Files
swift-mirror/stdlib/public/runtime/ProtocolConformance.cpp
Mike Ash fe7e13bba5 [Runtime][IRGen] Sign type context descriptor pointers.
Ensure that context descriptor pointers are signed in the runtime by putting the ptrauth_struct attribute on the types.

We use the new __builtin_ptrauth_struct_key/disc to conditionally apply ptrauth_struct to TrailingObjects based on the signing of the base type, so that pointers to TrailingObjects get signed when used with a context descriptor pointer.

We add new runtime entrypoints that take signed pointers where appropriate, and have the compiler emit calls to the new entrypoints when targeting a sufficiently new OS.

rdar://111480914
2023-07-07 18:10:35 -04:00

1632 lines
63 KiB
C++

//===--- ProtocolConformance.cpp - Swift protocol conformance checking ----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Checking and caching of Swift protocol conformances.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/StringExtras.h"
#include "swift/ABI/TypeIdentity.h"
#include "swift/Basic/Lazy.h"
#include "swift/Basic/STLExtras.h"
#include "swift/Demangling/Demangle.h"
#include "swift/Runtime/Bincompat.h"
#include "swift/Runtime/Casting.h"
#include "swift/Runtime/Concurrent.h"
#include "swift/Runtime/EnvironmentVariables.h"
#include "swift/Runtime/HeapObject.h"
#include "swift/Runtime/Metadata.h"
#include "swift/Basic/Unreachable.h"
#include "llvm/ADT/DenseMap.h"
#include "../CompatibilityOverride/CompatibilityOverride.h"
#include "ImageInspection.h"
#include "Private.h"
#include "Tracing.h"
#include <new>
#include <vector>
#if __has_include(<mach-o/dyld_priv.h>)
#include <mach-o/dyld_priv.h>
#define DYLD_EXPECTED_SWIFT_OPTIMIZATIONS_VERSION 1u
// Redeclare these functions as weak so we can build against a macOS 12 SDK and
// still test on macOS 11.
LLVM_ATTRIBUTE_WEAK
struct _dyld_protocol_conformance_result
_dyld_find_protocol_conformance(const void *protocolDescriptor,
const void *metadataType,
const void *typeDescriptor);
LLVM_ATTRIBUTE_WEAK
struct _dyld_protocol_conformance_result
_dyld_find_foreign_type_protocol_conformance(const void *protocol,
const char *foreignTypeIdentityStart,
size_t foreignTypeIdentityLength);
LLVM_ATTRIBUTE_WEAK
uint32_t _dyld_swift_optimizations_version(void);
#if DYLD_FIND_PROTOCOL_ON_DISK_CONFORMANCE_DEFINED
// Redeclare these functions as weak as well.
LLVM_ATTRIBUTE_WEAK bool _dyld_has_preoptimized_swift_protocol_conformances(
const struct mach_header *mh);
LLVM_ATTRIBUTE_WEAK struct _dyld_protocol_conformance_result
_dyld_find_protocol_conformance_on_disk(const void *protocolDescriptor,
const void *metadataType,
const void *typeDescriptor,
uint32_t flags);
LLVM_ATTRIBUTE_WEAK struct _dyld_protocol_conformance_result
_dyld_find_foreign_type_protocol_conformance_on_disk(
const void *protocol, const char *foreignTypeIdentityStart,
size_t foreignTypeIdentityLength, uint32_t flags);
#endif // DYLD_FIND_PROTOCOL_ON_DISK_CONFORMANCE_DEFINED
#endif // __has_include(<mach-o/dyld_priv.h>)
// Set this to 1 to enable logging of calls to the dyld shared cache conformance
// table
#if 0
#define DYLD_CONFORMANCES_LOG(fmt, ...) \
fprintf(stderr, "PROTOCOL CONFORMANCE: " fmt "\n", __VA_ARGS__)
#define SHARED_CACHE_LOG_ENABLED 1
#else
#define DYLD_CONFORMANCES_LOG(fmt, ...) (void)0
#endif
// Enable dyld shared cache acceleration only when it's available and we have
// ObjC interop.
#if DYLD_FIND_PROTOCOL_CONFORMANCE_DEFINED && SWIFT_OBJC_INTEROP
#define USE_DYLD_SHARED_CACHE_CONFORMANCE_TABLES 1
#endif
using namespace swift;
#ifndef NDEBUG
template <> SWIFT_USED void ProtocolDescriptor::dump() const {
printf("TargetProtocolDescriptor.\n"
"Name: \"%s\".\n",
Name.get());
}
void ProtocolDescriptorFlags::dump() const {
printf("ProtocolDescriptorFlags.\n");
printf("Is Swift: %s.\n", (isSwift() ? "true" : "false"));
printf("Needs Witness Table: %s.\n",
(needsWitnessTable() ? "true" : "false"));
printf("Is Resilient: %s.\n", (isResilient() ? "true" : "false"));
printf("Special Protocol: %s.\n",
(bool(getSpecialProtocol()) ? "Error" : "None"));
printf("Class Constraint: %s.\n",
(bool(getClassConstraint()) ? "Class" : "Any"));
printf("Dispatch Strategy: %s.\n",
(bool(getDispatchStrategy()) ? "Swift" : "ObjC"));
}
#endif
#if !defined(NDEBUG) && SWIFT_OBJC_INTEROP
#include <objc/runtime.h>
static const char *class_getName(const ClassMetadata* type) {
return class_getName(
reinterpret_cast<Class>(const_cast<ClassMetadata*>(type)));
}
template<> void ProtocolConformanceDescriptor::dump() const {
llvm::Optional<SymbolInfo> info;
auto symbolName = [&](const void *addr) -> const char * {
info = SymbolInfo::lookup(addr);
if (info.has_value() && info->getSymbolName()) {
return info->getSymbolName();
}
return "<unknown addr>";
};
switch (auto kind = getTypeKind()) {
case TypeReferenceKind::DirectObjCClassName:
printf("direct Objective-C class name %s", getDirectObjCClassName());
break;
case TypeReferenceKind::IndirectObjCClass:
printf("indirect Objective-C class %s",
class_getName(*getIndirectObjCClass()));
break;
case TypeReferenceKind::DirectTypeDescriptor:
case TypeReferenceKind::IndirectTypeDescriptor:
printf("unique nominal type descriptor %s", symbolName(getTypeDescriptor()));
break;
}
printf(" => ");
printf("witness table pattern (%p) %s\n", getWitnessTablePattern(), symbolName(getWitnessTablePattern()));
}
#endif
#ifndef NDEBUG
template <> SWIFT_USED void ProtocolConformanceDescriptor::verify() const {
auto typeKind = unsigned(getTypeKind());
assert(((unsigned(TypeReferenceKind::First_Kind) <= typeKind) &&
(unsigned(TypeReferenceKind::Last_Kind) >= typeKind)) &&
"Corrupted type metadata record kind");
}
#endif
#if SWIFT_OBJC_INTEROP
template <>
const ClassMetadata *TypeReference::getObjCClass(TypeReferenceKind kind) const {
switch (kind) {
case TypeReferenceKind::IndirectObjCClass:
return *getIndirectObjCClass(kind);
case TypeReferenceKind::DirectObjCClassName:
return reinterpret_cast<const ClassMetadata *>(
objc_lookUpClass(getDirectObjCClassName(kind)));
case TypeReferenceKind::DirectTypeDescriptor:
case TypeReferenceKind::IndirectTypeDescriptor:
return nullptr;
}
swift_unreachable("Unhandled TypeReferenceKind in switch.");
}
#endif
static MetadataState
tryGetCompleteMetadataNonblocking(const Metadata *metadata) {
return swift_checkMetadataState(
MetadataRequest(MetadataState::Complete, /*isNonBlocking*/ true),
metadata)
.State;
}
/// Get the superclass of metadata, which may be incomplete. When the metadata
/// is not sufficiently complete, then we fall back to demangling the superclass
/// in the nominal type descriptor, which is slow but works. Return {NULL,
/// MetadataState::Complete} if the metadata is not a class, or has no
/// superclass.
