance from the input arguments.
|
|
return simplifyConstructionConstraint(meta2->getInstanceType(), func1,
|
|
flags,
|
|
getConstraintLocator(outerLocator));
|
|
}
|
|
|
|
// If we're coming from an optional type, unwrap the optional and try again.
|
|
if (auto objectType2 = desugar2->getOptionalObjectType()) {
|
|
// Increase the score before we attempt a fix.
|
|
increaseScore(SK_Fix);
|
|
if (worseThanBestSolution())
|
|
return SolutionKind::Error;
|
|
|
|
Fixes.push_back({FixKind::ForceOptional,getConstraintLocator(locator)});
|
|
|
|
type2 = objectType2;
|
|
desugar2 = type2->getDesugaredType();
|
|
goto retry;
|
|
}
|
|
|
|
// If this is a '()' call, drop the call.
|
|
if (shouldAttemptFixes() &&
|
|
func1->getInput()->isEqual(TupleType::getEmpty(getASTContext()))) {
|
|
// Increase the score before we attempt a fix.
|
|
increaseScore(SK_Fix);
|
|
if (worseThanBestSolution())
|
|
return SolutionKind::Error;
|
|
|
|
// We don't bother with a 'None' case, because at this point we won't get
|
|
// a better diagnostic from that case.
|
|
Fixes.push_back({FixKind::RemoveNullaryCall,
|
|
getConstraintLocator(locator)});
|
|
|
|
return matchTypes(func1->getResult(), type2,
|
|
TypeMatchKind::BindType,
|
|
flags | TMF_ApplyingFix | TMF_GenerateConstraints,
|
|
locator.withPathElement(
|
|
ConstraintLocator::FunctionResult));
|
|
}
|
|
|
|
// If we are supposed to record failures, do so.
|
|
if (shouldRecordFailures()) {
|
|
recordFailure(getConstraintLocator(locator),
|
|
Failure::FunctionTypesMismatch,
|
|
type1, type2);
|
|
}
|
|
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
/// \brief Retrieve the type-matching kind corresponding to the given
|
|
/// constraint kind.
|
|
static TypeMatchKind getTypeMatchKind(ConstraintKind kind) {
|
|
switch (kind) {
|
|
case ConstraintKind::Bind: return TypeMatchKind::BindType;
|
|
case ConstraintKind::Equal: return TypeMatchKind::SameType;
|
|
case ConstraintKind::Subtype: return TypeMatchKind::Subtype;
|
|
case ConstraintKind::Conversion: return TypeMatchKind::Conversion;
|
|
case ConstraintKind::ExplicitConversion:
|
|
return TypeMatchKind::ExplicitConversion;
|
|
case ConstraintKind::ArgumentConversion:
|
|
return TypeMatchKind::ArgumentConversion;
|
|
case ConstraintKind::ArgumentTupleConversion:
|
|
return TypeMatchKind::ArgumentTupleConversion;
|
|
case ConstraintKind::OperatorArgumentTupleConversion:
|
|
return TypeMatchKind::OperatorArgumentTupleConversion;
|
|
case ConstraintKind::OperatorArgumentConversion:
|
|
return TypeMatchKind::OperatorArgumentConversion;
|
|
|
|
case ConstraintKind::ApplicableFunction:
|
|
llvm_unreachable("ApplicableFunction constraints don't involve "
|
|
"type matches");
|
|
|
|
case ConstraintKind::DynamicTypeOf:
|
|
llvm_unreachable("DynamicTypeOf constraints don't involve type matches");
|
|
|
|
case ConstraintKind::BindOverload:
|
|
llvm_unreachable("Overload binding constraints don't involve type matches");
|
|
|
|
case ConstraintKind::ConformsTo:
|
|
case ConstraintKind::SelfObjectOfProtocol:
|
|
llvm_unreachable("Conformance constraints don't involve type matches");
|
|
|
|
case ConstraintKind::CheckedCast:
|
|
llvm_unreachable("Checked cast constraints don't involve type matches");
|
|
|
|
case ConstraintKind::ValueMember:
|
|
case ConstraintKind::UnresolvedValueMember:
|
|
case ConstraintKind::TypeMember:
|
|
llvm_unreachable("Member constraints don't involve type matches");
|
|
|
|
case ConstraintKind::OptionalObject:
|
|
llvm_unreachable("optional object constraints don't involve type matches");
|
|
|
|
case ConstraintKind::Archetype:
|
|
case ConstraintKind::Class:
|
|
case ConstraintKind::BridgedToObjectiveC:
|
|
case ConstraintKind::Defaultable:
|
|
llvm_unreachable("Type properties don't involve type matches");
|
|
|
|
case ConstraintKind::Conjunction:
|
|
case ConstraintKind::Disjunction:
|
|
llvm_unreachable("Con/disjunction constraints don't involve type matches");
|
|
}
|
|
}
|
|
|
|
Type ConstraintSystem::getBaseTypeForArrayType(TypeBase *type) {
|
|
type = type->lookThroughAllAnyOptionalTypes().getPointer();
|
|
|
|
if (auto bound = type->getAs<BoundGenericStructType>()) {
|
|
if (bound->getDecl() == getASTContext().getArrayDecl()) {
|
|
return bound->getGenericArgs()[0];
|
|
}
|
|
}
|
|
|
|
type->dump();
|
|
llvm_unreachable("attempted to extract a base type from a non-array type");
|
|
}
|
|
|
|
Type ConstraintSystem::getBaseTypeForSetType(TypeBase *type) {
|
|
type = type->lookThroughAllAnyOptionalTypes().getPointer();
|
|
|
|
if (auto bound = type->getAs<BoundGenericStructType>()) {
|
|
if (bound->getDecl() == getASTContext().getSetDecl()) {
|
|
return bound->getGenericArgs()[0];
|
|
}
|
|
}
|
|
|
|
type->dump();
|
|
llvm_unreachable("attempted to extract a base type from a non-set type");
|
|
}
|
|
|
|
static Type getBaseTypeForPointer(ConstraintSystem &cs, TypeBase *type) {
|
|
auto bgt = type->castTo<BoundGenericType>();
|
|
assert((bgt->getDecl() == cs.getASTContext().getUnsafeMutablePointerDecl()
|
|
|| bgt->getDecl() == cs.getASTContext().getUnsafePointerDecl()
|
|
|| bgt->getDecl()
|
|
== cs.getASTContext().getAutoreleasingUnsafeMutablePointerDecl())
|
|
&& "conversion is not to a pointer type");
|
|
return bgt->getGenericArgs()[0];
|
|
}
|
|
|
|
/// Given that we have a conversion constraint between two types, and
|
|
/// that the given constraint-reduction rule applies between them at
|
|
/// the top level, apply it and generate any necessary recursive
|
|
/// constraints.
