mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
1912 lines
68 KiB
C++
1912 lines
68 KiB
C++
//===--- COWArrayOpt.cpp - Optimize Copy-On-Write Array Checks ------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "cowarray-opts"
|
|
#include "swift/SILOptimizer/PassManager/Passes.h"
|
|
#include "swift/SIL/CFG.h"
|
|
#include "swift/SIL/Projection.h"
|
|
#include "swift/SIL/SILArgument.h"
|
|
#include "swift/SIL/SILBuilder.h"
|
|
#include "swift/SIL/SILCloner.h"
|
|
#include "swift/SIL/SILInstruction.h"
|
|
#include "swift/SIL/DebugUtils.h"
|
|
#include "swift/SIL/InstructionUtils.h"
|
|
#include "swift/SILOptimizer/Analysis/ArraySemantic.h"
|
|
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/ARCAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/ColdBlockInfo.h"
|
|
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/LoopAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/RCIdentityAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/ValueTracking.h"
|
|
#include "swift/SILOptimizer/PassManager/Transforms.h"
|
|
#include "swift/SILOptimizer/Utils/CFG.h"
|
|
#include "swift/SILOptimizer/Utils/Local.h"
|
|
#include "swift/SILOptimizer/Utils/SILSSAUpdater.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
using namespace swift;
|
|
|
|
/// \return a sequence of integers representing the access path of this element
|
|
/// within a Struct/Ref/Tuple.
|
|
///
|
|
/// Do not form a path with an IndexAddrInst because we have no way to
|
|
/// distinguish between indexing and subelement access. The same index could
|
|
/// either refer to the next element (indexed) or a subelement.
|
|
static SILValue getAccessPath(SILValue V, SmallVectorImpl<unsigned>& Path) {
|
|
V = stripCasts(V);
|
|
if (auto *IA = dyn_cast<IndexAddrInst>(V)) {
|
|
// Don't include index_addr projections in the access path. We could if
|
|
// the index is constant. For simplicity we just ignore them.
|
|
V = stripCasts(IA->getBase());
|
|
}
|
|
ProjectionIndex PI(V);
|
|
if (!PI.isValid())
|
|
return V;
|
|
|
|
SILValue UnderlyingObject = getAccessPath(PI.Aggregate, Path);
|
|
Path.push_back(PI.Index);
|
|
return UnderlyingObject;
|
|
}
|
|
|
|
namespace {
|
|
/// Collect all uses of a struct given an aggregate value that contains the
|
|
/// struct and access path describing the projection of the aggregate
|
|
/// that accesses the struct.
|
|
///
|
|
/// AggregateAddressUsers records uses of the aggregate value's address. These
|
|
/// may indirectly access the struct's elements.
|
|
///
|
|
/// Projections over the aggregate that do not access the struct are ignored.
|
|
///
|
|
/// StructLoads records loads of the struct value.
|
|
/// StructAddressUsers records other uses of the struct address.
|
|
/// StructValueUsers records direct uses of the loaded struct.
|
|
///
|
|
/// Projections of the struct over its elements are all similarly recorded in
|
|
/// ElementAddressUsers, ElementLoads, and ElementValueUsers.
|
|
///
|
|
/// bb0(%arg : $*S)
|
|
/// apply %f(%arg) // <--- Aggregate Address User
|
|
/// %struct_addr = struct_element_addr %arg : $*S, #S.element
|
|
/// apply %g(%struct_addr) // <--- Struct Address User
|
|
/// %val = load %struct_addr // <--- Struct Load
|
|
/// apply %h(%val) // <--- Struct Value User
|
|
/// %elt_addr = struct_element_addr %struct_addr : $*A, #A.element
|
|
/// apply %i(%elt_addr) // <--- Element Address User
|
|
/// %elt = load %elt_addr // <--- Element Load
|
|
/// apply %j(%elt) // <--- Element Value User
|
|
class StructUseCollector {
|
|
public:
|
|
typedef SmallPtrSet<Operand*, 16> VisitedSet;
|
|
typedef SmallVector<SILInstruction*, 16> UserList;
|
|
|
|
/// Record the users of a value or an element within that value along with the
|
|
/// operand that directly uses the value. Multiple levels of struct_extract
|
|
/// may exist between the operand and the user instruction.
|
|
typedef SmallVector<std::pair<SILInstruction*, Operand*>, 16> UserOperList;
|
|
|
|
UserList AggregateAddressUsers;
|
|
UserList StructAddressUsers;
|
|
SmallVector<LoadInst*, 16> StructLoads;
|
|
UserList StructValueUsers;
|
|
UserOperList ElementAddressUsers;
|
|
SmallVector<std::pair<LoadInst*, Operand*>, 16> ElementLoads;
|
|
UserOperList ElementValueUsers;
|
|
VisitedSet Visited;
|
|
|
|
/// Collect all uses of the value at the given address.
|
|
void collectUses(ValueBase *V, ArrayRef<unsigned> AccessPath) {
|
|
// Save our old indent and increment.
|
|
// Collect all users of the address and loads.
|
|
collectAddressUses(V, AccessPath, nullptr);
|
|
|
|
// Collect all uses of the Struct value.
|
|
for (auto *DefInst : StructLoads) {
|
|
for (auto *DefUI : DefInst->getUses()) {
|
|
if (!Visited.insert(&*DefUI).second) {
|
|
continue;
|
|
}
|
|
|
|
StructValueUsers.push_back(DefUI->getUser());
|
|
}
|
|
}
|
|
|
|
// Collect all users of element values.
|
|
for (auto &Pair : ElementLoads) {
|
|
for (auto *DefUI : Pair.first->getUses()) {
|
|
if (!Visited.insert(&*DefUI).second) {
|
|
continue;
|
|
}
|
|
|
|
ElementValueUsers.push_back(
|
|
std::make_pair(DefUI->getUser(), Pair.second));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Returns true if there is a single address user of the value.
|
|
bool hasSingleAddressUse(SILInstruction *SingleAddressUser) {
|
|
if (!AggregateAddressUsers.empty())
|
|
return false;
|
|
if (!ElementAddressUsers.empty())
|
|
return false;
|
|
if (StructAddressUsers.size() != 1)
|
|
return false;
|
|
return StructAddressUsers[0] == SingleAddressUser;
|
|
}
|
|
|
|
protected:
|
|
|
|
static bool definesSingleObjectType(ValueBase *V) {
|
|
return V->getType().isObject();
|
|
}
|
|
|
|
/// If AccessPathSuffix is non-empty, then the value is the address of an
|
|
/// aggregate containing the Struct. If AccessPathSuffix is empty and
|
|
/// StructVal is invalid, then the value is the address of the Struct. If
|
|
/// StructVal is valid, the value is the address of an element within the
|
|
/// Struct.
|
|
void collectAddressUses(ValueBase *V, ArrayRef<unsigned> AccessPathSuffix,
|
|
Operand *StructVal) {
|
|
for (auto *UI : V->getUses()) {
|
|
// Keep the operand, not the instruction in the visited set. The same
|
|
// instruction may theoretically have different types of uses.
|
|
if (!Visited.insert(&*UI).second) {
|
|
continue;
|
|
}
|
|
|
|
SILInstruction *UseInst = UI->getUser();
|
|
|
|
if (UseInst->isDebugInstruction())
|
|
continue;
|
|
|
|
if (StructVal) {
|
|
// Found a use of an element.
|
|
assert(AccessPathSuffix.empty() && "should have accessed struct");
|
|
if (auto *LoadI = dyn_cast<LoadInst>(UseInst)) {
|
|
ElementLoads.push_back(std::make_pair(LoadI, StructVal));
|
|
continue;
|
|
}
|
|
|
|
if (auto proj = dyn_cast<StructElementAddrInst>(UseInst)) {
|
|
collectAddressUses(proj, AccessPathSuffix, StructVal);
|
|
continue;
|
|
}
|
|
|
|
ElementAddressUsers.push_back(std::make_pair(UseInst,StructVal));
|
|
continue;
|
|
}
|
|
|
|
if (isa<UncheckedRefCastInst>(UseInst) || isa<IndexAddrInst>(UseInst)) {
|
|
// Skip over unchecked_ref_cast and index_addr.
|
|
collectAddressUses(cast<SingleValueInstruction>(UseInst),
|
|
AccessPathSuffix, nullptr);
|
|
continue;
|
|
}
|
|
|
|
if (AccessPathSuffix.empty()) {
|
|
// Found a use of the struct at the given access path.
|
|
if (auto *LoadI = dyn_cast<LoadInst>(UseInst)) {
|
|
StructLoads.push_back(LoadI);
|
|
continue;
|
|
}
|
|
|
|
if (auto proj = dyn_cast<StructElementAddrInst>(UseInst)) {
|
|
collectAddressUses(proj, AccessPathSuffix, &*UI);
|
|
continue;
|
|
}
|
|
|
|
// Value users - this happens if we start with a value object in V.