///
/// If the metadata's current state is known, it may be passed in as
/// knownMetadataState. This saves the cost of retrieving that info separately.
///
/// When instantiateSuperclassMetadata is true, this function will instantiate
/// superclass metadata when necessary. When false, this will return {NULL,
/// MetadataState::Abstract} to indicate that there's an uninstantiated
/// superclass that was not returned.
static MetadataResponse getSuperclassForMaybeIncompleteMetadata(
const Metadata *metadata, llvm::Optional<MetadataState> knownMetadataState,
bool instantiateSuperclassMetadata) {
const ClassMetadata *classMetadata = dyn_cast<ClassMetadata>(metadata);
if (!classMetadata)
return {_swift_class_getSuperclass(metadata), MetadataState::Complete};
#if SWIFT_OBJC_INTEROP
// Artificial subclasses are not valid type metadata and
// tryGetCompleteMetadataNonblocking will crash on them. However, they're
// always fully set up, so we can just skip it and fetch the Subclass field.
if (classMetadata->isTypeMetadata() && classMetadata->isArtificialSubclass())
return {classMetadata->Superclass, MetadataState::Complete};
// Pure ObjC classes are already set up, and the code below will not be
// happy with them.
if (!classMetadata->isTypeMetadata())
return {classMetadata->Superclass, MetadataState::Complete};
#endif
MetadataState metadataState;
if (knownMetadataState)
metadataState = *knownMetadataState;
else
metadataState = tryGetCompleteMetadataNonblocking(classMetadata);
if (metadataState == MetadataState::Complete) {
// The subclass metadata is complete. Fetch and return the superclass.
auto *superMetadata = getMetadataForClass(classMetadata->Superclass);
return {superMetadata, MetadataState::Complete};
} else if (metadataState == MetadataState::NonTransitiveComplete) {
// The subclass metadata is complete, but, unlike above, not transitively.
// Its Superclass field is valid, so just read that field to get to the
// superclass to proceed to the next step.
auto *superMetadata = getMetadataForClass(classMetadata->Superclass);
auto superState = tryGetCompleteMetadataNonblocking(superMetadata);
return {superMetadata, superState};
} else if (instantiateSuperclassMetadata) {
// The subclass metadata is either LayoutComplete or Abstract, so the
// Superclass field is not valid. To get to the superclass, make the
// expensive call to getSuperclassMetadata which demangles the superclass
// name from the nominal type descriptor to get the metadata for the
// superclass.
MetadataRequest request(MetadataState::Abstract,
/*non-blocking*/ true);
return getSuperclassMetadata(request, classMetadata);
} else {
// The Superclass field is not valid and the caller did not request
// instantiation. Return a NULL superclass and Abstract to indicate that a
// superclass exists but is not yet instantiated.
return {nullptr, MetadataState::Abstract};
}
}
struct MaybeIncompleteSuperclassIterator {
const Metadata *metadata;
llvm::Optional<MetadataState> state;
bool instantiateSuperclassMetadata;
MaybeIncompleteSuperclassIterator(const Metadata *metadata,
bool instantiateSuperclassMetadata)
: metadata(metadata), state(llvm::None),
instantiateSuperclassMetadata(instantiateSuperclassMetadata) {}
MaybeIncompleteSuperclassIterator &operator++() {
auto response = getSuperclassForMaybeIncompleteMetadata(
metadata, state, instantiateSuperclassMetadata);
metadata = response.Value;
state = response.State;
return *this;
}
const Metadata *operator*() const { return metadata; }
bool operator!=(const MaybeIncompleteSuperclassIterator rhs) const {
return metadata != rhs.metadata;
}
};
/// Take the type reference inside a protocol conformance record and fetch the
/// canonical metadata pointer for the type it refers to.
/// Returns nil for universal or generic type references.
template <>
const Metadata *
ProtocolConformanceDescriptor::getCanonicalTypeMetadata() const {
switch (getTypeKind()) {
case TypeReferenceKind::IndirectObjCClass:
case TypeReferenceKind::DirectObjCClassName:
#if SWIFT_OBJC_INTEROP
// The class may be ObjC, in which case we need to instantiate its Swift
// metadata. The class additionally may be weak-linked, so we have to check
// for null.
if (auto cls = TypeRef.getObjCClass(getTypeKind()))
return getMetadataForClass(cls);
#endif
return nullptr;
case TypeReferenceKind::DirectTypeDescriptor:
case TypeReferenceKind::IndirectTypeDescriptor: {
if (auto anyType = getTypeDescriptor()) {
if (auto type = dyn_cast<TypeContextDescriptor>(anyType)) {
if (!type->isGeneric()) {
if (auto accessFn = type->getAccessFunction())
return accessFn(MetadataState::Abstract).Value;
}
} else if (auto protocol = dyn_cast<ProtocolDescriptor>(anyType)) {
return _getSimpleProtocolTypeMetadata(protocol);
}
}
return nullptr;
}
}
swift_unreachable("Unhandled TypeReferenceKind in switch.");
}
template<>
const WitnessTable *
ProtocolConformanceDescriptor::getWitnessTable(const Metadata *type) const {
// If needed, check the conditional requirements.
llvm::SmallVector<const void *, 8> conditionalArgs;
if (hasConditionalRequirements()) {
SubstGenericParametersFromMetadata substitutions(type);
auto error = _checkGenericRequirements(
getConditionalRequirements(), conditionalArgs,
[&substitutions](unsigned depth, unsigned index) {
return substitutions.getMetadata(depth, index).Ptr;
},
[&substitutions](const Metadata *type, unsigned index) {
return substitutions.getWitnessTable(type, index);
});
if (error)
return nullptr;
}
#if SWIFT_STDLIB_USE_RELATIVE_PROTOCOL_WITNESS_TABLES
return (const WitnessTable *)
swift_getWitnessTableRelative(this, type, conditionalArgs.data());
#else
return swift_getWitnessTable(this, type, conditionalArgs.data());
#endif
}
namespace {
struct ConformanceSection {
const ProtocolConformanceRecord *Begin, *End;
ConformanceSection(const ProtocolConformanceRecord *begin,
const ProtocolConformanceRecord *end)
: Begin(begin), End(end) {}
ConformanceSection(const void *ptr, uintptr_t size) {
auto bytes = reinterpret_cast<const char *>(ptr);
Begin = reinterpret_cast<const ProtocolConformanceRecord *>(ptr);
End = reinterpret_cast<const ProtocolConformanceRecord *>(bytes + size);
}
const ProtocolConformanceRecord *begin() const {
return Begin;
}
const ProtocolConformanceRecord *end() const {
return End;
}
};
struct ConformanceCacheKey {
const Metadata *Type;
const ProtocolDescriptor *Proto;
ConformanceCacheKey(const Metadata *type, const ProtocolDescriptor *proto)
: Type(type), Proto(proto) {
assert(type);
}
friend llvm::hash_code hash_value(const ConformanceCacheKey &key) {
return llvm::hash_combine(key.Type, key.Proto);
}
};
struct ConformanceCacheEntry {
private:
ConformanceCacheKey Key;
const WitnessTable *Witness;
public:
ConformanceCacheEntry(ConformanceCacheKey key, const WitnessTable *witness)
: Key(key), Witness(witness) {}
bool matchesKey(const ConformanceCacheKey &key) const {
return Key.Type == key.Type && Key.Proto == key.Proto;
}
friend llvm::hash_code hash_value(const ConformanceCacheEntry &entry) {
return hash_value(entry.Key);
}
template <class... Args>
static size_t getExtraAllocationSize(Args &&... ignored) {
return 0;
}
/// Get the cached witness table, or null if we cached failure.
const WitnessTable *getWitnessTable() const {
return Witness;
}
};
} // end anonymous namespace
// Conformance Cache.
struct ConformanceState {
ConcurrentReadableHashMap<ConformanceCacheEntry> Cache;
ConcurrentReadableArray<ConformanceSection> SectionsToScan;
bool scanSectionsBackwards;
#if USE_DYLD_SHARED_CACHE_CONFORMANCE_TABLES
uintptr_t dyldSharedCacheStart;
uintptr_t dyldSharedCacheEnd;
bool hasOverriddenImage;
bool validateDyldResults;
// Only populated when validateDyldResults is enabled.