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::simplifyRestrictedConstraint(ConversionRestrictionKind restriction,
|
|
Type type1, Type type2,
|
|
TypeMatchKind matchKind,
|
|
unsigned flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
// Add to the score based on context.
|
|
auto addContextualScore = [&] {
|
|
// Okay, we need to perform one or more conversions. If this
|
|
// conversion will cause a function conversion, score it as worse.
|
|
// This induces conversions to occur within closures instead of
|
|
// outside of them wherever possible.
|
|
if (locator.isFunctionConversion()) {
|
|
increaseScore(SK_FunctionConversion);
|
|
}
|
|
};
|
|
|
|
// We'll apply user conversions for operator arguments at the application
|
|
// site.
|
|
if (matchKind == TypeMatchKind::OperatorArgumentConversion) {
|
|
flags |= TMF_ApplyingOperatorParameter;
|
|
}
|
|
|
|
unsigned subFlags = flags | TMF_GenerateConstraints;
|
|
|
|
switch (restriction) {
|
|
// for $< in { <, <c, <oc }:
|
|
// T_i $< U_i ===> (T_i...) $< (U_i...)
|
|
case ConversionRestrictionKind::TupleToTuple:
|
|
return matchTupleTypes(type1->castTo<TupleType>(),
|
|
type2->castTo<TupleType>(),
|
|
matchKind, subFlags, locator);
|
|
|
|
// T <c U ===> T <c (U)
|
|
case ConversionRestrictionKind::ScalarToTuple:
|
|
return matchScalarToTupleTypes(type1,
|
|
type2->castTo<TupleType>(),
|
|
matchKind, subFlags, locator);
|
|
|
|
// for $< in { <, <c, <oc }:
|
|
// T $< U ===> (T) $< U
|
|
case ConversionRestrictionKind::TupleToScalar:
|
|
return matchTupleToScalarTypes(type1->castTo<TupleType>(),
|
|
type2,
|
|
matchKind, subFlags, locator);
|
|
|
|
case ConversionRestrictionKind::DeepEquality:
|
|
return matchDeepEqualityTypes(type1, type2, locator);
|
|
|
|
case ConversionRestrictionKind::Superclass:
|
|
addContextualScore();
|
|
return matchSuperclassTypes(type1, type2, matchKind, subFlags, locator);
|
|
|
|
case ConversionRestrictionKind::LValueToRValue:
|
|
return matchTypes(type1->getRValueType(), type2,
|
|
matchKind, subFlags, locator);
|
|
|
|
// for $< in { <, <c, <oc }:
|
|
// T $< U, U : P_i ===> T $< protocol<P_i...>
|
|
case ConversionRestrictionKind::Existential:
|
|
addContextualScore();
|
|
return matchExistentialTypes(type1, type2,
|
|
ConstraintKind::SelfObjectOfProtocol,
|
|
subFlags, locator);
|
|
|
|
// for $< in { <, <c, <oc }:
|
|
// for T protocol,
|
|
// T : S ===> T.Protocol $< S.Type
|
|
// else,
|
|
// T : S ===> T.Type $< S.Type
|
|
case ConversionRestrictionKind::MetatypeToExistentialMetatype:
|
|
addContextualScore();
|
|
return matchExistentialTypes(type1, type2,
|
|
ConstraintKind::ConformsTo,
|
|
subFlags, locator);
|
|
|
|
// for $< in { <, <c, <oc }:
|
|
// T $< U ===> T $< U?
|
|
case ConversionRestrictionKind::ValueToOptional: {
|
|
addContextualScore();
|
|
increaseScore(SK_ValueToOptional);
|
|
|
|
assert(matchKind >= TypeMatchKind::Subtype);
|
|
auto generic2 = type2->castTo<BoundGenericType>();
|
|
assert(generic2->getDecl()->classifyAsOptionalType());
|
|
return matchTypes(type1, generic2->getGenericArgs()[0],
|
|
matchKind, (subFlags | TMF_UnwrappingOptional), locator);
|
|
}
|
|
|
|
// for $< in { <, <c, <oc }:
|
|
// T $< U ===> T? $< U?