|
|
if (definesSingleObjectType(V)) {
|
|
StructValueUsers.push_back(UseInst);
|
|
continue;
|
|
}
|
|
|
|
StructAddressUsers.push_back(UseInst);
|
|
continue;
|
|
}
|
|
|
|
// Check for uses of projections.
|
|
|
|
// These are all single-value instructions.
|
|
auto *ProjInst = dyn_cast<SingleValueInstruction>(UseInst);
|
|
if (!ProjInst) {
|
|
AggregateAddressUsers.push_back(UseInst);
|
|
continue;
|
|
}
|
|
ProjectionIndex PI(ProjInst);
|
|
// Do not form a path from an IndexAddrInst without otherwise
|
|
// distinguishing it from subelement addressing.
|
|
if (!PI.isValid()) {
|
|
// Found a use of an aggregate containing the given element.
|
|
AggregateAddressUsers.push_back(UseInst);
|
|
continue;
|
|
}
|
|
|
|
if (PI.Index != AccessPathSuffix[0]) {
|
|
// Ignore uses of disjoint elements.
|
|
continue;
|
|
}
|
|
|
|
// An alloc_box returns its address as the second value.
|
|
assert(PI.Aggregate && "Expected unary element addr inst.");
|
|
|
|
// Recursively check for users after stripping this component from the
|
|
// access path.
|
|
collectAddressUses(ProjInst, AccessPathSuffix.slice(1), nullptr);
|
|
}
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
// Do the two values \p A and \p B reference the same 'array' after potentially
|
|
// looking through a load. To identify a common array address this functions
|
|
// strips struct projections until it hits \p ArrayAddress.
|
|
bool areArraysEqual(RCIdentityFunctionInfo *RCIA, SILValue A, SILValue B,
|
|
SILValue ArrayAddress) {
|
|
A = RCIA->getRCIdentityRoot(A);
|
|
B = RCIA->getRCIdentityRoot(B);
|
|
if (A == B)
|
|
return true;
|
|
// We have stripped off struct_extracts. Remove the load to look at the
|
|
// address we are loading from.
|
|
if (auto *ALoad = dyn_cast<LoadInst>(A))
|
|
A = ALoad->getOperand();
|
|
if (auto *BLoad = dyn_cast<LoadInst>(B))
|
|
B = BLoad->getOperand();
|
|
// Strip off struct_extract_refs until we hit array address.
|
|
if (ArrayAddress) {
|
|
StructElementAddrInst *SEAI = nullptr;
|
|
while (A != ArrayAddress && (SEAI = dyn_cast<StructElementAddrInst>(A)))
|
|
A = SEAI->getOperand();
|
|
while (B != ArrayAddress && (SEAI = dyn_cast<StructElementAddrInst>(B)))
|
|
B = SEAI->getOperand();
|
|
}
|
|
return A == B;
|
|
}
|
|
|
|
/// \return true if the given instruction releases the given value.
|
|
static bool isRelease(SILInstruction *Inst, SILValue RetainedValue,
|
|
SILValue ArrayAddress, RCIdentityFunctionInfo *RCIA,
|
|
SmallPtrSetImpl<Operand *> &MatchedReleases) {
|
|
|
|
// Before we can match a release with a retain we need to check that we have
|
|
// not already matched the release with a retain we processed earlier.
|
|
// We don't want to match the release with both retains in the example below.
|
|
//
|
|
// retain %a <--|
|
|
// retain %a | Match. <-| Don't match.
|
|
// release %a <--| <-|
|
|
//
|
|
if (auto *R = dyn_cast<ReleaseValueInst>(Inst))
|
|
if (!MatchedReleases.count(&R->getOperandRef()))
|
|
if (areArraysEqual(RCIA, Inst->getOperand(0), RetainedValue,
|
|
ArrayAddress)) {
|
|
LLVM_DEBUG(llvm::dbgs() << " matching with release " << *Inst);
|
|
MatchedReleases.insert(&R->getOperandRef());
|
|
return true;
|
|
}
|
|
|
|
if (auto *R = dyn_cast<StrongReleaseInst>(Inst))
|
|
if (!MatchedReleases.count(&R->getOperandRef()))
|
|
if (areArraysEqual(RCIA, Inst->getOperand(0), RetainedValue,
|
|
ArrayAddress)) {
|
|
LLVM_DEBUG(llvm::dbgs() << " matching with release " << *Inst);
|
|
MatchedReleases.insert(&R->getOperandRef());
|
|
return true;
|
|
}
|
|
|
|
if (auto *AI = dyn_cast<ApplyInst>(Inst)) {
|
|
if (auto *F = AI->getReferencedFunction()) {
|
|
auto Params = F->getLoweredFunctionType()->getParameters();
|
|
auto Args = AI->getArguments();
|
|
for (unsigned ArgIdx = 0, ArgEnd = Params.size(); ArgIdx != ArgEnd;
|
|
++ArgIdx) {
|
|
if (MatchedReleases.count(&AI->getArgumentRef(ArgIdx)))
|
|
continue;
|
|
if (!areArraysEqual(RCIA, Args[ArgIdx], RetainedValue, ArrayAddress))
|
|
continue;
|
|
ParameterConvention P = Params[ArgIdx].getConvention();
|
|
if (P == ParameterConvention::Direct_Owned) {
|
|
LLVM_DEBUG(llvm::dbgs() << " matching with release " << *Inst);
|
|
MatchedReleases.insert(&AI->getArgumentRef(ArgIdx));
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
LLVM_DEBUG(llvm::dbgs() << " not a matching release " << *Inst);
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Optimize Copy-On-Write array checks based on high-level semantics.
|
|
///
|
|
/// Performs an analysis on all Array users to ensure they do not interfere
|
|
/// with make_mutable hoisting. Ultimately, the only thing that can interfere
|
|
/// with make_mutable is a retain of the array. To ensure no retains occur
|
|
/// within the loop, it is necessary to check that the array does not escape on
|
|
/// any path reaching the loop, and that it is not directly retained within the
|
|
/// loop itself.
|
|
///
|
|
/// In some cases, a retain does exist within the loop, but is balanced by a
|
|
/// release or call to @owned. The analysis must determine whether any array
|
|
/// mutation can occur between the retain and release. To accomplish this it
|
|
/// relies on knowledge of all array operations within the loop. If the array
|
|
/// escapes in some way that cannot be tracked, the analysis must fail.
|
|
///
|
|
/// TODO: Handle this pattern:
|
|
/// retain(array)
|
|
/// call(array)
|
|
/// release(array)
|
|
/// Whenever the call is readonly, has balanced retain/release for the array,
|
|
/// and does not capture the array. Under these conditions, the call can neither
|
|
/// mutate the array nor save an alias for later mutation.
|
|
///
|
|
/// TODO: Completely eliminate make_mutable calls if all operations that the
|
|
/// guard are already guarded by either "init" or "mutate_unknown".
|
|
class COWArrayOpt {
|
|
typedef StructUseCollector::UserList UserList;
|
|
typedef StructUseCollector::UserOperList UserOperList;
|
|
|
|
RCIdentityFunctionInfo *RCIA;
|
|
SILFunction *Function;
|
|
SILLoop *Loop;
|
|
SILBasicBlock *Preheader;
|
|
DominanceInfo *DomTree;
|
|
bool HasChanged = false;
|
|
|
|
// Keep track of cold blocks.
|
|
ColdBlockInfo ColdBlocks;
|
|
|
|
// Cache of the analysis whether a loop is safe wrt. make_unique hoisting by
|
|
// looking at the operations (no uniquely identified objects).
|
|
std::pair<bool, bool> CachedSafeLoop;
|
|
|
|
// Set of all blocks that may reach the loop, not including loop blocks.
|
|
llvm::SmallPtrSet<SILBasicBlock*,32> ReachingBlocks;
|
|
|
|
/// Transient per-Array user set.
|
|
///
|
|
/// Track all known array users with the exception of struct_extract users
|
|
/// (checkSafeArrayElementUse prohibits struct_extract users from mutating the
|
|
/// array). During analysis of retains/releases within the loop body, the
|
|
/// users in this set are assumed to cover all possible mutating operations on
|
|
/// the array. If the array escaped through an unknown use, the analysis must
|
|
/// abort earlier.
|
|
SmallPtrSet<SILInstruction*, 8> ArrayUserSet;
|
|
|
|
/// Array loads which can be hoisted because a make_mutable of that array
|
|
/// was hoisted previously.
|
|
/// This is important to handle the two dimensional array case.
|
|
SmallPtrSet<LoadInst *, 4> HoistableLoads;
|
|
|
|
// When matching retains to releases we must not match the same release twice.
|
|
//
|
|
// For example we could have:
|
|
// retain %a // id %1
|
|
// retain %a // id %2
|
|
// release %a // id %3
|
|
// When we match %1 with %3, we can't match %3 again when we look for a
|
|
// matching release for %2.