ConcurrentReadableArray<ConformanceSection> DyldOptimizedSections;
bool inSharedCache(const void *ptr) {
auto uintPtr = reinterpret_cast<uintptr_t>(ptr);
return dyldSharedCacheStart <= uintPtr && uintPtr < dyldSharedCacheEnd;
}
bool dyldOptimizationsActive() { return dyldSharedCacheStart != 0; }
#else
bool dyldOptimizationsActive() { return false; }
#endif
ConformanceState() {
scanSectionsBackwards =
runtime::bincompat::useLegacyProtocolConformanceReverseIteration();
#if USE_DYLD_SHARED_CACHE_CONFORMANCE_TABLES
if (__builtin_available(macOS 12.0, iOS 15.0, tvOS 15.0, watchOS 8.0, *)) {
if (runtime::environment::SWIFT_DEBUG_ENABLE_SHARED_CACHE_PROTOCOL_CONFORMANCES()) {
if (&_dyld_swift_optimizations_version) {
if (_dyld_swift_optimizations_version() ==
DYLD_EXPECTED_SWIFT_OPTIMIZATIONS_VERSION) {
size_t length;
dyldSharedCacheStart =
(uintptr_t)_dyld_get_shared_cache_range(&length);
dyldSharedCacheEnd =
dyldSharedCacheStart ? dyldSharedCacheStart + length : 0;
validateDyldResults = runtime::environment::
SWIFT_DEBUG_VALIDATE_SHARED_CACHE_PROTOCOL_CONFORMANCES();
DYLD_CONFORMANCES_LOG("Shared cache range is %#lx-%#lx",
dyldSharedCacheStart, dyldSharedCacheEnd);
} else {
DYLD_CONFORMANCES_LOG("Disabling dyld protocol conformance "
"optimizations due to unknown "
"optimizations version %u",
_dyld_swift_optimizations_version());
dyldSharedCacheStart = 0;
dyldSharedCacheEnd = 0;
}
}
}
}
#endif
// This must run last, as it triggers callbacks that require
// ConformanceState to be set up.
initializeProtocolConformanceLookup();
}
void cacheResult(const Metadata *type, const ProtocolDescriptor *proto,
const WitnessTable *witness, size_t sectionsCount) {
Cache.getOrInsert(ConformanceCacheKey(type, proto),
[&](ConformanceCacheEntry *entry, bool created) {
// Create the entry if needed. If it already exists,
// we're done.
if (!created)
return false;
// Check the current sections count against what was
// passed in. If a section count was passed in and they
// don't match, then this is not an authoritative entry
// and it may have been obsoleted, because the new
// sections could contain a conformance in a more
// specific type.
//
// If they DO match, then we can safely add. Another
// thread might be adding new sections at this point,
// but we will not race with them. That other thread
// will add the new sections, then clear the cache. When
// it clears the cache, it will block waiting for this
// code to complete and relinquish Cache's writer lock.
// If we cache a stale entry, it will be immediately
// cleared.
if (sectionsCount > 0 &&
SectionsToScan.snapshot().count() != sectionsCount)
return false; // abandon the new entry
::new (entry) ConformanceCacheEntry(
ConformanceCacheKey(type, proto), witness);
return true; // keep the new entry
});
}
#ifndef NDEBUG
void verify() const SWIFT_USED;
#endif
};
#ifndef NDEBUG
void ConformanceState::verify() const {
// Iterate over all of the sections and verify all of the protocol
// descriptors.
auto &Self = const_cast<ConformanceState &>(*this);
for (const auto &Section : Self.SectionsToScan.snapshot()) {
for (const auto &Record : Section) {
Record.get()->verify();
}
}
}
#endif
static Lazy<ConformanceState> Conformances;
const void * const swift::_swift_debug_protocolConformanceStatePointer =
&Conformances;
static void _registerProtocolConformances(ConformanceState &C,
ConformanceSection section) {
C.SectionsToScan.push_back(section);
// Blow away the conformances cache to get rid of any negative entries that
// may now be obsolete.
C.Cache.clear();
}
void swift::addImageProtocolConformanceBlockCallbackUnsafe(
const void *baseAddress,
const void *conformances, uintptr_t conformancesSize) {
assert(conformancesSize % sizeof(ProtocolConformanceRecord) == 0 &&
"conformances section not a multiple of ProtocolConformanceRecord");
// Conformance cache should always be sufficiently initialized by this point.
auto &C = Conformances.unsafeGetAlreadyInitialized();
#if USE_DYLD_SHARED_CACHE_CONFORMANCE_TABLES
// If any image in the shared cache is overridden, we need to scan all
// conformance sections in the shared cache. The pre-built table does NOT work
// if the protocol, type, or descriptor are in overridden images. Example:
//
// libX.dylib: struct S {}
// libY.dylib: protocol P {}
// libZ.dylib: extension S: P {}
//
// If libX or libY are overridden, then dyld will not return the S: P
// conformance from libZ. But that conformance still exists and we must still
// return it! Therefore we must scan libZ (and all other dylibs) even though
// it is not overridden.
if (!dyld_shared_cache_some_image_overridden()) {
// Sections in the shared cache are ignored in favor of the shared cache's
// pre-built tables.
if (C.inSharedCache(conformances)) {
DYLD_CONFORMANCES_LOG(
"Skipping conformances section %p in the shared cache", conformances);
if (C.validateDyldResults)
C.DyldOptimizedSections.push_back(
ConformanceSection{conformances, conformancesSize});
return;
#if DYLD_FIND_PROTOCOL_ON_DISK_CONFORMANCE_DEFINED
} else if (&_dyld_has_preoptimized_swift_protocol_conformances &&
_dyld_has_preoptimized_swift_protocol_conformances(
reinterpret_cast<const mach_header *>(baseAddress))) {
// dyld may optimize images outside the shared cache. Skip those too.
DYLD_CONFORMANCES_LOG(
"Skipping conformances section %p optimized by dyld", conformances);
if (C.validateDyldResults)
C.DyldOptimizedSections.push_back(
ConformanceSection{conformances, conformancesSize});
return;
#endif
} else {
DYLD_CONFORMANCES_LOG(
"Adding conformances section %p outside the shared cache",
conformances);
}
}
#endif
// If we have a section, enqueue the conformances for lookup.