|
|
// T $< U ===> T! $< U!
|
|
// T $< U ===> T! $< U?
|
|
// also:
|
|
// T <c U ===> T? <c U!
|
|
case ConversionRestrictionKind::OptionalToImplicitlyUnwrappedOptional:
|
|
case ConversionRestrictionKind::ImplicitlyUnwrappedOptionalToOptional:
|
|
case ConversionRestrictionKind::OptionalToOptional: {
|
|
addContextualScore();
|
|
assert(matchKind >= TypeMatchKind::Subtype);
|
|
auto generic1 = type1->castTo<BoundGenericType>();
|
|
auto generic2 = type2->castTo<BoundGenericType>();
|
|
assert(generic1->getDecl()->classifyAsOptionalType());
|
|
assert(generic2->getDecl()->classifyAsOptionalType());
|
|
return matchTypes(generic1->getGenericArgs()[0],
|
|
generic2->getGenericArgs()[0],
|
|
matchKind, subFlags,
|
|
locator.withPathElement(
|
|
LocatorPathElt::getGenericArgument(0)));
|
|
}
|
|
|
|
// T <c U ===> T! <c U
|
|
//
|
|
// We don't want to allow this after user-defined conversions:
|
|
// - it gets really complex for users to understand why there's
|
|
// a dereference in their code
|
|
// - it would allow nil to be coerceable to a non-optional type
|
|
// Fortunately, user-defined conversions only allow subtype
|
|
// conversions on their results.
|
|
case ConversionRestrictionKind::ForceUnchecked: {
|
|
addContextualScore();
|
|
assert(matchKind >= TypeMatchKind::Conversion);
|
|
auto boundGenericType1 = type1->castTo<BoundGenericType>();
|
|
assert(boundGenericType1->getDecl()->classifyAsOptionalType()
|
|
== OTK_ImplicitlyUnwrappedOptional);
|
|
assert(boundGenericType1->getGenericArgs().size() == 1);
|
|
Type valueType1 = boundGenericType1->getGenericArgs()[0];
|
|
increaseScore(SK_ForceUnchecked);
|
|
return matchTypes(valueType1, type2,
|
|
matchKind, subFlags,
|
|
locator.withPathElement(
|
|
LocatorPathElt::getGenericArgument(0)));
|
|
}
|
|
|
|
case ConversionRestrictionKind::ClassMetatypeToAnyObject:
|
|
case ConversionRestrictionKind::ExistentialMetatypeToAnyObject:
|
|
case ConversionRestrictionKind::ProtocolMetatypeToProtocolClass: {
|
|
// Nothing more to solve.
|
|
addContextualScore();
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
// T <p U ===> T[] <a UnsafeMutablePointer<U>
|
|
case ConversionRestrictionKind::ArrayToPointer: {
|
|
addContextualScore();
|
|
auto obj1 = type1;
|
|
// Unwrap an inout type.
|
|
if (auto inout1 = obj1->getAs<InOutType>()) {
|
|
obj1 = inout1->getObjectType();
|
|
}
|
|
|
|
TypeVariableType *tv1;
|
|
obj1 = getFixedTypeRecursive(obj1, tv1, false, false);
|
|
|
|
auto t1 = obj1->getDesugaredType();
|
|
auto t2 = type2->getDesugaredType();
|
|
|
|
auto baseType1 = getBaseTypeForArrayType(t1);
|
|
auto baseType2 = getBaseTypeForPointer(*this, t2);
|
|
|
|
return matchTypes(baseType1, baseType2,
|
|
TypeMatchKind::BindToPointerType,
|
|
subFlags, locator);
|
|
}
|
|
|
|
// String ===> UnsafePointer<[U]Int8>
|
|
case ConversionRestrictionKind::StringToPointer: {
|
|
addContextualScore();
|
|
|
|
auto baseType2 = getBaseTypeForPointer(*this, type2->getDesugaredType());
|
|
|
|
// The pointer element type must be void or a byte-sized type.
|
|
// TODO: Handle different encodings based on pointer element type, such as
|
|
// UTF16 for [U]Int16 or UTF32 for [U]Int32. For now we only interop with
|
|
// Int8 pointers using UTF8 encoding.
|
|
TypeVariableType *btv2 = nullptr;
|
|
baseType2 = getFixedTypeRecursive(baseType2, btv2, false, false);
|
|
// If we haven't resolved the element type, generate constraints.
|
|
if (btv2) {
|
|
if (flags & TMF_GenerateConstraints) {
|
|
auto int8Con = Constraint::create(*this, ConstraintKind::Bind,
|
|
btv2, TC.getInt8Type(DC),
|
|
DeclName(),
|
|
getConstraintLocator(locator));
|
|
auto uint8Con = Constraint::create(*this, ConstraintKind::Bind,
|
|
btv2, TC.getUInt8Type(DC),
|
|
DeclName(),
|
|
getConstraintLocator(locator));
|
|
auto voidCon = Constraint::create(*this, ConstraintKind::Bind,
|
|
btv2, TC.Context.TheEmptyTupleType,
|
|
DeclName(),
|
|
getConstraintLocator(locator));
|
|
|
|
Constraint *disjunctionChoices[] = {int8Con, uint8Con, voidCon};
|
|
auto disjunction = Constraint::createDisjunction(*this,
|
|
disjunctionChoices,
|
|
getConstraintLocator(locator));
|
|
|
|
addConstraint(disjunction);
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
return SolutionKind::Unsolved;
|
|
}
|
|
|
|
if (!isStringCompatiblePointerBaseType(TC, DC, baseType2)) {
|
|
return SolutionKind::Unsolved;
|
|
}
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
// T <p U ===> inout T <a UnsafeMutablePointer<U>
|
|
case ConversionRestrictionKind::InoutToPointer: {
|
|
addContextualScore();
|
|
|
|
auto t2 = type2->getDesugaredType();
|
|
|
|
auto baseType1 = type1->getInOutObjectType();
|
|
auto baseType2 = getBaseTypeForPointer(*this, t2);
|
|
|
|
// Set up the disjunction for the array or scalar cases.