|
|
// The set refers to operands instead of instructions because an apply could
|
|
// have several operands with release semantics.
|
|
SmallPtrSet<Operand*, 8> MatchedReleases;
|
|
|
|
// The address of the array passed to the current make_mutable we are
|
|
// analyzing.
|
|
SILValue CurrentArrayAddr;
|
|
public:
|
|
COWArrayOpt(RCIdentityFunctionInfo *RCIA, SILLoop *L,
|
|
DominanceAnalysis *DA)
|
|
: RCIA(RCIA), Function(L->getHeader()->getParent()), Loop(L),
|
|
Preheader(L->getLoopPreheader()), DomTree(DA->get(Function)),
|
|
ColdBlocks(DA), CachedSafeLoop(false, false) {}
|
|
|
|
bool run();
|
|
|
|
protected:
|
|
bool checkUniqueArrayContainer(SILValue ArrayContainer);
|
|
SmallPtrSetImpl<SILBasicBlock*> &getReachingBlocks();
|
|
bool isRetainReleasedBeforeMutate(SILInstruction *RetainInst,
|
|
bool IsUniquelyIdentifiedArray = true);
|
|
bool checkSafeArrayAddressUses(UserList &AddressUsers);
|
|
bool checkSafeArrayValueUses(UserList &ArrayValueUsers);
|
|
bool checkSafeArrayElementUse(SILInstruction *UseInst, SILValue ArrayVal);
|
|
bool checkSafeElementValueUses(UserOperList &ElementValueUsers);
|
|
bool hoistMakeMutable(ArraySemanticsCall MakeMutable);
|
|
void hoistAddressProjections(Operand &ArrayOp);
|
|
bool hasLoopOnlyDestructorSafeArrayOperations();
|
|
SILValue getArrayAddressBase(SILValue V);
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// \return true of the given container is known to be a unique copy of the
|
|
/// array with no aliases. Cases we check:
|
|
///
|
|
/// (1) An @inout argument.
|
|
///
|
|
/// (2) A local variable, which may be copied from a by-val argument,
|
|
/// initialized directly, or copied from a function return value. We don't
|
|
/// need to check how it is initialized here, because that will show up as a
|
|
/// store to the local's address. checkSafeArrayAddressUses will check that the
|
|
/// store is a simple initialization outside the loop.
|
|
bool COWArrayOpt::checkUniqueArrayContainer(SILValue ArrayContainer) {
|
|
if (auto *Arg = dyn_cast<SILArgument>(ArrayContainer)) {
|
|
// Check that the argument is passed as an inout type. This means there are
|
|
// no aliases accessible within this function scope.
|
|
auto Params = Function->getLoweredFunctionType()->getParameters();
|
|
ArrayRef<SILArgument *> FunctionArgs = Function->begin()->getArguments();
|
|
for (unsigned ArgIdx = 0, ArgEnd = Params.size();
|
|
ArgIdx != ArgEnd; ++ArgIdx) {
|
|
if (FunctionArgs[ArgIdx] != Arg)
|
|
continue;
|
|
|
|
if (!Params[ArgIdx].isIndirectInOut()) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< " Skipping Array: Not an inout argument!\n");
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
else if (isa<AllocStackInst>(ArrayContainer))
|
|
return true;
|
|
|
|
if (auto *LI = dyn_cast<LoadInst>(ArrayContainer)) {
|
|
// A load of another array, which follows a make_mutable, also guarantees
|
|
// a unique container. This is the case if the current array is an element
|
|
// of the outer array in nested arrays.
|
|
if (HoistableLoads.count(LI) != 0)
|
|
return true;
|
|
}
|
|
|
|
// TODO: we should also take advantage of access markers to identify
|
|
// unique arrays.
|
|
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< " Skipping Array: Not an argument or local variable!\n");
|
|
return false;
|
|
}
|
|
|
|
/// Lazily compute blocks that may reach the loop.
|
|
SmallPtrSetImpl<SILBasicBlock*> &COWArrayOpt::getReachingBlocks() {
|
|
if (ReachingBlocks.empty()) {
|
|
SmallVector<SILBasicBlock*, 8> Worklist;
|
|
ReachingBlocks.insert(Preheader);
|
|
Worklist.push_back(Preheader);
|
|
while (!Worklist.empty()) {
|
|
SILBasicBlock *BB = Worklist.pop_back_val();
|
|
for (auto PI = BB->pred_begin(), PE = BB->pred_end(); PI != PE; ++PI) {
|
|
if (ReachingBlocks.insert(*PI).second)
|
|
Worklist.push_back(*PI);
|
|
}
|
|
}
|
|
}
|
|
return ReachingBlocks;
|
|
}
|
|
|
|
|
|
/// \return true if the instruction is a call to a non-mutating array semantic
|
|
/// function.
|
|
static bool isNonMutatingArraySemanticCall(SILInstruction *Inst) {
|
|
ArraySemanticsCall Call(Inst);
|
|
if (!Call)
|
|
return false;
|
|
|
|
switch (Call.getKind()) {
|
|
case ArrayCallKind::kNone:
|
|
case ArrayCallKind::kArrayPropsIsNativeTypeChecked:
|
|
case ArrayCallKind::kCheckSubscript:
|
|
case ArrayCallKind::kCheckIndex:
|
|
case ArrayCallKind::kGetCount:
|
|
case ArrayCallKind::kGetCapacity:
|
|
case ArrayCallKind::kGetElement:
|
|
case ArrayCallKind::kGetElementAddress:
|
|
return true;
|
|
case ArrayCallKind::kMakeMutable:
|
|
case ArrayCallKind::kMutateUnknown:
|
|
case ArrayCallKind::kReserveCapacityForAppend:
|
|
case ArrayCallKind::kWithUnsafeMutableBufferPointer:
|
|
case ArrayCallKind::kArrayInit:
|
|
case ArrayCallKind::kArrayUninitialized:
|
|
case ArrayCallKind::kAppendContentsOf:
|
|
case ArrayCallKind::kAppendElement:
|
|
return false;
|
|
}
|
|
|
|
llvm_unreachable("Unhandled ArrayCallKind in switch.");
|
|
}
|
|
|
|
/// \return true if the given retain instruction is followed by a release on the
|
|
/// same object prior to any potential mutating operation.
|
|
bool COWArrayOpt::isRetainReleasedBeforeMutate(SILInstruction *RetainInst,
|
|
bool IsUniquelyIdentifiedArray) {
|
|
// If a retain is found outside the loop ignore it. Otherwise, it must
|
|
// have a matching @owned call.
|
|
if (!Loop->contains(RetainInst))
|
|
return true;
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " Looking at retain " << *RetainInst);
|
|
|
|
// Walk forward looking for a release of ArrayLoad or element of
|
|
// ArrayUserSet. Note that ArrayUserSet does not included uses of elements
|
|
// within the Array. Consequently, checkSafeArrayElementUse must prove that
|
|
// no uses of the Array value, or projections of it can lead to mutation
|
|
// (element uses may only be retained/released).
|
|
for (auto II = std::next(SILBasicBlock::iterator(RetainInst)),
|
|
IE = RetainInst->getParent()->end(); II != IE; ++II) {
|
|
if (isRelease(&*II, RetainInst->getOperand(0), CurrentArrayAddr, RCIA,
|
|
MatchedReleases))
|
|
return true;
|
|
|
|
if (isa<RetainValueInst>(II) || isa<StrongRetainInst>(II))
|
|
continue;
|
|
|
|
// A side effect free instruction cannot mutate the array.
|
|
if (!II->mayHaveSideEffects())
|
|
continue;
|
|
|
|
// Non mutating array calls are safe.
|
|
if (isNonMutatingArraySemanticCall(&*II))
|
|
continue;
|
|
|
|
if (IsUniquelyIdentifiedArray) {
|
|
// It is okay for an identified loop to have releases in between a retain
|
|
// and a release. We can end up here if we have two retains in a row and
|
|
// then a release. The second retain cannot be matched with the release
|
|
// but must be matched by a follow up instruction.
|
|
// retain %ptr
|
|
// retain %ptr
|
|
// release %ptr
|
|
// array_operation(..., @owned %ptr)
|
|
//
|
|
// This is not the case for a potentially aliased array because a release
|
|
// can cause a destructor to run. The destructor in turn can cause
|
|
// arbitrary side effects.
|
|
if (isa<ReleaseValueInst>(II) || isa<StrongReleaseInst>(II))
|
|
continue;
|
|
|
|
if (ArrayUserSet.count(&*II)) // May be an array mutation.
|
|
break;
|
|
} else {
|
|
// Not safe.
|
|
break;
|
|
}
|
|
}
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: retained in loop!\n"
|
|
<< " " << *RetainInst);
|
|
return false;
|
|
}
|
|
|
|
/// \return true if all given users of an array address are safe to hoist
|
|
/// make_mutable across.
|
|
///
|
|
/// General calls are unsafe because they may copy the array struct which in
|
|
/// turn bumps the reference count of the array storage.