_registerProtocolConformances(
C, ConformanceSection{conformances, conformancesSize});
}
void swift::addImageProtocolConformanceBlockCallback(
const void *baseAddress,
const void *conformances, uintptr_t conformancesSize) {
Conformances.get();
addImageProtocolConformanceBlockCallbackUnsafe(baseAddress,
conformances,
conformancesSize);
}
void
swift::swift_registerProtocolConformances(const ProtocolConformanceRecord *begin,
const ProtocolConformanceRecord *end){
auto &C = Conformances.get();
_registerProtocolConformances(C, ConformanceSection{begin, end});
}
/// Search for a conformance descriptor in the ConformanceCache.
/// First element of the return value is `true` if the result is authoritative
/// i.e. the result is for the type itself and not a superclass. If `false`
/// then we cached a conformance on a superclass, but that may be overridden.
/// A return value of `{ false, nullptr }` indicates nothing was cached.
static std::pair<bool, const WitnessTable *>
searchInConformanceCache(const Metadata *type,
const ProtocolDescriptor *protocol,
bool instantiateSuperclassMetadata) {
auto &C = Conformances.get();
auto origType = type;
auto snapshot = C.Cache.snapshot();
MaybeIncompleteSuperclassIterator superclassIterator{
type, instantiateSuperclassMetadata};
for (; auto type = superclassIterator.metadata; ++superclassIterator) {
if (auto *Value = snapshot.find(ConformanceCacheKey(type, protocol))) {
return {type == origType, Value->getWitnessTable()};
}
}
// We did not find a cache entry.
return {false, nullptr};
}
/// Get the appropriate context descriptor for a type. If the descriptor is a
/// foreign type descriptor, also return its identity string.
static std::pair<const ContextDescriptor *, llvm::StringRef>
getContextDescriptor(const Metadata *conformingType) {
const auto *description = conformingType->getTypeContextDescriptor();
if (description) {
if (description->hasForeignMetadataInitialization()) {
auto identity = ParsedTypeIdentity::parse(description).FullIdentity;
return {description, identity};
}
return {description, {}};
}
// Handle single-protocol existential types for self-conformance.
auto *existentialType = dyn_cast<ExistentialTypeMetadata>(conformingType);
if (existentialType == nullptr ||
existentialType->getProtocols().size() != 1 ||
existentialType->getSuperclassConstraint() != nullptr)
return {nullptr, {}};
auto proto = existentialType->getProtocols()[0];
#if SWIFT_OBJC_INTEROP
if (proto.isObjC())
return {nullptr, {}};
#endif
return {proto.getSwiftProtocol(), {}};
}
namespace {
/// Describes a protocol conformance "candidate" that can be checked
/// against a type metadata.
class ConformanceCandidate {
const void *candidate;
bool candidateIsMetadata;
public:
ConformanceCandidate() : candidate(0), candidateIsMetadata(false) { }
ConformanceCandidate(const ProtocolConformanceDescriptor &conformance)
: ConformanceCandidate()
{
if (auto description = conformance.getTypeDescriptor()) {
candidate = description;
candidateIsMetadata = false;
return;
}
if (auto metadata = conformance.getCanonicalTypeMetadata()) {
candidate = metadata;
candidateIsMetadata = true;
return;
}
}
/// Whether the conforming type exactly matches the conformance candidate.
bool matches(const Metadata *conformingType) const {
// Check whether the types match.
if (candidateIsMetadata && conformingType == candidate)
return true;
// Check whether the nominal type descriptors match.
if (!candidateIsMetadata) {
const auto *description = std::get<const ContextDescriptor *>(
getContextDescriptor(conformingType));
auto candidateDescription =
static_cast<const ContextDescriptor *>(candidate);
if (description && equalContexts(description, candidateDescription))
return true;
}
return false;
}
/// Retrieve the type that matches the conformance candidate, which may
/// be a superclass of the given type. Returns null if this type does not
/// match this conformance, along with the final metadata state of the
/// superclass iterator.
std::pair<const Metadata *, llvm::Optional<MetadataState>>
getMatchingType(const Metadata *conformingType,
bool instantiateSuperclassMetadata) const {
MaybeIncompleteSuperclassIterator superclassIterator{
conformingType, instantiateSuperclassMetadata};
for (; auto conformingType = superclassIterator.metadata;
++superclassIterator) {
if (matches(conformingType))
return {conformingType, llvm::None};
}
return {nullptr, superclassIterator.state};
}
};
}
static void validateDyldResults(
ConformanceState &C, const Metadata *type,
const ProtocolDescriptor *protocol,
const WitnessTable *dyldCachedWitnessTable,
const ProtocolConformanceDescriptor *dyldCachedConformanceDescriptor,
bool instantiateSuperclassMetadata) {
#if USE_DYLD_SHARED_CACHE_CONFORMANCE_TABLES
if (!C.dyldOptimizationsActive() || !C.validateDyldResults)
return;
llvm::SmallVector<const ProtocolConformanceDescriptor *, 8> conformances;
for (auto &section : C.DyldOptimizedSections.snapshot()) {
for (const auto &record : section) {
auto &descriptor = *record.get();
if (descriptor.getProtocol() != protocol)
continue;
ConformanceCandidate candidate(descriptor);
if (std::get<const Metadata *>(
candidate.getMatchingType(type, instantiateSuperclassMetadata)))
conformances.push_back(&descriptor);
}
}
auto conformancesString = [&]() -> std::string {
std::string result = "";
for (auto *conformance : conformances) {
if (!result.empty())
result += ", ";
result += "0x";
result += llvm::utohexstr(reinterpret_cast<uint64_t>(conformance));
}
return result;
};
if (dyldCachedConformanceDescriptor) {
if (std::find(conformances.begin(), conformances.end(),
dyldCachedConformanceDescriptor) == conformances.end()) {
auto typeName = swift_getTypeName(type, true);
swift::fatalError(
0,
"Checking conformance of %.*s %p to %s %p - dyld cached conformance "
"descriptor %p not found in conformance records: (%s)\n",
(int)typeName.length, typeName.data, type, protocol->Name.get(),
protocol, dyldCachedConformanceDescriptor,
conformancesString().c_str());
}
} else {
if (!conformances.empty()) {
auto typeName = swift_getTypeName(type, true);
swift::fatalError(
0,
"Checking conformance of %.*s %p to %s %p - dyld found no "
"conformance descriptor, but matching descriptors exist: (%s)\n",
(int)typeName.length, typeName.data, type, protocol->Name.get(),
protocol, conformancesString().c_str());
}
}
#endif
}
#if USE_DYLD_SHARED_CACHE_CONFORMANCE_TABLES
static _dyld_protocol_conformance_result getDyldSharedCacheConformance(
ConformanceState &C, const ProtocolDescriptor *protocol,
const ClassMetadata *objcClassMetadata,
const ContextDescriptor *description, llvm::StringRef foreignTypeIdentity) {
// Protocols that aren't in the shared cache will never be found in the shared
// cache conformances, skip the call.
if (!C.inSharedCache(protocol)) {
DYLD_CONFORMANCES_LOG(
"Skipping shared cache lookup, protocol %p is not in shared cache.",
protocol);
return {_dyld_protocol_conformance_result_kind_not_found, nullptr};
}
if (!foreignTypeIdentity.empty()) {
// Foreign types are non-unique so those can still be found in the shared
// cache even if the identity string is outside.
DYLD_CONFORMANCES_LOG(
"_dyld_find_foreign_type_protocol_conformance(%p, %.*s, %zu)", protocol,
(int)foreignTypeIdentity.size(), foreignTypeIdentity.data(),
foreignTypeIdentity.size());
return _dyld_find_foreign_type_protocol_conformance(
protocol, foreignTypeIdentity.data(), foreignTypeIdentity.size());
} else {
// If both the ObjC class metadata and description are outside the shared
// cache, then we'll never find a shared cache conformance, skip the call.