|
|
|
|
return matchTypes(baseType1, baseType2,
|
|
TypeMatchKind::BindToPointerType,
|
|
subFlags, locator);
|
|
}
|
|
|
|
// T <p U ===> UnsafeMutablePointer<T> <a UnsafeMutablePointer<U>
|
|
case ConversionRestrictionKind::PointerToPointer: {
|
|
auto t1 = type1->getDesugaredType();
|
|
auto t2 = type2->getDesugaredType();
|
|
|
|
Type baseType1 = getBaseTypeForPointer(*this, t1);
|
|
Type baseType2 = getBaseTypeForPointer(*this, t2);
|
|
|
|
return matchTypes(baseType1, baseType2,
|
|
TypeMatchKind::BindToPointerType,
|
|
subFlags, locator);
|
|
}
|
|
|
|
// T < U or T is bridged to V where V < U ===> Array<T> <c Array<U>
|
|
case ConversionRestrictionKind::ArrayUpcast: {
|
|
auto t1 = type1->getDesugaredType();
|
|
auto t2 = type2->getDesugaredType();
|
|
|
|
Type baseType1 = getBaseTypeForArrayType(t1);
|
|
Type baseType2 = getBaseTypeForArrayType(t2);
|
|
|
|
// Look through type variables in the first element type; we need to know
|
|
// it's structure before we can decide whether this can be an array upcast.
|
|
TypeVariableType *baseTypeVar1;
|
|
baseType1 = getFixedTypeRecursive(baseType1, baseTypeVar1, false, false);
|
|
if (baseTypeVar1) {
|
|
if (flags & TMF_GenerateConstraints) {
|
|
addConstraint(
|
|
Constraint::createRestricted(*this, getConstraintKind(matchKind),
|
|
restriction, type1, type2,
|
|
getConstraintLocator(locator)));
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
return SolutionKind::Unsolved;
|
|
}
|
|
|
|
bool isSimpleUpcast = baseType1->isBridgeableObjectType();
|
|
if (isSimpleUpcast) {
|
|
increaseScore(SK_CollectionUpcastConversion);
|
|
} else {
|
|
// Check whether this is a bridging upcast.
|
|
Type bridgedType1 = TC.getBridgedToObjC(DC, baseType1);
|
|
if (!bridgedType1) {
|
|
// FIXME: Record error.
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
// Replace the base type so we perform the appropriate subtype check.
|
|
baseType1 = bridgedType1;
|
|
increaseScore(SK_CollectionBridgedConversion);
|
|
}
|
|
|
|
addContextualScore();
|
|
assert(matchKind >= TypeMatchKind::Conversion);
|
|
|
|
return matchTypes(baseType1,
|
|
baseType2,
|
|
TypeMatchKind::Subtype,
|
|
subFlags,
|
|
locator);
|
|
}
|
|
|
|
// K1 < K2 && V1 < V2 || K1 bridges to K2 && V1 bridges to V2 ===>
|
|
// Dictionary<K1, V1> <c Dictionary<K2, V2>
|
|
case ConversionRestrictionKind::DictionaryUpcast: {
|
|
auto t1 = type1->getDesugaredType();
|
|
Type key1, value1;
|
|
std::tie(key1, value1) = *isDictionaryType(t1);
|
|
|
|
auto t2 = type2->getDesugaredType();
|
|
Type key2, value2;
|
|
std::tie(key2, value2) = *isDictionaryType(t2);
|
|
|
|
// Look through type variables in the first key and value type; we
|
|
// need to know their structure before we can decide whether this
|
|
// can be an upcast.
|
|
TypeVariableType *keyTypeVar1 = nullptr;
|
|
TypeVariableType *valueTypeVar1 = nullptr;
|
|
key1 = getFixedTypeRecursive(key1, keyTypeVar1, false, false);
|
|
if (!keyTypeVar1) {
|
|
value1 = getFixedTypeRecursive(value1, valueTypeVar1, false, false);
|
|
}
|
|
|
|
if (keyTypeVar1 || valueTypeVar1) {
|
|
if (flags & TMF_GenerateConstraints) {
|
|
addConstraint(
|
|
Constraint::createRestricted(*this, getConstraintKind(matchKind),
|
|
restriction, type1, type2,
|
|
getConstraintLocator(locator)));
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
return SolutionKind::Unsolved;
|
|
}
|
|
|
|
// If both the first key and value types are bridgeable object
|
|
// types, this can only be an upcast.
|
|
bool isUpcast = key1->isBridgeableObjectType() &&
|
|
value1->isBridgeableObjectType();
|
|
|
|
if (isUpcast) {
|
|
increaseScore(SK_CollectionUpcastConversion);
|
|
} else {
|
|
// This might be a bridged upcast.
|
|
Type bridgedKey1 = TC.getBridgedToObjC(DC, key1);
|
|
Type bridgedValue1;
|
|
if (bridgedKey1) {
|
|
bridgedValue1 = TC.getBridgedToObjC(DC, value1);
|
|
}
|
|
|
|
// Both the key and value types need to be bridged.
|
|
if (!bridgedKey1 || !bridgedValue1) {
|
|
// FIXME: Record failure.