|
|
///
|
|
/// The same logic currently applies to both uses of the array struct itself and
|
|
/// uses of an aggregate containing the array.
|
|
///
|
|
/// This does not apply to addresses of elements within the array. e.g. it is
|
|
/// not safe to store to an element in the array because we may be storing an
|
|
/// alias to the array storage.
|
|
bool COWArrayOpt::checkSafeArrayAddressUses(UserList &AddressUsers) {
|
|
|
|
for (auto *UseInst : AddressUsers) {
|
|
|
|
if (auto *AI = dyn_cast<ApplyInst>(UseInst)) {
|
|
if (ArraySemanticsCall(AI))
|
|
continue;
|
|
|
|
// Check of this escape can reach the current loop.
|
|
if (!Loop->contains(UseInst->getParent()) &&
|
|
!getReachingBlocks().count(UseInst->getParent())) {
|
|
continue;
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: may escape "
|
|
"through call!\n"
|
|
<< " " << *UseInst);
|
|
return false;
|
|
}
|
|
|
|
if (auto *StInst = dyn_cast<StoreInst>(UseInst)) {
|
|
// Allow a local array to be initialized outside the loop via a by-value
|
|
// argument or return value. The array value may be returned by its
|
|
// initializer or some other factory function.
|
|
if (Loop->contains(StInst->getParent())) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: store inside loop!\n"
|
|
<< " " << *StInst);
|
|
return false;
|
|
}
|
|
|
|
SILValue InitArray = StInst->getSrc();
|
|
if (isa<SILArgument>(InitArray) || isa<ApplyInst>(InitArray))
|
|
continue;
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: may escape "
|
|
"through store!\n"
|
|
<< " " << *UseInst);
|
|
return false;
|
|
}
|
|
|
|
if (isa<DeallocStackInst>(UseInst)) {
|
|
// Handle destruction of a local array.
|
|
continue;
|
|
}
|
|
|
|
if (isa<MarkDependenceInst>(UseInst)) {
|
|
continue;
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: unknown Array use!\n"
|
|
<< " " << *UseInst);
|
|
// Found an unsafe or unknown user. The Array may escape here.
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Returns true if this instruction is a safe array use if all of its users are
|
|
/// also safe array users.
|
|
static SILValue isTransitiveSafeUser(SILInstruction *I) {
|
|
switch (I->getKind()) {
|
|
case SILInstructionKind::StructExtractInst:
|
|
case SILInstructionKind::TupleExtractInst:
|
|
case SILInstructionKind::UncheckedEnumDataInst:
|
|
case SILInstructionKind::StructInst:
|
|
case SILInstructionKind::TupleInst:
|
|
case SILInstructionKind::EnumInst:
|
|
case SILInstructionKind::UncheckedRefCastInst:
|
|
case SILInstructionKind::UncheckedBitwiseCastInst:
|
|
return cast<SingleValueInstruction>(I);
|
|
default:
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
/// Check that the use of an Array value, the value of an aggregate containing
|
|
/// an array, or the value of an element within the array, is safe w.r.t
|
|
/// make_mutable hoisting. Retains are safe as long as they are not inside the
|
|
/// Loop.
|
|
bool COWArrayOpt::checkSafeArrayValueUses(UserList &ArrayValueUsers) {
|
|
for (auto *UseInst : ArrayValueUsers) {
|
|
if (auto *AI = dyn_cast<ApplyInst>(UseInst)) {
|
|
if (ArraySemanticsCall(AI))
|
|
continue;
|
|
|
|
// Found an unsafe or unknown user. The Array may escape here.
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: unsafe call!\n"
|
|
<< " " << *UseInst);
|
|
return false;
|
|
}
|
|
|
|
/// Is this a unary transitive safe user instruction. This means that the
|
|
/// instruction is safe only if all of its users are safe. Check this
|
|
/// recursively.
|
|
if (auto inst = isTransitiveSafeUser(UseInst)) {
|
|
if (std::all_of(inst->use_begin(), inst->use_end(),
|
|
[this](Operand *Op) -> bool {
|
|
return checkSafeArrayElementUse(Op->getUser(),
|
|
Op->get());
|
|
}))
|
|
continue;
|
|
return false;
|
|
}
|
|
|
|
if (isa<RetainValueInst>(UseInst)) {
|
|
if (isRetainReleasedBeforeMutate(UseInst))
|
|
continue;
|
|
// Found an unsafe or unknown user. The Array may escape here.
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: found unmatched retain "
|
|
"value!\n"
|
|
<< " " << *UseInst);
|
|
return false;
|
|
}
|
|
|
|
if (isa<ReleaseValueInst>(UseInst)) {
|
|
// Releases are always safe. This case handles the release of an array
|
|
// buffer that is loaded from a local array struct.
|
|
continue;
|
|
}
|
|
|
|
if (isa<MarkDependenceInst>(UseInst))
|
|
continue;
|
|
|
|
if (UseInst->isDebugInstruction())
|
|
continue;
|
|
|
|
// Found an unsafe or unknown user. The Array may escape here.
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: unsafe Array value use!\n"
|
|
<< " " << *UseInst);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Given an array value, recursively check that uses of elements within the
|
|
/// array are safe.
|
|
///
|
|
/// Consider any potentially mutating operation unsafe. Mutation would not
|
|
/// prevent make_mutable hoisting, but it would interfere with
|
|
/// isRetainReleasedBeforeMutate. Since struct_extract users are not visited by
|
|
/// StructUseCollector, they are never added to ArrayUserSet. Thus we check here
|
|
/// that no mutating struct_extract users exist.
|
|
///
|
|
/// After the lower aggregates pass, SIL contains chains of struct_extract and
|
|
/// retain_value instructions. e.g.
|
|
/// %a = load %0 : $*Array<Int>
|
|
/// %b = struct_extract %a : $Array<Int>, #Array._buffer
|
|
/// %s = struct_extract %b : $_ArrayBuffer<Int>, #_ArrayBuffer.storage
|
|
/// retain_value %s : $Optional<Builtin.NativeObject>
|
|
///
|
|
/// SILCombine typically simplifies this by bypassing the
|
|
/// struct_extract. However, for completeness this analysis has the ability to
|
|
/// follow struct_extract users.
|
|
///
|
|
/// Since this does not recurse through multi-operand instructions, no visited
|
|
/// set is necessary.
|
|
bool COWArrayOpt::checkSafeArrayElementUse(SILInstruction *UseInst,
|
|
SILValue ArrayVal) {
|
|
if ((isa<RetainValueInst>(UseInst) || isa<StrongRetainInst>(UseInst)) &&
|
|
isRetainReleasedBeforeMutate(UseInst))
|
|
return true;
|
|
|
|
if (isa<ReleaseValueInst>(UseInst) || isa<StrongReleaseInst>(UseInst))
|
|
// Releases are always safe. This case handles the release of an array
|
|
// buffer that is loaded from a local array struct.
|
|
return true;
|
|
|
|
if (isa<RefTailAddrInst>(UseInst)) {
|
|
return true;
|
|
}
|
|
|
|
// Look for a safe mark_dependence instruction use.
|
|
//
|
|
// This use looks something like:
|
|
//
|
|
// %57 = load %56 : $*Builtin.BridgeObject from Array<Int>
|
|
// %58 = unchecked_ref_cast %57 : $Builtin.BridgeObject to
|
|
// $_ContiguousArray
|
|
// %59 = unchecked_ref_cast %58 : $__ContiguousArrayStorageBase to
|
|
// $Builtin.NativeObject
|
|
// %60 = struct_extract %53 : $UnsafeMutablePointer<Int>,
|
|
// #UnsafeMutablePointer
|
|
// %61 = pointer_to_address %60 : $Builtin.RawPointer to strict $*Int
|
|
// %62 = mark_dependence %61 : $*Int on %59 : $Builtin.NativeObject
|
|
//
|
|
// The struct_extract, unchecked_ref_cast is handled below in the
|
|
// "Transitive SafeArrayElementUse" code.
|
|
if (isa<MarkDependenceInst>(UseInst))
|
|
return true;
|
|
|
|
if (UseInst->isDebugInstruction())
|
|
return true;
|
|
|
|
// If this is an instruction which is a safe array element use if and only if
|
|
// all of its users are safe array element uses, recursively check its uses
|
|
// and return false if any of them are not transitive escape array element
|
|
// uses.
|
|
if (auto result = isTransitiveSafeUser(UseInst)) {
|
|
return std::all_of(result->use_begin(), result->use_end(),
|
|
[this, &ArrayVal](Operand *UI) -> bool {
|
|
return checkSafeArrayElementUse(UI->getUser(),
|
|
ArrayVal);
|
|
});
|
|
}
|
|
|
|
// Found an unsafe or unknown user. The Array may escape here.