// We can still find a shared cache conformance if one is inside and one is
// outside.
if (!C.inSharedCache(objcClassMetadata) && !C.inSharedCache(description)) {
DYLD_CONFORMANCES_LOG("Skipping shared cache lookup, class %p and "
"description %p are not in shared cache.",
objcClassMetadata, description);
return {_dyld_protocol_conformance_result_kind_not_found, nullptr};
}
DYLD_CONFORMANCES_LOG("_dyld_find_protocol_conformance(%p, %p, %p)",
protocol, objcClassMetadata, description);
return _dyld_find_protocol_conformance(protocol, objcClassMetadata,
description);
}
}
static _dyld_protocol_conformance_result getDyldOnDiskConformance(
ConformanceState &C, const ProtocolDescriptor *protocol,
const ClassMetadata *objcClassMetadata,
const ContextDescriptor *description, llvm::StringRef foreignTypeIdentity) {
#if DYLD_FIND_PROTOCOL_ON_DISK_CONFORMANCE_DEFINED
if (&_dyld_find_foreign_type_protocol_conformance_on_disk &&
&_dyld_find_protocol_conformance_on_disk) {
if (!foreignTypeIdentity.empty()) {
DYLD_CONFORMANCES_LOG(
"_dyld_find_foreign_type_protocol_conformance_on_disk(%"
"p, %.*s, %zu, 0)",
protocol, (int)foreignTypeIdentity.size(), foreignTypeIdentity.data(),
foreignTypeIdentity.size());
return _dyld_find_foreign_type_protocol_conformance_on_disk(
protocol, foreignTypeIdentity.data(), foreignTypeIdentity.size(), 0);
} else {
DYLD_CONFORMANCES_LOG(
"_dyld_find_protocol_conformance_on_disk(%p, %p, %p, 0)", protocol,
objcClassMetadata, description);
return _dyld_find_protocol_conformance_on_disk(
protocol, objcClassMetadata, description, 0);
}
}
#endif
return {_dyld_protocol_conformance_result_kind_not_found, nullptr};
}
#endif
/// Query dyld for a protocol conformance, if supported. The return
/// value is a tuple consisting of the found witness table (if any), the found
/// conformance descriptor (if any), and a bool that's true if a failure is
/// definitive.
static std::tuple<const WitnessTable *, const ProtocolConformanceDescriptor *,
bool>
findConformanceWithDyld(ConformanceState &C, const Metadata *type,
const ProtocolDescriptor *protocol,
bool instantiateSuperclassMetadata) {
#if USE_DYLD_SHARED_CACHE_CONFORMANCE_TABLES
const ContextDescriptor *description;
llvm::StringRef foreignTypeIdentity;
std::tie(description, foreignTypeIdentity) = getContextDescriptor(type);
// dyld expects the ObjC class, if any, as the second parameter.
auto objcClassMetadata = swift_getObjCClassFromMetadataConditional(type);
#if SHARED_CACHE_LOG_ENABLED
auto typeName = swift_getTypeName(type, true);
DYLD_CONFORMANCES_LOG("Looking up conformance of %.*s (type=%p, "
"objcClassMetadata=%p, description=%p) to %s (%p)",
(int)typeName.length, typeName.data, type,
objcClassMetadata, description, protocol->Name.get(),
protocol);
#endif
_dyld_protocol_conformance_result dyldResult;
if (C.scanSectionsBackwards) {
// Search "on disk" first, then shared cache.
dyldResult = getDyldOnDiskConformance(C, protocol, objcClassMetadata,
description, foreignTypeIdentity);
if (dyldResult.kind == _dyld_protocol_conformance_result_kind_not_found)
dyldResult = getDyldSharedCacheConformance(
C, protocol, objcClassMetadata, description, foreignTypeIdentity);
} else {
// In normal operation, search the shared cache first.
dyldResult = getDyldSharedCacheConformance(
C, protocol, objcClassMetadata, description, foreignTypeIdentity);
if (dyldResult.kind == _dyld_protocol_conformance_result_kind_not_found)
dyldResult = getDyldOnDiskConformance(C, protocol, objcClassMetadata,
description, foreignTypeIdentity);
}
switch (dyldResult.kind) {
case _dyld_protocol_conformance_result_kind_found_descriptor: {
auto *conformanceDescriptor =
reinterpret_cast<const ProtocolConformanceDescriptor *>(
dyldResult.value);
assert(conformanceDescriptor->getProtocol() == protocol);
assert(std::get<const Metadata *>(
ConformanceCandidate{*conformanceDescriptor}.getMatchingType(
type, instantiateSuperclassMetadata)));
if (conformanceDescriptor->getGenericWitnessTable()) {
DYLD_CONFORMANCES_LOG(
"DYLD found generic conformance descriptor %p for %s, continuing",
conformanceDescriptor, protocol->Name.get());
return std::make_tuple(nullptr, conformanceDescriptor, false);
} else {
// When there are no generics, we can retrieve the witness table cheaply,
// so do it up front.
DYLD_CONFORMANCES_LOG("DYLD Found conformance descriptor %p for %s",
conformanceDescriptor, protocol->Name.get());
auto *witnessTable = conformanceDescriptor->getWitnessTable(type);
return std::make_tuple(witnessTable, conformanceDescriptor, false);
}
break;
}
case _dyld_protocol_conformance_result_kind_found_witness_table:
// If we found a witness table then we're done.
DYLD_CONFORMANCES_LOG("DYLD found witness table %p for conformance to %s",
dyldResult.value, protocol->Name.get());
return std::make_tuple(reinterpret_cast<const WitnessTable *>(dyldResult.value), nullptr,
false);
case _dyld_protocol_conformance_result_kind_not_found:
// If nothing is found, then we'll proceed with checking the runtime's
// caches and scanning conformance records.
DYLD_CONFORMANCES_LOG("DYLD did not find conformance to %s",
protocol->Name.get());
return std::make_tuple(nullptr, nullptr, false);
break;
case _dyld_protocol_conformance_result_kind_definitive_failure:
// This type is known not to conform to this protocol. Return failure
// without any further checks.
DYLD_CONFORMANCES_LOG("DYLD found definitive failure for %s",
protocol->Name.get());
return std::make_tuple(nullptr, nullptr, true);
default:
// Other values may be added. Consider them equivalent to not_found until
// we implement code to handle them.
DYLD_CONFORMANCES_LOG(
"Unknown result kind %lu from _dyld_find_protocol_conformance()",
(unsigned long)dyldResult.kind);
return std::make_tuple(nullptr, nullptr, false);
}
#else
return std::make_tuple(nullptr, nullptr, false);
#endif
}
/// Check if a type conforms to a protocol, possibly instantiating superclasses
/// that have not yet been instantiated. The return value is a pair consisting
/// of the witness table for the conformance (or NULL if no conformance was
/// found), and a boolean indicating whether there are uninstantiated
/// superclasses that were not searched.
static std::pair<const WitnessTable *, bool>
swift_conformsToProtocolMaybeInstantiateSuperclasses(
const Metadata *const type, const ProtocolDescriptor *protocol,
bool instantiateSuperclassMetadata) {
auto &C = Conformances.get();
const WitnessTable *dyldCachedWitnessTable = nullptr;
const ProtocolConformanceDescriptor *dyldCachedConformanceDescriptor =
nullptr;
// Track whether we have uninstantiated superclasses. Each time we iterate
// over our superclasses, we check the final state to see if there are more
// superclasses we haven't instantiated by calling noteFinalMetadataState.