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
// Look through the destination key and value types. We need
|
|
// their structure to determine whether we'll be bridging or
|
|
// upcasting the key and value.
|
|
TypeVariableType *keyTypeVar2 = nullptr;
|
|
TypeVariableType *valueTypeVar2 = nullptr;
|
|
key2 = getFixedTypeRecursive(key2, keyTypeVar2, false, false);
|
|
if (!keyTypeVar2) {
|
|
value2 = getFixedTypeRecursive(value2, valueTypeVar2, false, false);
|
|
}
|
|
|
|
// If either the destination key or value type is a type
|
|
// variable, we can't simplify this now.
|
|
if (keyTypeVar2 || valueTypeVar2) {
|
|
if (flags & TMF_GenerateConstraints) {
|
|
addConstraint(
|
|
Constraint::createRestricted(*this, getConstraintKind(matchKind),
|
|
restriction, type1, type2,
|
|
getConstraintLocator(locator)));
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
return SolutionKind::Unsolved;
|
|
}
|
|
|
|
// This can be a bridging upcast.
|
|
if (key2->isBridgeableObjectType())
|
|
key1 = bridgedKey1;
|
|
if (value2->isBridgeableObjectType())
|
|
value1 = bridgedValue1;
|
|
increaseScore(SK_CollectionBridgedConversion);
|
|
}
|
|
|
|
addContextualScore();
|
|
assert(matchKind >= TypeMatchKind::Conversion);
|
|
|
|
// The source key and value types must be subtypes of the destination
|
|
// key and value types, respectively.
|
|
auto result = matchTypes(key1, key2, TypeMatchKind::Subtype, subFlags,
|
|
locator);
|
|
if (result == SolutionKind::Error)
|
|
return result;
|
|
|
|
switch (matchTypes(value1, value2, TypeMatchKind::Subtype, subFlags,
|
|
locator)) {
|
|
case SolutionKind::Solved:
|
|
return result;
|
|
|
|
case SolutionKind::Unsolved:
|
|
return SolutionKind::Unsolved;
|
|
|
|
case SolutionKind::Error:
|
|
return SolutionKind::Error;
|
|
}
|
|
}
|
|
|
|
// T1 < T2 || T1 bridges to T2 ===> Set<T1> <c Set<T2>
|
|
case ConversionRestrictionKind::SetUpcast: {
|
|
auto t1 = type1->getDesugaredType();
|
|
Type baseType1 = getBaseTypeForSetType(t1);
|
|
|
|
auto t2 = type2->getDesugaredType();
|
|
Type baseType2 = getBaseTypeForSetType(t2);
|
|
|
|
// Look through type variables in the first base type; we need to know
|
|
// their structure before we can decide whether this can be an upcast.
|
|
TypeVariableType *baseTypeVar1 = nullptr;
|
|
baseType1 = getFixedTypeRecursive(baseType1, baseTypeVar1, false, false);
|
|
|
|
if (baseTypeVar1) {
|
|
if (flags & TMF_GenerateConstraints) {
|
|
addConstraint(
|
|
Constraint::createRestricted(*this, getConstraintKind(matchKind),
|
|
restriction, type1, type2,
|
|
getConstraintLocator(locator)));
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
return SolutionKind::Unsolved;
|
|
}
|
|
|
|
// If the first base type is a bridgeable object type, this can only be an
|
|
// upcast.
|
|
bool isUpcast = baseType1->isBridgeableObjectType();
|
|
|
|
if (isUpcast) {
|
|
increaseScore(SK_CollectionUpcastConversion);
|
|
} else {
|
|
// This might be a bridged upcast.
|
|
Type bridgedBaseType1 = TC.getBridgedToObjC(DC, baseType1);
|
|
if (!bridgedBaseType1) {
|
|
// FIXME: Record failure.
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
// Look through the destination base type. We need its structure to
|
|
// determine whether we'll be bridging or upcasting the base type.
|
|
TypeVariableType *baseTypeVar2 = nullptr;
|
|
baseType2 = getFixedTypeRecursive(baseType2, baseTypeVar2, false, false);
|
|
|
|
// If the destination base type is a type variable, we can't simplify
|
|
// this now.
|
|
if (baseTypeVar2) {
|
|
if (flags & TMF_GenerateConstraints) {
|
|
addConstraint(
|
|
Constraint::createRestricted(*this, getConstraintKind(matchKind),
|
|
restriction, type1, type2,
|
|
getConstraintLocator(locator)));
|
|
return SolutionKind::Solved;
|
|
}
|
|
|
|
return SolutionKind::Unsolved;
|
|
}
|
|
|
|
// This can be a bridging upcast.
|
|
if (baseType2->isBridgeableObjectType())
|
|
baseType1 = bridgedBaseType1;
|
|
increaseScore(SK_CollectionBridgedConversion);
|
|
}
|
|
|
|
addContextualScore();
|
|
assert(matchKind >= TypeMatchKind::Conversion);
|
|
|
|
// The source base type must be a subtype of the destination base type.