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: unknown Element use!\n"
|
|
<< *UseInst);
|
|
return false;
|
|
}
|
|
|
|
/// Check that the use of an Array element is safe w.r.t. make_mutable hoisting.
|
|
///
|
|
/// This logic should be similar to checkSafeArrayElementUse
|
|
bool COWArrayOpt::checkSafeElementValueUses(UserOperList &ElementValueUsers) {
|
|
for (auto &Pair : ElementValueUsers) {
|
|
SILInstruction *UseInst = Pair.first;
|
|
Operand *ArrayValOper = Pair.second;
|
|
if (!checkSafeArrayElementUse(UseInst, ArrayValOper->get()))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Check if a loop has only 'safe' array operations such that we can hoist the
|
|
/// uniqueness check even without having an 'identified' object.
|
|
///
|
|
/// 'Safe' array operations are:
|
|
/// * all array semantic functions
|
|
/// * stores to array elements
|
|
/// * any instruction that does not have side effects.
|
|
/// * any retain must be matched by a release before we hit a make_unique.
|
|
///
|
|
/// Note, that a release in this modus (we don't have a uniquely identified
|
|
/// object) is not safe because the destructor of what we are releasing might
|
|
/// be unsafe (creating a reference).
|
|
///
|
|
bool COWArrayOpt::hasLoopOnlyDestructorSafeArrayOperations() {
|
|
if (CachedSafeLoop.first)
|
|
return CachedSafeLoop.second;
|
|
|
|
assert(!CachedSafeLoop.second &&
|
|
"We only move to a true state below");
|
|
|
|
// We will compute the state of this loop now.
|
|
CachedSafeLoop.first = true;
|
|
|
|
// We need to cleanup the MatchedRelease on return.
|
|
auto ReturnWithCleanup = [&] (bool LoopHasSafeOperations) {
|
|
MatchedReleases.clear();
|
|
return LoopHasSafeOperations;
|
|
};
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " checking whether loop only has safe array "
|
|
"operations ...\n");
|
|
CanType SameTy;
|
|
for (auto *BB : Loop->getBlocks()) {
|
|
for (auto &It : *BB) {
|
|
auto *Inst = &It;
|
|
LLVM_DEBUG(llvm::dbgs() << " visiting: " << *Inst);
|
|
|
|
// Semantic calls are safe.
|
|
ArraySemanticsCall Sem(Inst);
|
|
if (Sem) {
|
|
auto Kind = Sem.getKind();
|
|
// Safe because they create new arrays.
|
|
if (Kind == ArrayCallKind::kArrayInit ||
|
|
Kind == ArrayCallKind::kArrayUninitialized)
|
|
continue;
|
|
// All array types must be the same. This is a stronger guaranteed than
|
|
// we actually need. The requirement is that we can't create another
|
|
// reference to the array by performing an array operation: for example,
|
|
// storing or appending one array into a two-dimensional array.
|
|
// Checking
|
|
// that all types are the same make guarantees that this cannot happen.
|
|
if (SameTy.isNull()) {
|
|
SameTy = Sem.getSelf()->getType().getASTType();
|
|
continue;
|
|
}
|
|
|
|
if (Sem.getSelf()->getType().getASTType() != SameTy) {
|
|
LLVM_DEBUG(llvm::dbgs() << " (NO) mismatching array types\n");
|
|
return ReturnWithCleanup(false);
|
|
}
|
|
|
|
// Safe array semantics operation.
|
|
continue;
|
|
}
|
|
|
|
// Stores to array elements.
|
|
if (auto *SI = dyn_cast<StoreInst>(Inst)) {
|
|
if (isAddressOfArrayElement(SI->getDest()))
|
|
continue;
|
|
LLVM_DEBUG(llvm::dbgs() << " (NO) unknown store " << *SI);
|
|
return ReturnWithCleanup(false);
|
|
}
|
|
|
|
// Instructions without side effects are safe.
|
|
if (!Inst->mayHaveSideEffects())
|
|
continue;
|
|
if (isa<CondFailInst>(Inst))
|
|
continue;
|
|
if (isa<AllocationInst>(Inst) || isa<DeallocStackInst>(Inst))
|
|
continue;
|
|
|
|
if (isa<RetainValueInst>(Inst) || isa<StrongRetainInst>(Inst))
|
|
if (isRetainReleasedBeforeMutate(Inst, false))
|
|
continue;
|
|
|
|
// If the instruction is a matched release we can ignore it.
|
|
if (auto SRI = dyn_cast<StrongReleaseInst>(Inst))
|
|
if (MatchedReleases.count(&SRI->getOperandRef()))
|
|
continue;
|
|
if (auto RVI = dyn_cast<ReleaseValueInst>(Inst))
|
|
if (MatchedReleases.count(&RVI->getOperandRef()))
|
|
continue;
|
|
|
|
// Ignore fix_lifetime. It cannot increment ref counts.
|
|
if (isa<FixLifetimeInst>(Inst))
|
|
continue;
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " (NO) unknown operation " << *Inst);
|
|
return ReturnWithCleanup(false);
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " (YES)\n");
|
|
CachedSafeLoop.second = true;
|
|
return ReturnWithCleanup(true);
|
|
}
|
|
|
|
/// Return the underlying Array address after stripping off all address
|
|
/// projections. Returns an invalid SILValue if the array base does not dominate
|
|
/// the loop.
|
|
SILValue COWArrayOpt::getArrayAddressBase(SILValue V) {
|
|
while (true) {
|
|
V = stripSinglePredecessorArgs(V);
|
|
if (auto *RefCast = dyn_cast<UncheckedRefCastInst>(V)) {
|
|
V = RefCast->getOperand();
|
|
continue;
|
|
}
|
|
if (auto *SE = dyn_cast<StructExtractInst>(V)) {
|
|
V = SE->getOperand();
|
|
continue;
|
|
}
|
|
if (auto *IA = dyn_cast<IndexAddrInst>(V)) {
|
|
// index_addr is the only projection which has a second operand: the index.
|
|
// Check if the index is loop invariant.
|
|
SILBasicBlock *IndexBlock = IA->getIndex()->getParentBlock();
|
|
if (IndexBlock && !DomTree->dominates(IndexBlock, Preheader))
|
|
return SILValue();
|
|
V = IA->getBase();
|
|
continue;
|
|
}
|
|
if (!Projection::isAddressProjection(V))
|
|
break;
|
|
auto *Inst = cast<SingleValueInstruction>(V);
|
|
if (Inst->getNumOperands() > 1)
|
|
break;
|
|
V = Inst->getOperand(0);
|
|
}
|
|
if (auto *LI = dyn_cast<LoadInst>(V)) {
|
|
if (HoistableLoads.count(LI) != 0)
|
|
return V;
|
|
}
|
|
SILBasicBlock *ArrayAddrBaseBB = V->getParentBlock();
|
|
if (ArrayAddrBaseBB && !DomTree->dominates(ArrayAddrBaseBB, Preheader))
|
|
return SILValue();
|
|
|
|
return V;
|
|
}
|
|
|
|
/// Hoist the address projection rooted in \p Op to \p InsertBefore.
|
|
/// Requires the projected value to dominate the insertion point.
|
|
///
|
|
/// Will look through single basic block predecessor arguments.
|
|
void COWArrayOpt::hoistAddressProjections(Operand &ArrayOp) {
|
|
SILValue V = ArrayOp.get();
|
|
SILInstruction *Prev = nullptr;
|
|
SILInstruction *InsertPt = Preheader->getTerminator();
|
|
while (true) {
|
|
SILValue Incoming = stripSinglePredecessorArgs(V);
|
|
|
|
// Forward the incoming arg from a single predecessor.
|
|
if (V != Incoming) {
|
|
if (V == ArrayOp.get()) {
|
|
// If we are the operand itself set the operand to the incoming
|
|
// argument.
|
|
ArrayOp.set(Incoming);
|
|
V = Incoming;
|
|
} else {
|
|
// Otherwise, set the previous projections operand to the incoming
|
|
// argument.
|
|
assert(Prev && "Must have seen a projection");
|
|
Prev->setOperand(0, Incoming);
|
|
V = Incoming;
|
|
}
|
|
}
|
|
|
|
switch (V->getKind()) {
|
|
case ValueKind::LoadInst:
|
|
case ValueKind::StructElementAddrInst:
|
|
case ValueKind::TupleElementAddrInst:
|
|
case ValueKind::RefElementAddrInst:
|
|
case ValueKind::RefTailAddrInst:
|
|
case ValueKind::UncheckedRefCastInst:
|
|
case ValueKind::StructExtractInst:
|
|
case ValueKind::IndexAddrInst:
|
|
case ValueKind::UncheckedTakeEnumDataAddrInst: {
|
|
auto *Inst = cast<SingleValueInstruction>(V);
|
|
// We are done once the current projection dominates the insert point.
|
|
if (DomTree->dominates(Inst->getParent(), Preheader))
|
|
return;
|
|
|
|
assert(!isa<LoadInst>(V) || HoistableLoads.count(cast<LoadInst>(V)) != 0);
|
|
|
|
// Move the current projection and memorize it for the next iteration.