// If we ever see Abstract, that means there are more superclasses we can't
// check yet, and we might get a false negative. We have to do this after each
// iteration (really, just the first iteration, but it's hard to keep track of
// which iteration is the first time), because another thread might
// instantiate the superclass while we're in the middle of searching. If we
// only look at the state after the last iteration, we might have hit a false
// negative before that no longer shows up.
bool hasUninstantiatedSuperclass = false;
auto noteFinalMetadataState = [&](llvm::Optional<MetadataState> state) {
hasUninstantiatedSuperclass =
hasUninstantiatedSuperclass || state == MetadataState::Abstract;
};
// Search the shared cache tables for a conformance for this type, and for
// superclasses (if it's a class).
if (C.dyldOptimizationsActive()) {
MaybeIncompleteSuperclassIterator superclassIterator{
type, instantiateSuperclassMetadata};
for (; auto dyldSearchType = superclassIterator.metadata;
++superclassIterator) {
bool definitiveFailure;
std::tie(dyldCachedWitnessTable, dyldCachedConformanceDescriptor,
definitiveFailure) =
findConformanceWithDyld(C, dyldSearchType, protocol,
instantiateSuperclassMetadata);
if (definitiveFailure)
return {nullptr, false};
if (dyldCachedWitnessTable || dyldCachedConformanceDescriptor)
break;
}
noteFinalMetadataState(superclassIterator.state);
validateDyldResults(C, type, protocol, dyldCachedWitnessTable,
dyldCachedConformanceDescriptor,
instantiateSuperclassMetadata);
// Return a cached result if we got a witness table. We can't do this if
// scanSectionsBackwards is set, since a scanned conformance can override a
// cached result in that case.
if (!C.scanSectionsBackwards)
if (dyldCachedWitnessTable)
return {dyldCachedWitnessTable, false};
}
// See if we have an authoritative cached conformance. The
// ConcurrentReadableHashMap data structure allows us to search the map
// concurrently without locking.
auto found =
searchInConformanceCache(type, protocol, instantiateSuperclassMetadata);
if (found.first) {
// An authoritative negative result can be overridden by a result from dyld.
if (!found.second) {
if (dyldCachedWitnessTable)
return {dyldCachedWitnessTable, false};
}
return {found.second, false};
}
if (dyldCachedConformanceDescriptor) {
ConformanceCandidate candidate(*dyldCachedConformanceDescriptor);
auto *matchingType = std::get<const Metadata *>(
candidate.getMatchingType(type, instantiateSuperclassMetadata));
assert(matchingType);
auto witness = dyldCachedConformanceDescriptor->getWitnessTable(matchingType);
C.cacheResult(type, protocol, witness, /*always cache*/ 0);
DYLD_CONFORMANCES_LOG("Caching generic conformance to %s found by DYLD",
protocol->Name.get());
return {witness, false};
}
// Scan conformance records.
llvm::SmallDenseMap<const Metadata *, const WitnessTable *> foundWitnesses;
auto processSection = [&](const ConformanceSection &section) {
// Eagerly pull records for nondependent witnesses into our cache.
auto processDescriptor = [&](const ProtocolConformanceDescriptor &descriptor) {
// We only care about conformances for this protocol.
if (descriptor.getProtocol() != protocol)
return;
// If there's a matching type, record the positive result and return it.
// The matching type is exact, so they can't go stale, and we should
// always cache them.
ConformanceCandidate candidate(descriptor);
const Metadata *matchingType;
llvm::Optional<MetadataState> finalState;
std::tie(matchingType, finalState) =
candidate.getMatchingType(type, instantiateSuperclassMetadata);
noteFinalMetadataState(finalState);
if (matchingType) {
auto witness = descriptor.getWitnessTable(matchingType);
C.cacheResult(matchingType, protocol, witness, /*always cache*/ 0);
foundWitnesses.insert({matchingType, witness});
}
};
if (C.scanSectionsBackwards) {
for (const auto &record : llvm::reverse(section))
processDescriptor(*record.get());
} else {
for (const auto &record : section)
processDescriptor(*record.get());
}
};
auto traceState =
runtime::trace::protocol_conformance_scan_begin(type, protocol);
auto snapshot = C.SectionsToScan.snapshot();
if (C.scanSectionsBackwards) {
for (auto &section : llvm::reverse(snapshot))
processSection(section);
} else {
for (auto &section : snapshot)
processSection(section);
}
// Find the most specific conformance that was scanned.
const WitnessTable *foundWitness = nullptr;
const Metadata *foundType = nullptr;
MaybeIncompleteSuperclassIterator superclassIterator{
type, instantiateSuperclassMetadata};
for (; auto searchType = superclassIterator.metadata; ++superclassIterator) {
const WitnessTable *witness = foundWitnesses.lookup(searchType);
if (witness) {
if (!foundType) {
foundWitness = witness;
foundType = searchType;
} else {
auto foundName = swift_getTypeName(foundType, true);
auto searchName = swift_getTypeName(searchType, true);
swift::warning(RuntimeErrorFlagNone,
"Warning: '%.*s' conforms to protocol '%s', but it also "
"inherits conformance from '%.*s'. Relying on a "
"particular conformance is undefined behaviour.\n",
(int)foundName.length, foundName.data,
protocol->Name.get(),
(int)searchName.length, searchName.data);
}
}
}
noteFinalMetadataState(superclassIterator.state);
traceState.end(foundWitness);
// If it's for a superclass or if we didn't find anything, then add an
// authoritative entry for this type.
if (foundType != type)
// Do not cache negative results if there were uninstantiated superclasses
// we didn't search. They might have a conformance that will be found later.
if (foundWitness || !hasUninstantiatedSuperclass)
C.cacheResult(type, protocol, foundWitness, snapshot.count());
// A negative result can be overridden by a result from dyld.
if (!foundWitness) {
if (dyldCachedWitnessTable)
return {dyldCachedWitnessTable, false};
}
return {foundWitness, hasUninstantiatedSuperclass};
}
static const WitnessTable *
swift_conformsToProtocolCommonImpl(const Metadata *const type,
const ProtocolDescriptor *protocol) {
const WitnessTable *table;
bool hasUninstantiatedSuperclass;
// First, try without instantiating any new superclasses. This avoids
// an infinite loop for cases like `class Sub: Super<Sub>`. In cases like
// that, the conformance must exist on the subclass (or at least somewhere
// in the chain before we get to an uninstantiated superclass) so this search
// will succeed without trying to instantiate Super while it's already being
// instantiated.=
std::tie(table, hasUninstantiatedSuperclass) =
swift_conformsToProtocolMaybeInstantiateSuperclasses(
type, protocol, false /*instantiateSuperclassMetadata*/);
// If no conformance was found, and there is an uninstantiated superclass that
// was not searched, then try the search again and instantiate all
// superclasses.
if (!table && hasUninstantiatedSuperclass)
std::tie(table, hasUninstantiatedSuperclass) =
swift_conformsToProtocolMaybeInstantiateSuperclasses(
type, protocol, true /*instantiateSuperclassMetadata*/);
return table;
}
static const WitnessTable *
swift_conformsToProtocol2Impl(const Metadata *const type,
const ProtocolDescriptor *protocol) {
protocol = swift_auth_data_non_address(
protocol, SpecialPointerAuthDiscriminators::ProtocolDescriptor);
return swift_conformsToProtocolCommonImpl(type, protocol);
}
static const WitnessTable *
swift_conformsToProtocolImpl(const Metadata *const type,
const void *protocol) {
// This call takes `protocol` without a ptrauth signature. We declare
// it as `void *` to avoid the implicit ptrauth we get from the
// ptrauth_struct attribute. The static_cast implicitly signs the
// pointer when we call through to the implementation in
// swift_conformsToProtocolCommon.