|
|
return matchTypes(baseType1, baseType2, TypeMatchKind::Subtype, subFlags,
|
|
locator);
|
|
}
|
|
|
|
// T bridges to C and C < U ===> T <c U
|
|
case ConversionRestrictionKind::BridgeToObjC: {
|
|
auto objcClass = TC.getBridgedToObjC(DC, type1);
|
|
assert(objcClass && "type is not bridged to Objective-C?");
|
|
addContextualScore();
|
|
increaseScore(SK_UserConversion); // FIXME: Use separate score kind?
|
|
if (worseThanBestSolution()) {
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
// If the bridged value type is generic, the generic arguments
|
|
// must be bridged to Objective-C for bridging to succeed.
|
|
if (auto bgt1 = type1->getAs<BoundGenericType>()) {
|
|
unsigned argIdx = 0;
|
|
for (auto arg: bgt1->getGenericArgs()) {
|
|
addConstraint(
|
|
Constraint::create(*this,
|
|
ConstraintKind::BridgedToObjectiveC,
|
|
arg, Type(), DeclName(),
|
|
getConstraintLocator(
|
|
locator.withPathElement(
|
|
LocatorPathElt::getGenericArgument(
|
|
argIdx++)))));
|
|
}
|
|
}
|
|
|
|
return matchTypes(objcClass, type2, TypeMatchKind::Subtype, subFlags,
|
|
locator);
|
|
}
|
|
|
|
// U bridges to C and T < C ===> T <c U
|
|
case ConversionRestrictionKind::BridgeFromObjC: {
|
|
auto objcClass = TC.getBridgedToObjC(DC, type2);
|
|
assert(objcClass && "type is not bridged to Objective-C?");
|
|
addContextualScore();
|
|
increaseScore(SK_UserConversion); // FIXME: Use separate score kind?
|
|
if (worseThanBestSolution()) {
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
// If the bridged value type is generic, the generic arguments
|
|
// must match the
|
|
// FIXME: This should be an associated type of the protocol.
|
|
if (auto bgt1 = type2->getAs<BoundGenericType>()) {
|
|
if (bgt1->getDecl() == TC.Context.getArrayDecl()) {
|
|
// [AnyObject]
|
|
addConstraint(ConstraintKind::Bind, bgt1->getGenericArgs()[0],
|
|
TC.Context.getProtocol(KnownProtocolKind::AnyObject)
|
|
->getDeclaredType(),
|
|
getConstraintLocator(
|
|
locator.withPathElement(
|
|
LocatorPathElt::getGenericArgument(0))));
|
|
} else if (bgt1->getDecl() == TC.Context.getDictionaryDecl()) {
|
|
// [NSObject : AnyObject]
|
|
auto NSObjectType = TC.getNSObjectType(DC);
|
|
if (!NSObjectType) {
|
|
// Not a bridging case. Should we detect this earlier?
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
addConstraint(ConstraintKind::Bind, bgt1->getGenericArgs()[0],
|
|
NSObjectType,
|
|
getConstraintLocator(
|
|
locator.withPathElement(
|
|
LocatorPathElt::getGenericArgument(0))));
|
|
|
|
addConstraint(ConstraintKind::Bind, bgt1->getGenericArgs()[1],
|
|
TC.Context.getProtocol(KnownProtocolKind::AnyObject)
|
|
->getDeclaredType(),
|
|
getConstraintLocator(
|
|
locator.withPathElement(
|
|
LocatorPathElt::getGenericArgument(1))));
|
|
} else if (bgt1->getDecl() == TC.Context.getSetDecl()) {
|
|
auto NSObjectType = TC.getNSObjectType(DC);
|
|
if (!NSObjectType) {
|
|
// Not a bridging case. Should we detect this earlier?
|
|
return SolutionKind::Error;
|
|
}
|
|
addConstraint(ConstraintKind::Bind, bgt1->getGenericArgs()[0],
|
|
NSObjectType,
|
|
getConstraintLocator(
|
|
locator.withPathElement(
|
|
LocatorPathElt::getGenericArgument(0))));
|
|
} else {
|
|
llvm_unreachable("unhandled generic bridged type");
|
|
}
|
|
}
|
|
|
|
return matchTypes(type1, objcClass, TypeMatchKind::Subtype, subFlags,
|
|
locator);
|
|
}
|
|
|
|
case ConversionRestrictionKind::BridgeToNSError: {
|
|
increaseScore(SK_UserConversion); // FIXME: Use separate score kind?
|
|
|
|
// The input type must be an ErrorType subtype.
|
|
auto errorType = TC.Context.getProtocol(KnownProtocolKind::ErrorType)
|
|
->getDeclaredType();
|
|
return matchTypes(type1, errorType, TypeMatchKind::Subtype, subFlags,
|
|
locator);
|
|
}
|
|
|
|
// T' < U and T a toll-free-bridged to T' ===> T' <c U
|
|
case ConversionRestrictionKind::CFTollFreeBridgeToObjC: {
|
|
increaseScore(SK_UserConversion); // FIXME: Use separate score kind?
|
|
if (worseThanBestSolution()) {
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
auto nativeClass = type1->getClassOrBoundGenericClass();
|
|
auto bridgedObjCClass
|
|
= nativeClass->getAttrs().getAttribute<ObjCBridgedAttr>()->getObjCClass();
|
|
|
|
return matchTypes(bridgedObjCClass->getDeclaredInterfaceType(),
|
|
type2, TypeMatchKind::Subtype, subFlags, locator);
|
|
}
|
|
|
|
// T < U' and U a toll-free-bridged to U' ===> T <c U
|
|
case ConversionRestrictionKind::ObjCTollFreeBridgeToCF: {
|
|
increaseScore(SK_UserConversion); // FIXME: Use separate score kind?