|
|
Prev = Inst;
|
|
Inst->moveBefore(InsertPt);
|
|
InsertPt = Inst;
|
|
V = Inst->getOperand(0);
|
|
continue;
|
|
}
|
|
default:
|
|
assert(DomTree->dominates(V->getParentBlock(), Preheader) &&
|
|
"The projected value must dominate the insertion point");
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Check if this call to "make_mutable" is hoistable, and move it, or delete it
|
|
/// if it's already hoisted.
|
|
bool COWArrayOpt::hoistMakeMutable(ArraySemanticsCall MakeMutable) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Checking mutable array: " <<CurrentArrayAddr);
|
|
|
|
// We can hoist address projections (even if they are only conditionally
|
|
// executed).
|
|
SILValue ArrayAddrBase = getArrayAddressBase(CurrentArrayAddr);
|
|
if (!ArrayAddrBase) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: does not dominate loop!\n");
|
|
return false;
|
|
}
|
|
|
|
SmallVector<unsigned, 4> AccessPath;
|
|
SILValue ArrayContainer = getAccessPath(CurrentArrayAddr, AccessPath);
|
|
bool arrayContainerIsUnique = checkUniqueArrayContainer(ArrayContainer);
|
|
|
|
StructUseCollector StructUses;
|
|
|
|
// Check whether we can hoist make_mutable based on the operations that are
|
|
// in the loop.
|
|
if (hasLoopOnlyDestructorSafeArrayOperations()) {
|
|
// Done. We can hoist the make_mutable.
|
|
// We still need the array uses later to check if we can add loads to
|
|
// HoistableLoads.
|
|
StructUses.collectUses(ArrayContainer, AccessPath);
|
|
} else {
|
|
// There are some unsafe operations in the loop. If the array is uniquely
|
|
// identifyable and not escaping, then we are good if all the array uses
|
|
// are safe.
|
|
if (!arrayContainerIsUnique) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: is not unique!\n");
|
|
return false;
|
|
}
|
|
|
|
// Check that the Array is not retained with this loop and it's address does
|
|
// not escape within this function.
|
|
StructUses.collectUses(ArrayContainer, AccessPath);
|
|
for (auto *Oper : StructUses.Visited)
|
|
ArrayUserSet.insert(Oper->getUser());
|
|
|
|
if (!checkSafeArrayAddressUses(StructUses.AggregateAddressUsers) ||
|
|
!checkSafeArrayAddressUses(StructUses.StructAddressUsers) ||
|
|
!checkSafeArrayValueUses(StructUses.StructValueUsers) ||
|
|
!checkSafeElementValueUses(StructUses.ElementValueUsers) ||
|
|
!StructUses.ElementAddressUsers.empty())
|
|
return false;
|
|
}
|
|
|
|
// Hoist the make_mutable.
|
|
LLVM_DEBUG(llvm::dbgs() << " Hoisting make_mutable: " << *MakeMutable);
|
|
|
|
hoistAddressProjections(MakeMutable.getSelfOperand());
|
|
|
|
assert(MakeMutable.canHoist(Preheader->getTerminator(), DomTree) &&
|
|
"Should be able to hoist make_mutable");
|
|
|
|
MakeMutable.hoist(Preheader->getTerminator(), DomTree);
|
|
|
|
// Register array loads. This is needed for hoisting make_mutable calls of
|
|
// inner arrays in the two-dimensional case.
|
|
if (arrayContainerIsUnique &&
|
|
StructUses.hasSingleAddressUse((ApplyInst *)MakeMutable)) {
|
|
for (auto use : MakeMutable.getSelf()->getUses()) {
|
|
if (auto *LI = dyn_cast<LoadInst>(use->getUser()))
|
|
HoistableLoads.insert(LI);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool COWArrayOpt::run() {
|
|
LLVM_DEBUG(llvm::dbgs() << " Array Opts in Loop " << *Loop);
|
|
|
|
Preheader = Loop->getLoopPreheader();
|
|
if (!Preheader) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Loop: No Preheader!\n");
|
|
return false;
|
|
}
|
|
|
|
// Map an array to a hoisted make_mutable call for the current loop. An array
|
|
// is only mapped to a call once the analysis has determined that no
|
|
// make_mutable calls are required within the loop body for that array.
|
|
llvm::SmallDenseMap<SILValue, ApplyInst*> ArrayMakeMutableMap;
|
|
|
|
for (auto *BB : Loop->getBlocks()) {
|
|
if (ColdBlocks.isCold(BB))
|
|
continue;
|
|
for (auto II = BB->begin(), IE = BB->end(); II != IE;) {
|
|
// Inst may be moved by hoistMakeMutable.
|
|
SILInstruction *Inst = &*II;
|
|
++II;
|
|
ArraySemanticsCall MakeMutableCall(Inst, "array.make_mutable");
|
|
if (!MakeMutableCall)
|
|
continue;
|
|
|
|
CurrentArrayAddr = MakeMutableCall.getSelf();
|
|
auto HoistedCallEntry = ArrayMakeMutableMap.find(CurrentArrayAddr);
|
|
if (HoistedCallEntry == ArrayMakeMutableMap.end()) {
|
|
if (!hoistMakeMutable(MakeMutableCall)) {
|
|
ArrayMakeMutableMap[CurrentArrayAddr] = nullptr;
|
|
continue;
|
|
}
|
|
|
|
ArrayMakeMutableMap[CurrentArrayAddr] = MakeMutableCall;
|
|
HasChanged = true;
|
|
continue;
|
|
}
|
|
|
|
if (!HoistedCallEntry->second)
|
|
continue;
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " Removing make_mutable call: "
|
|
<< *MakeMutableCall);
|
|
MakeMutableCall.removeCall();
|
|
HasChanged = true;
|
|
}
|
|
}
|
|
return HasChanged;
|
|
}
|
|
|
|
namespace {
|
|
|
|
class COWArrayOptPass : public SILFunctionTransform {
|
|
void run() override {
|
|
LLVM_DEBUG(llvm::dbgs() << "COW Array Opts in Func "
|
|
<< getFunction()->getName() << "\n");
|
|
|
|
auto *DA = PM->getAnalysis<DominanceAnalysis>();
|
|
auto *LA = PM->getAnalysis<SILLoopAnalysis>();
|
|
auto *RCIA =
|
|
PM->getAnalysis<RCIdentityAnalysis>()->get(getFunction());
|
|
SILLoopInfo *LI = LA->get(getFunction());
|
|
if (LI->empty()) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Function: No loops.\n");
|
|
return;
|
|
}
|
|
|
|
// Create a flat list of loops in loop-tree postorder (bottom-up).
|
|
llvm::SmallVector<SILLoop *, 16> Loops;
|
|
std::function<void (SILLoop*)> pushChildren = [&](SILLoop *L) {
|
|
for (auto *SubLoop : *L)
|
|
pushChildren(SubLoop);
|
|
Loops.push_back(L);
|
|
};
|
|
for (auto *L : *LI)
|
|
pushChildren(L);
|
|
|
|
bool HasChanged = false;
|
|
for (auto *L : Loops)
|
|
HasChanged |= COWArrayOpt(RCIA, L, DA).run();
|
|
|
|
if (HasChanged) {
|
|
invalidateAnalysis(SILAnalysis::InvalidationKind::CallsAndInstructions);
|
|
}
|
|
}
|
|
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
SILTransform *swift::createCOWArrayOpts() {
|
|
return new COWArrayOptPass();
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// This optimization specializes loops with calls to
|
|
/// "array.props.isNative/needsElementTypeCheck".
|
|
///
|
|
/// The "array.props.isNative/needsElementTypeCheck" predicate has the property
|
|
/// that if it is true/false respectively for the array struct it is true/false
|
|
/// respectively until somebody writes a new array struct over the memory
|
|
/// location. Less abstractly, a fast native swift array does not transition to
|
|
/// a slow array (be it a cocoa array, or be it an array that needs type
|
|
/// checking) except if we store a new array to the variable that holds it.
|
|
///
|
|
/// Using this property we can hoist the predicate above a region where no such
|
|
/// store can take place.
|
|
///
|
|
/// func f(a : A[AClass]) {
|
|
/// for i in 0..a.count {
|
|
/// let b = a.props.isNative()
|
|
/// .. += _getElement(i, b)
|
|
/// }
|
|
/// }
|
|
///
|
|
/// ==>
|
|
///
|
|
/// func f(a : A[AClass]) {
|
|
/// let b = a.props.isNative
|
|
/// if (b) {
|
|
/// for i in 0..a.count {
|
|
/// .. += _getElement(i, false)
|
|
/// }
|
|
/// } else {
|
|
/// for i in 0..a.count {
|
|
/// let a = a.props.isNative
|
|
/// .. += _getElement(i, a)
|
|
/// }
|
|
/// }
|
|
/// }
|
|
///
|
|
static llvm::cl::opt<bool> ShouldSpecializeArrayProps("sil-array-props",
|
|
llvm::cl::init(true));
|
|
|
|
/// Analysis whether it is safe to specialize this loop nest based on the
|
|
/// array.props function calls it contains. It is safe to hoist array.props
|
|
/// calls if the array does not escape such that the array container could be
|
|
/// overwritten in the hoisted region.