return swift_conformsToProtocolCommonImpl(
type, static_cast<const ProtocolDescriptor *>(protocol));
}
const ContextDescriptor *
swift::_searchConformancesByMangledTypeName(Demangle::NodePointer node) {
auto traceState = runtime::trace::protocol_conformance_scan_begin(node);
auto &C = Conformances.get();
for (auto &section : C.SectionsToScan.snapshot()) {
for (const auto &record : section) {
if (auto ntd = record->getTypeDescriptor()) {
if (_contextDescriptorMatchesMangling(ntd, node))
return traceState.end(ntd);
}
}
}
return nullptr;
}
template <typename HandleObjc>
bool isSwiftClassMetadataSubclass(const ClassMetadata *subclass,
const ClassMetadata *superclass,
HandleObjc handleObjc) {
assert(subclass);
assert(superclass);
llvm::Optional<MetadataState> subclassState = llvm::None;
while (true) {
auto response = getSuperclassForMaybeIncompleteMetadata(
subclass, subclassState, true /*instantiateSuperclassMetadata*/);
if (response.Value == superclass)
return true;
if (!response.Value)
return false;
subclass = dyn_cast<ClassMetadata>(response.Value);
if (!subclass || subclass->isPureObjC())
return handleObjc(response.Value, superclass);
}
}
// Whether the provided `subclass` is metadata for a subclass* of the superclass
// whose metadata is specified.
//
// The function is robust against incomplete metadata for both subclass and
// superclass. In the worst case, each intervening class between subclass and
// superclass is demangled. Besides that slow path, there are a number of fast
// paths:
// - both classes are ObjC: swift_dynamicCastMetatype
// - Complete subclass metadata: loop over Superclass fields
// - NonTransitiveComplete: read the Superclass field once
//
// * A non-strict subclass; that is, given a class X, isSubclass(X.self, X.self)
// is true.
static bool isSubclass(const Metadata *subclass, const Metadata *superclass) {
assert(subclass);
assert(superclass);
assert(subclass->isAnyClass());
assert(superclass->isAnyClass());
if (subclass == superclass)
return true;
if (!isa<ClassMetadata>(subclass)) {
if (!isa<ClassMetadata>(superclass)) {
// Only ClassMetadata can be incomplete; when the class metadata is not
// ClassMetadata, just use swift_dynamicCastMetatype.
return swift_dynamicCastMetatype(subclass, superclass);
} else {
// subclass is ObjC, but superclass is not; since it is not possible for
// any ObjC class to be a subclass of any Swift class, this subclass is
// not a subclass of this superclass.
return false;
}
}
const ClassMetadata *swiftSubclass = cast<ClassMetadata>(subclass);
#if SWIFT_OBJC_INTEROP
if (auto *objcSuperclass = dyn_cast<ObjCClassWrapperMetadata>(superclass)) {
// Walk up swiftSubclass's ancestors until we get to an ObjC class, then
// kick over to swift_dynamicCastMetatype.
return isSwiftClassMetadataSubclass(
swiftSubclass, objcSuperclass->Class,
[](const Metadata *intermediate, const Metadata *superclass) {
// Intermediate is an ObjC class, and superclass is an ObjC class;
// as above, just use swift_dynamicCastMetatype.
return swift_dynamicCastMetatype(intermediate, superclass);
});
return false;
}
#endif
if (isa<ForeignClassMetadata>(superclass)) {
// superclass is foreign, but subclass is not (if it were, the above
// !isa<ClassMetadata> condition would have been entered). Since it is not
// possible for any Swift class to be a subclass of any foreign superclass,
// this subclass is not a subclass of this superclass.
return false;
}
auto swiftSuperclass = cast<ClassMetadata>(superclass);
return isSwiftClassMetadataSubclass(swiftSubclass, swiftSuperclass,
[](const Metadata *, const Metadata *) {
// Because (1) no ObjC classes inherit
// from Swift classes and (2)
// `superclass` is not ObjC, if some
// ancestor of `subclass` is ObjC, then
// `subclass` cannot descend from
// `superclass` (otherwise at some point
// some ObjC class would have to inherit
// from a Swift class).
return false;
});
}
static bool isSubclassOrExistential(const Metadata *subclass,
const Metadata *superclass) {
// If the type which is constrained to a base class is an existential
// type, and if that existential type includes a superclass constraint,
// just require that the superclass by which the existential is
// constrained is a subclass of the base class.
if (auto *existential = dyn_cast<ExistentialTypeMetadata>(subclass)) {
if (auto *superclassConstraint = existential->getSuperclassConstraint())
subclass = superclassConstraint;
}
return isSubclass(subclass, superclass);
}
static llvm::Optional<TypeLookupError>
satisfiesLayoutConstraint(const GenericRequirementDescriptor &req,
const Metadata *subjectType) {
switch (req.getLayout()) {
case GenericRequirementLayoutKind::Class:
if (!subjectType->satisfiesClassConstraint()) {
return TYPE_LOOKUP_ERROR_FMT(
"subject type %.*s does not satisfy class constraint",
(int)req.getParam().size(), req.getParam().data());
}
return llvm::None;
}
// Unknown layout.
return TYPE_LOOKUP_ERROR_FMT("unknown layout kind %u", req.getLayout());
}
SWIFT_CC(swift)
SWIFT_RUNTIME_STDLIB_SPI
bool swift::_swift_class_isSubclass(const Metadata *subclass,
const Metadata *superclass) {
return isSubclass(subclass, superclass);
}
static llvm::Optional<TypeLookupError>
checkGenericRequirement(const GenericRequirementDescriptor &req,
llvm::SmallVectorImpl<const void *> &extraArguments,
SubstGenericParameterFn substGenericParam,
SubstDependentWitnessTableFn substWitnessTable) {
assert(!req.getFlags().isPackRequirement());
// Make sure we understand the requirement we're dealing with.
if (!req.hasKnownKind())
return TypeLookupError("unknown kind");
// Resolve the subject generic parameter.
auto result = swift_getTypeByMangledName(
MetadataState::Abstract, req.getParam(), extraArguments.data(),
substGenericParam, substWitnessTable);
if (result.getError())
return *result.getError();
const Metadata *subjectType = result.getType().getMetadata();
// Check the requirement.
switch (req.getKind()) {
case GenericRequirementKind::Protocol: {
const WitnessTable *witnessTable = nullptr;
if (!_conformsToProtocol(nullptr, subjectType, req.getProtocol(),
&witnessTable)) {
const char *protoName =
req.getProtocol() ? req.getProtocol().getName() : "<null>";
return TYPE_LOOKUP_ERROR_FMT(
"subject type %.*s does not conform to protocol %s",
(int)req.getParam().size(), req.getParam().data(), protoName);
}
// If we need a witness table, add it.
if (req.getProtocol().needsWitnessTable()) {
assert(witnessTable);
extraArguments.push_back(witnessTable);
}
return llvm::None;
}
case GenericRequirementKind::SameType: {
// Demangle the second type under the given substitutions.
auto result = swift_getTypeByMangledName(
MetadataState::Abstract, req.getMangledTypeName(),
extraArguments.data(), substGenericParam, substWitnessTable);
if (result.getError())
return *result.getError();
auto otherType = result.getType().getMetadata();
// Check that the types are equivalent.
if (subjectType != otherType) {
return TYPE_LOOKUP_ERROR_FMT(
"subject type %.*s does not match %.*s", (int)req.getParam().size(),
req.getParam().data(), (int)req.getMangledTypeName().size(),
req.getMangledTypeName().data());
}
return llvm::None;
}
case GenericRequirementKind::Layout: {
return satisfiesLayoutConstraint(req, subjectType);
}
case GenericRequirementKind::BaseClass: {
// Demangle the base type under the given substitutions.