|
|
if (worseThanBestSolution()) {
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
auto nativeClass = type2->getClassOrBoundGenericClass();
|
|
auto bridgedObjCClass
|
|
= nativeClass->getAttrs().getAttribute<ObjCBridgedAttr>()->getObjCClass();
|
|
|
|
return matchTypes(type1,
|
|
bridgedObjCClass->getDeclaredInterfaceType(),
|
|
TypeMatchKind::Subtype, subFlags, locator);
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("bad conversion restriction");
|
|
}
|
|
|
|
bool ConstraintSystem::recordFix(Fix fix, ConstraintLocatorBuilder locator) {
|
|
auto &ctx = getASTContext();
|
|
if (ctx.LangOpts.DebugConstraintSolver) {
|
|
auto &log = ctx.TypeCheckerDebug->getStream();
|
|
log.indent(solverState? solverState->depth * 2 + 2 : 0)
|
|
<< "(attempting fix ";
|
|
fix.print(log, this);
|
|
log << " @";
|
|
getConstraintLocator(locator)->dump(&ctx.SourceMgr, log);
|
|
log << ")\n";
|
|
}
|
|
|
|
// Record the fix.
|
|
if (fix.getKind() != FixKind::None) {
|
|
Fixes.push_back({fix, getConstraintLocator(locator)});
|
|
|
|
// Increase the score. If this would make the current solution worse than
|
|
// the best solution we've seen already, stop now.
|
|
increaseScore(SK_Fix);
|
|
if (worseThanBestSolution())
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::simplifyFixConstraint(Fix fix,
|
|
Type type1, Type type2,
|
|
TypeMatchKind matchKind,
|
|
unsigned flags,
|
|
ConstraintLocatorBuilder locator) {
|
|
if (recordFix(fix, locator)) {
|
|
return SolutionKind::Error;
|
|
}
|
|
|
|
// Try with the fix.
|
|
unsigned subFlags = flags | TMF_ApplyingFix | TMF_GenerateConstraints;
|
|
switch (fix.getKind()) {
|
|
case FixKind::None:
|
|
return matchTypes(type1, type2, matchKind, subFlags, locator);
|
|
|
|
case FixKind::NullaryCall: {
|
|
// Assume that '()' was applied to the first type.
|
|
|
|
// If the function was actually in a tuple, tuple'ify the
|
|
// FIXME: This is yet another awful hack due to one-element tuples.
|
|
auto funcTy = type1->getRValueType();
|
|
Identifier nameToAdd;
|
|
if (auto tupleTy = funcTy->getAs<TupleType>()) {
|
|
int scalarIdx = tupleTy->getElementForScalarInit();
|
|
nameToAdd = tupleTy->getElement(scalarIdx).getName();
|
|
funcTy = tupleTy->getElementType(scalarIdx);
|
|
}
|
|
|
|
if (auto optObjectTy = funcTy->getAnyOptionalObjectType())
|
|
funcTy = optObjectTy;
|
|
|
|
auto resultTy = funcTy->castTo<AnyFunctionType>()->getResult();
|
|
if (!nameToAdd.empty())
|
|
resultTy = TupleType::get(TupleTypeElt(resultTy, nameToAdd),
|
|
getASTContext());
|
|
return matchTypes(resultTy, type2, matchKind, subFlags, locator);
|
|
}
|
|
|
|
case FixKind::RemoveNullaryCall:
|
|
llvm_unreachable("Always applied directly");
|
|
|
|
case FixKind::ForceOptional:
|
|
// Assume that '!' was applied to the first type.
|
|
return matchTypes(type1->getRValueObjectType()->getOptionalObjectType(),
|
|
type2, matchKind, subFlags, locator);
|
|
|
|
case FixKind::ForceDowncast:
|
|
// These work whenever they are suggested.
|
|
return SolutionKind::Solved;
|
|
|
|
case FixKind::AddressOf:
|
|
// Assume that '&' was applied to the first type, turning an lvalue into
|
|
// an inout.
|
|
return matchTypes(InOutType::get(type1->getRValueType()), type2,
|
|
matchKind, subFlags, locator);
|
|
|
|
case FixKind::TupleToScalar:
|
|
return matchTypes(type1->castTo<TupleType>()->getElementType(0),
|
|
type2, matchKind, subFlags,
|
|
locator.withPathElement(
|
|
LocatorPathElt::getTupleElement(0)));
|
|
|
|
case FixKind::ScalarToTuple: {
|
|
auto tuple2 = type2->castTo<TupleType>();
|
|
int scalarFieldIdx = tuple2->getElementForScalarInit();
|
|
assert(scalarFieldIdx >= 0 && "Invalid tuple for scalar-to-tuple");
|
|
const auto &elt = tuple2->getElement(scalarFieldIdx);
|
|
auto scalarFieldTy = elt.isVararg()? elt.getVarargBaseTy() : elt.getType();
|
|
return matchTypes(type1, scalarFieldTy, matchKind, subFlags,
|
|
locator.withPathElement(
|
|
ConstraintLocator::ScalarToTuple));
|
|
}
|
|
|
|
case FixKind::RelabelCallTuple:
|
|
case FixKind::OptionalToBoolean:
|
|
// The actual semantics are handled elsewhere.