|
|
/// This analysis also checks if we can clone the instructions in the loop nest.
|
|
class ArrayPropertiesAnalysis {
|
|
using UserList = StructUseCollector::UserList;
|
|
using UserOperList = StructUseCollector::UserOperList;
|
|
|
|
SILFunction *Fun;
|
|
SILLoop *Loop;
|
|
SILBasicBlock *Preheader;
|
|
DominanceInfo *DomTree;
|
|
|
|
llvm::SmallSet<SILValue, 16> HoistableArray;
|
|
|
|
SmallPtrSet<SILBasicBlock *, 16> ReachingBlocks;
|
|
SmallPtrSet<SILBasicBlock *, 16> CachedExitingBlocks;
|
|
public:
|
|
ArrayPropertiesAnalysis(SILLoop *L, DominanceAnalysis *DA)
|
|
: Fun(L->getHeader()->getParent()), Loop(L), Preheader(nullptr),
|
|
DomTree(DA->get(Fun)) {}
|
|
|
|
bool run() {
|
|
Preheader = Loop->getLoopPreheader();
|
|
if (!Preheader) {
|
|
LLVM_DEBUG(llvm::dbgs() << "ArrayPropertiesAnalysis: "
|
|
"Missing preheader for "
|
|
<< *Loop);
|
|
return false;
|
|
}
|
|
|
|
// Check whether this is a 'array.props' instruction and whether we
|
|
// can hoist it. Heuristic: We only want to hoist array.props instructions
|
|
// if we can hoist all of them - only then can we get rid of all the
|
|
// control-flow if we specialize. Hoisting some but not others is not as
|
|
// beneficial. This heuristic also simplifies which regions we want to
|
|
// specialize on. We will specialize the outermost loopnest that has
|
|
// 'array.props' instructions in its preheader.
|
|
bool FoundHoistable = false;
|
|
for (auto *BB : Loop->getBlocks()) {
|
|
for (auto &Inst : *BB) {
|
|
|
|
// Can't clone alloc_stack instructions whose dealloc_stack is outside
|
|
// the loop.
|
|
if (!Loop->canDuplicate(&Inst))
|
|
return false;
|
|
|
|
ArraySemanticsCall ArrayPropsInst(&Inst, "array.props", true);
|
|
if (!ArrayPropsInst)
|
|
continue;
|
|
|
|
if (!canHoistArrayPropsInst(ArrayPropsInst))
|
|
return false;
|
|
FoundHoistable = true;
|
|
}
|
|
}
|
|
|
|
return FoundHoistable;
|
|
}
|
|
|
|
private:
|
|
|
|
/// Strip the struct load and the address projection to the location
|
|
/// holding the array struct.
|
|
SILValue stripArrayStructLoad(SILValue V) {
|
|
if (auto LI = dyn_cast<LoadInst>(V)) {
|
|
auto Val = LI->getOperand();
|
|
// We could have two arrays in a surrounding container so we can only
|
|
// strip off the 'array struct' project.
|
|
// struct Container {
|
|
// var a1 : [ClassA]
|
|
// var a2 : [ClassA]
|
|
// }
|
|
// 'a1' and 'a2' are different arrays.
|
|
if (auto SEAI = dyn_cast<StructElementAddrInst>(Val))
|
|
Val = SEAI->getOperand();
|
|
return Val;
|
|
}
|
|
return V;
|
|
}
|
|
|
|
SmallPtrSetImpl<SILBasicBlock *> &getReachingBlocks() {
|
|
if (ReachingBlocks.empty()) {
|
|
SmallVector<SILBasicBlock *, 8> Worklist;
|
|
ReachingBlocks.insert(Preheader);
|
|
Worklist.push_back(Preheader);
|
|
while (!Worklist.empty()) {
|
|
SILBasicBlock *BB = Worklist.pop_back_val();
|
|
for (auto PI = BB->pred_begin(), PE = BB->pred_end(); PI != PE; ++PI) {
|
|
if (ReachingBlocks.insert(*PI).second)
|
|
Worklist.push_back(*PI);
|
|
}
|
|
}
|
|
}
|
|
return ReachingBlocks;
|
|
}
|
|
|
|
/// Array address uses are safe if they don't store to the array struct. We
|
|
/// could for example store an NSArray array struct on top of the array. For
|
|
/// example, an opaque function that uses the array's address could store a
|
|
/// new array onto it.
|
|
bool checkSafeArrayAddressUses(UserList &AddressUsers) {
|
|
for (auto *UseInst : AddressUsers) {
|
|
|
|
if (UseInst->isDebugInstruction())
|
|
continue;
|
|
|
|
if (isa<DeallocStackInst>(UseInst)) {
|
|
// Handle destruction of a local array.
|
|
continue;
|
|
}
|
|
|
|
if (auto *AI = dyn_cast<ApplyInst>(UseInst)) {
|
|
if (ArraySemanticsCall(AI))
|
|
continue;
|
|
|
|
// Check if this escape can reach the current loop.
|
|
if (!Loop->contains(UseInst->getParent()) &&
|
|
!getReachingBlocks().count(UseInst->getParent())) {
|
|
continue;
|
|
}
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< " Skipping Array: may escape through call!\n"
|
|
<< " " << *UseInst);
|
|
return false;
|
|
}
|
|
|
|
if (auto *StInst = dyn_cast<StoreInst>(UseInst)) {
|
|
// Allow a local array to be initialized outside the loop via a by-value
|
|
// argument or return value. The array value may be returned by its
|
|
// initializer or some other factory function.
|
|
if (Loop->contains(StInst->getParent())) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: store inside loop!\n"
|
|
<< " " << *StInst);
|
|
return false;
|
|
}
|
|
SILValue InitArray = StInst->getSrc();
|
|
if (isa<SILArgument>(InitArray) || isa<ApplyInst>(InitArray))
|
|
continue;
|
|
|
|
return false;
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: unknown Array use!\n"
|
|
<< " " << *UseInst);
|
|
// Found an unsafe or unknown user. The Array may escape here.
|
|
return false;
|
|
}
|
|
|
|
// Otherwise, all of our users are sane. The array does not escape.
|
|
return true;
|
|
}
|
|
|
|
/// Value uses are generally safe. We can't change the state of an array
|
|
/// through a value use.
|
|
bool checkSafeArrayValueUses(UserList &ValueUsers) {
|
|
return true;
|
|
}
|
|
bool checkSafeElementValueUses(UserOperList &ElementValueUsers) {
|
|
return true;
|
|
}
|
|
|
|
// We have a safe container if the array container is passed as a function
|
|
// argument by-value or by inout reference. In either case there can't be an
|
|
// alias of the container. Alternatively, we can have a local variable. We
|
|
// will check in checkSafeArrayAddressUses that all initialization stores to
|
|
// this variable are safe (i.e the store dominates the loop etc).
|
|
bool isSafeArrayContainer(SILValue V) {
|
|
if (auto *Arg = dyn_cast<SILArgument>(V)) {
|
|
// Check that the argument is passed as an inout or by value type. This
|
|
// means there are no aliases accessible within this function scope.
|
|
auto Params = Fun->getLoweredFunctionType()->getParameters();
|
|
ArrayRef<SILArgument *> FunctionArgs = Fun->begin()->getArguments();
|
|
for (unsigned ArgIdx = 0, ArgEnd = Params.size(); ArgIdx != ArgEnd;
|
|
++ArgIdx) {
|
|
if (FunctionArgs[ArgIdx] != Arg)
|
|
continue;
|
|
|
|
if (!Params[ArgIdx].isIndirectInOut()
|
|
&& Params[ArgIdx].isFormalIndirect()) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: Not an inout or "
|
|
"by val argument!\n");
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
} else if (isa<AllocStackInst>(V))
|
|
return true;
|
|
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< " Skipping Array: Not a know array container type!\n");
|
|
|
|
return false;
|
|
}
|
|
|
|
SmallPtrSetImpl<SILBasicBlock *> &getLoopExitingBlocks() {
|
|
if (!CachedExitingBlocks.empty())
|
|
return CachedExitingBlocks;
|
|
SmallVector<SILBasicBlock *, 16> ExitingBlocks;
|
|
Loop->getExitingBlocks(ExitingBlocks);
|
|
CachedExitingBlocks.insert(ExitingBlocks.begin(), ExitingBlocks.end());
|
|
return CachedExitingBlocks;
|
|
}
|
|
|
|
bool isConditionallyExecuted(ArraySemanticsCall Call) {
|
|
auto CallBB = (*Call).getParent();
|
|
for (auto *ExitingBlk : getLoopExitingBlocks())
|
|
if (!DomTree->dominates(CallBB, ExitingBlk))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool isClassElementTypeArray(SILValue Arr) {
|
|
auto Ty = Arr->getType();
|
|
if (auto BGT = Ty.getAs<BoundGenericStructType>()) {
|
|
// Check the array element type parameter.