auto result = swift_getTypeByMangledName(
MetadataState::Abstract, req.getMangledTypeName(),
extraArguments.data(), substGenericParam, substWitnessTable);
if (result.getError())
return *result.getError();
auto baseType = result.getType().getMetadata();
if (!isSubclassOrExistential(subjectType, baseType))
return TYPE_LOOKUP_ERROR_FMT(
"%.*s is not subclass of %.*s", (int)req.getParam().size(),
req.getParam().data(), (int)req.getMangledTypeName().size(),
req.getMangledTypeName().data());
return llvm::None;
}
case GenericRequirementKind::SameConformance: {
// FIXME: Implement this check.
return llvm::None;
}
case GenericRequirementKind::SameShape: {
return TYPE_LOOKUP_ERROR_FMT("can't have same-shape requirement where "
"subject type is not a pack");
}
}
// Unknown generic requirement kind.
return TYPE_LOOKUP_ERROR_FMT("unknown generic requirement kind %u",
(unsigned)req.getKind());
}
static llvm::Optional<TypeLookupError>
checkGenericPackRequirement(const GenericRequirementDescriptor &req,
llvm::SmallVectorImpl<const void *> &extraArguments,
SubstGenericParameterFn substGenericParam,
SubstDependentWitnessTableFn substWitnessTable) {
assert(req.getFlags().isPackRequirement());
// Make sure we understand the requirement we're dealing with.
if (!req.hasKnownKind())
return TypeLookupError("unknown kind");
// Resolve the subject generic parameter.
auto result = swift::getTypePackByMangledName(
req.getParam(), extraArguments.data(),
substGenericParam, substWitnessTable);
if (result.getError())
return *result.getError();
MetadataPackPointer subjectType = result.getType();
assert(subjectType.getLifetime() == PackLifetime::OnHeap);
// Check the requirement.
switch (req.getKind()) {
case GenericRequirementKind::Protocol: {
llvm::SmallVector<const WitnessTable *, 4> witnessTables;
// Look up the conformance of each pack element to the protocol.
for (size_t i = 0, e = subjectType.getNumElements(); i < e; ++i) {
const Metadata *elt = subjectType.getElements()[i];
const WitnessTable *witnessTable = nullptr;
if (!_conformsToProtocol(nullptr, elt, req.getProtocol(),
&witnessTable)) {
const char *protoName =
req.getProtocol() ? req.getProtocol().getName() : "<null>";
return TYPE_LOOKUP_ERROR_FMT(
"subject type %.*s does not conform to protocol %s at pack index %lu",
(int)req.getParam().size(), req.getParam().data(), protoName, i);
}
if (req.getProtocol().needsWitnessTable())
witnessTables.push_back(witnessTable);
}
// If we need a witness table, add it.
if (req.getProtocol().needsWitnessTable()) {
assert(witnessTables.size() == subjectType.getNumElements());
auto *pack = swift_allocateWitnessTablePack(witnessTables.data(),
witnessTables.size());
extraArguments.push_back(pack);
}
return llvm::None;
}
case GenericRequirementKind::SameType: {
// Resolve the constraint generic parameter.
auto result = swift::getTypePackByMangledName(
req.getMangledTypeName(), extraArguments.data(),
substGenericParam, substWitnessTable);
if (result.getError())
return *result.getError();
MetadataPackPointer constraintType = result.getType();
assert(constraintType.getLifetime() == PackLifetime::OnHeap);
if (subjectType.getNumElements() != constraintType.getNumElements()) {
return TYPE_LOOKUP_ERROR_FMT(
"mismatched pack lengths in same-type pack requirement %.*s: %lu vs %lu",
(int)req.getParam().size(), req.getParam().data(),
subjectType.getNumElements(), constraintType.getNumElements());
}
for (size_t i = 0, e = subjectType.getNumElements(); i < e; ++i) {
auto *subjectElt = subjectType.getElements()[i];
auto *constraintElt = constraintType.getElements()[i];
if (subjectElt != constraintElt) {
return TYPE_LOOKUP_ERROR_FMT(
"subject type %.*s does not match %.*s at pack index %lu",
(int)req.getParam().size(),
req.getParam().data(), (int)req.getMangledTypeName().size(),
req.getMangledTypeName().data(), i);
}
}
return llvm::None;
}
case GenericRequirementKind::Layout: {
for (size_t i = 0, e = subjectType.getNumElements(); i < e; ++i) {
const Metadata *elt = subjectType.getElements()[i];
if (auto result = satisfiesLayoutConstraint(req, elt))
return result;
}
return llvm::None;
}
case GenericRequirementKind::BaseClass: {
// Demangle the base type under the given substitutions.
auto result = swift_getTypeByMangledName(
MetadataState::Abstract, req.getMangledTypeName(),
extraArguments.data(), substGenericParam, substWitnessTable);
if (result.getError())
return *result.getError();
auto baseType = result.getType().getMetadata();
// Check that each pack element inherits from the base class.
for (size_t i = 0, e = subjectType.getNumElements(); i < e; ++i) {
const Metadata *elt = subjectType.getElements()[i];
if (!isSubclassOrExistential(elt, baseType))
return TYPE_LOOKUP_ERROR_FMT(
"%.*s is not subclass of %.*s at pack index %lu",
(int)req.getParam().size(),
req.getParam().data(), (int)req.getMangledTypeName().size(),
req.getMangledTypeName().data(), i);
}
return llvm::None;
}
case GenericRequirementKind::SameConformance: {
// FIXME: Implement this check.
return llvm::None;
}
case GenericRequirementKind::SameShape: {
auto result = swift::getTypePackByMangledName(
req.getMangledTypeName(), extraArguments.data(),
substGenericParam, substWitnessTable);
if (result.getError())
return *result.getError();
MetadataPackPointer otherType = result.getType();
assert(otherType.getLifetime() == PackLifetime::OnHeap);
if (subjectType.getNumElements() != otherType.getNumElements()) {
return TYPE_LOOKUP_ERROR_FMT("same-shape requirement unsatisfied; "
"%lu != %lu",
subjectType.getNumElements(),
otherType.getNumElements() );
}
return llvm::None;
}
}
// Unknown generic requirement kind.
return TYPE_LOOKUP_ERROR_FMT("unknown generic requirement kind %u",
(unsigned)req.getKind());
}
llvm::Optional<TypeLookupError> swift::_checkGenericRequirements(
llvm::ArrayRef<GenericRequirementDescriptor> requirements,
llvm::SmallVectorImpl<const void *> &extraArguments,
SubstGenericParameterFn substGenericParam,
SubstDependentWitnessTableFn substWitnessTable) {
for (const auto &req : requirements) {
if (req.getFlags().isPackRequirement()) {
auto error = checkGenericPackRequirement(req, extraArguments,
substGenericParam,
substWitnessTable);
if (error)
return error;
} else {
auto error = checkGenericRequirement(req, extraArguments,
substGenericParam,
substWitnessTable);
if (error)
return error;
}
}
// Success!
return llvm::None;
}
const Metadata *swift::findConformingSuperclass(
const Metadata *type,
const ProtocolConformanceDescriptor *conformance) {
// Figure out which type we're looking for.
ConformanceCandidate candidate(*conformance);
const Metadata *conformingType = std::get<const Metadata *>(
candidate.getMatchingType(type, true /*instantiateSuperclassMetadata*/));
assert(conformingType);
return conformingType;
}
#define OVERRIDE_PROTOCOLCONFORMANCE COMPATIBILITY_OVERRIDE
#include COMPATIBILITY_OVERRIDE_INCLUDE_PATH