|
|
return SolutionKind::Solved;
|
|
|
|
case FixKind::FromRawToInit:
|
|
case FixKind::ToRawToRawValue:
|
|
case FixKind::CoerceToCheckedCast:
|
|
case FixKind::AllZerosToInit:
|
|
llvm_unreachable("handled elsewhere");
|
|
}
|
|
}
|
|
|
|
ConstraintSystem::SolutionKind
|
|
ConstraintSystem::simplifyConstraint(const Constraint &constraint) {
|
|
switch (constraint.getKind()) {
|
|
case ConstraintKind::Bind:
|
|
case ConstraintKind::Equal:
|
|
case ConstraintKind::Subtype:
|
|
case ConstraintKind::Conversion:
|
|
case ConstraintKind::ExplicitConversion:
|
|
case ConstraintKind::ArgumentConversion:
|
|
case ConstraintKind::ArgumentTupleConversion:
|
|
case ConstraintKind::OperatorArgumentTupleConversion:
|
|
case ConstraintKind::OperatorArgumentConversion: {
|
|
// For relational constraints, match up the types.
|
|
auto matchKind = getTypeMatchKind(constraint.getKind());
|
|
|
|
// If there is a fix associated with this constraint, apply it before
|
|
// we continue.
|
|
if (auto fix = constraint.getFix()) {
|
|
return simplifyFixConstraint(*fix, constraint.getFirstType(),
|
|
constraint.getSecondType(), matchKind,
|
|
TMF_GenerateConstraints,
|
|
constraint.getLocator());
|
|
}
|
|
|
|
|
|
// If there is a restriction on this constraint, apply it directly rather
|
|
// than going through the general \c matchTypes() machinery.
|
|
if (auto restriction = constraint.getRestriction()) {
|
|
SolutionKind result = simplifyRestrictedConstraint(*restriction,
|
|
constraint.getFirstType(),
|
|
constraint.getSecondType(),
|
|
matchKind,
|
|
0,
|
|
constraint.getLocator());
|
|
|
|
// If we actually solved something, record what we did.
|
|
switch(result) {
|
|
case SolutionKind::Error:
|
|
case SolutionKind::Unsolved:
|
|
break;
|
|
|
|
case SolutionKind::Solved:
|
|
ConstraintRestrictions.push_back(
|
|
std::make_tuple(constraint.getFirstType(),
|
|
constraint.getSecondType(), *restriction));
|
|
break;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
return matchTypes(constraint.getFirstType(), constraint.getSecondType(),
|
|
matchKind,
|
|
TMF_None, constraint.getLocator());
|
|
}
|
|
|
|
case ConstraintKind::ApplicableFunction:
|
|
return simplifyApplicableFnConstraint(constraint);
|
|
|
|
case ConstraintKind::DynamicTypeOf:
|
|
return simplifyDynamicTypeOfConstraint(constraint);
|
|
|
|
case ConstraintKind::BindOverload:
|
|
resolveOverload(constraint.getLocator(), constraint.getFirstType(),
|
|
constraint.getOverloadChoice());
|
|
return SolutionKind::Solved;
|
|
|
|
case ConstraintKind::ConformsTo:
|
|
case ConstraintKind::SelfObjectOfProtocol:
|
|
return simplifyConformsToConstraint(
|
|
constraint.getFirstType(),
|
|
constraint.getSecondType(),
|
|
constraint.getKind(),
|
|
constraint.getLocator(),
|
|
TMF_None);
|
|
|
|
case ConstraintKind::CheckedCast: {
|
|
auto result = simplifyCheckedCastConstraint(constraint.getFirstType(),
|
|
constraint.getSecondType(),
|
|
constraint.getLocator());
|
|
// NOTE: simplifyCheckedCastConstraint() may return Unsolved, e.g. if the
|
|
// subexpression's type is unresolved. Don't record the fix until we
|
|
// successfully simplify the constraint.
|
|
if (result == SolutionKind::Solved) {
|
|
if (auto fix = constraint.getFix()) {
|
|
if (recordFix(*fix, constraint.getLocator())) {
|
|
return SolutionKind::Error;
|
|
}
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
case ConstraintKind::OptionalObject:
|
|
return simplifyOptionalObjectConstraint(constraint);
|
|
|
|
case ConstraintKind::ValueMember:
|
|
case ConstraintKind::UnresolvedValueMember:
|
|
case ConstraintKind::TypeMember:
|
|
return simplifyMemberConstraint(constraint);
|
|
|
|
case ConstraintKind::Archetype:
|
|
return simplifyArchetypeConstraint(constraint);
|
|
|
|
case ConstraintKind::BridgedToObjectiveC:
|
|
return simplifyBridgedToObjectiveCConstraint(constraint);
|
|
|
|
case ConstraintKind::Class:
|
|
return simplifyClassConstraint(constraint);
|
|
|
|
case ConstraintKind::Defaultable:
|
|
return simplifyDefaultableConstraint(constraint);
|
|
|
|
case ConstraintKind::Conjunction:
|
|
// Process all of the constraints in the conjunction.
|
|
for (auto con : constraint.getNestedConstraints()) {
|
|
addConstraint(con);
|
|
if (failedConstraint && !shouldRecordFailures())
|
|
return SolutionKind::Error;
|
|
}
|
|
return SolutionKind::Solved;
|
|
|
|
case ConstraintKind::Disjunction:
|
|
// Disjunction constraints are never solved here.
|
|
return SolutionKind::Unsolved;
|
|
}
|
|
}
|