|
|
bool isClass = false;
|
|
for (auto EltTy : BGT->getGenericArgs()) {
|
|
if (!EltTy->hasReferenceSemantics())
|
|
return false;
|
|
isClass = true;
|
|
}
|
|
return isClass;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool canHoistArrayPropsInst(ArraySemanticsCall Call) {
|
|
// TODO: This is way conservative. If there is an unconditionally
|
|
// executed call to the same array we can still hoist it.
|
|
if (isConditionallyExecuted(Call))
|
|
return false;
|
|
|
|
SILValue Arr = Call.getSelf();
|
|
|
|
// We don't attempt to hoist non-class element type arrays.
|
|
if (!isClassElementTypeArray(Arr))
|
|
return false;
|
|
|
|
// We can strip the load that might even occur in the loop because we make
|
|
// sure that no unsafe store to the array's address takes place.
|
|
Arr = stripArrayStructLoad(Arr);
|
|
|
|
// Have we already seen this array and deemed it safe?
|
|
if (HoistableArray.count(Arr))
|
|
return true;
|
|
|
|
// Do we know how to hoist the arguments of this call.
|
|
if (!Call.canHoist(Preheader->getTerminator(), DomTree))
|
|
return false;
|
|
|
|
SmallVector<unsigned, 4> AccessPath;
|
|
SILValue ArrayContainer = getAccessPath(Arr, AccessPath);
|
|
|
|
if (!isSafeArrayContainer(ArrayContainer))
|
|
return false;
|
|
|
|
StructUseCollector StructUses;
|
|
StructUses.collectUses(ArrayContainer, AccessPath);
|
|
|
|
if (!checkSafeArrayAddressUses(StructUses.AggregateAddressUsers) ||
|
|
!checkSafeArrayAddressUses(StructUses.StructAddressUsers) ||
|
|
!checkSafeArrayValueUses(StructUses.StructValueUsers) ||
|
|
!checkSafeElementValueUses(StructUses.ElementValueUsers) ||
|
|
!StructUses.ElementAddressUsers.empty())
|
|
return false;
|
|
|
|
HoistableArray.insert(Arr);
|
|
return true;
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
namespace {
|
|
/// Clone a single exit multiple exit region starting at basic block and ending
|
|
/// in a set of basic blocks. Updates the dominator tree with the cloned blocks.
|
|
/// However, the client needs to update the dominator of the exit blocks.
|
|
///
|
|
/// FIXME: SILCloner is used to cloned CFG regions by multiple clients. All
|
|
/// functionality for generating valid SIL (including the DomTree) should be
|
|
/// handled by the common SILCloner.
|
|
class RegionCloner : public SILCloner<RegionCloner> {
|
|
DominanceInfo &DomTree;
|
|
SILBasicBlock *StartBB;
|
|
|
|
friend class SILInstructionVisitor<RegionCloner>;
|
|
friend class SILCloner<RegionCloner>;
|
|
|
|
public:
|
|
RegionCloner(SILBasicBlock *EntryBB, DominanceInfo &DT)
|
|
: SILCloner<RegionCloner>(*EntryBB->getParent()), DomTree(DT),
|
|
StartBB(EntryBB) {}
|
|
|
|
SILBasicBlock *cloneRegion(ArrayRef<SILBasicBlock *> exitBBs) {
|
|
assert (DomTree.getNode(StartBB) != nullptr && "Can't cloned dead code");
|
|
|
|
// We need to split any edge from a non cond_br basic block leading to a
|
|
// exit block. After cloning this edge will become critical if it came from
|
|
// inside the cloned region. The SSAUpdater can't handle critical non
|
|
// cond_br edges.
|
|
//
|
|
// FIXME: remove this in the next commit. The SILCloner will always do it.
|
|
for (auto *BB : exitBBs) {
|
|
SmallVector<SILBasicBlock *, 8> Preds(BB->getPredecessorBlocks());
|
|
for (auto *Pred : Preds)
|
|
if (!isa<CondBranchInst>(Pred->getTerminator()) &&
|
|
!isa<BranchInst>(Pred->getTerminator()))
|
|
splitEdgesFromTo(Pred, BB, &DomTree, nullptr);
|
|
}
|
|
|
|
cloneReachableBlocks(StartBB, exitBBs);
|
|
|
|
// Add dominator tree nodes for the new basic blocks.
|
|
fixDomTree();
|
|
|
|
// Update SSA form for values used outside of the copied region.
|
|
updateSSAForm();
|
|
return getOpBasicBlock(StartBB);
|
|
}
|
|
|
|
protected:
|
|
/// Clone the dominator tree from the original region to the cloned region.
|
|
void fixDomTree() {
|
|
for (auto *BB : originalPreorderBlocks()) {
|
|
auto *ClonedBB = getOpBasicBlock(BB);
|
|
auto *OrigDomBB = DomTree.getNode(BB)->getIDom()->getBlock();
|
|
if (BB == StartBB) {
|
|
// The cloned start node shares the same dominator as the original node.
|
|
auto *ClonedNode = DomTree.addNewBlock(ClonedBB, OrigDomBB);
|
|
(void)ClonedNode;
|
|
assert(ClonedNode);
|
|
continue;
|
|
}
|
|
// Otherwise, map the dominator structure using the mapped block.
|
|
DomTree.addNewBlock(ClonedBB, getOpBasicBlock(OrigDomBB));
|
|
}
|
|
}
|
|
|
|
SILValue getMappedValue(SILValue V) {
|
|
if (auto *BB = V->getParentBlock()) {
|
|
if (!DomTree.dominates(StartBB, BB)) {
|
|
// Must be a value that dominates the start basic block.
|
|
assert(DomTree.dominates(BB, StartBB) &&
|
|
"Must dominated the start of the cloned region");
|
|
return V;
|
|
}
|
|
}
|
|
return SILCloner<RegionCloner>::getMappedValue(V);
|
|
}
|
|
|
|
void postProcess(SILInstruction *Orig, SILInstruction *Cloned) {
|
|
SILCloner<RegionCloner>::postProcess(Orig, Cloned);
|
|
}
|
|
|
|
/// Update SSA form for values that are used outside the region.
|
|
void updateSSAForValue(SILBasicBlock *OrigBB, SILValue V,
|
|
SILSSAUpdater &SSAUp) {
|
|
// Collect outside uses.
|
|
SmallVector<UseWrapper, 16> UseList;
|
|
for (auto Use : V->getUses())
|
|
if (!isBlockCloned(Use->getUser()->getParent())) {
|
|
UseList.push_back(UseWrapper(Use));
|
|
}
|
|
if (UseList.empty())
|
|
return;
|
|
|
|
// Update SSA form.
|
|
SSAUp.Initialize(V->getType());
|
|
SSAUp.AddAvailableValue(OrigBB, V);
|
|
SILValue NewVal = getMappedValue(V);
|
|
SSAUp.AddAvailableValue(getOpBasicBlock(OrigBB), NewVal);
|
|
for (auto U : UseList) {
|
|
Operand *Use = U;
|
|
SSAUp.RewriteUse(*Use);
|
|
}
|
|
}
|
|
|
|
void updateSSAForm() {
|
|
SILSSAUpdater SSAUp(StartBB->getParent()->getModule());
|
|
for (auto *origBB : originalPreorderBlocks()) {
|
|
// Update outside used phi values.
|
|
for (auto *arg : origBB->getArguments())
|
|
updateSSAForValue(origBB, arg, SSAUp);
|
|
|
|
// Update outside used instruction values.
|
|
for (auto &inst : *origBB) {
|
|
for (auto result : inst.getResults())
|
|
updateSSAForValue(origBB, result, SSAUp);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
namespace {
|
|
/// This class transforms a hoistable loop nest into a speculatively specialized
|
|
/// loop based on array.props calls.
|
|
class ArrayPropertiesSpecializer {
|
|
DominanceInfo *DomTree;
|
|
SILLoopAnalysis *LoopAnalysis;
|
|
SILBasicBlock *HoistableLoopPreheader;
|
|
|
|
public:
|
|
ArrayPropertiesSpecializer(DominanceInfo *DT, SILLoopAnalysis *LA,
|
|
SILBasicBlock *Hoistable)
|
|
: DomTree(DT), LoopAnalysis(LA), HoistableLoopPreheader(Hoistable) {}
|
|
|
|
void run() {
|
|
specializeLoopNest();
|
|
}
|
|
|
|
SILLoop *getLoop() {
|
|
auto *LoopInfo = LoopAnalysis->get(HoistableLoopPreheader->getParent());
|
|
return LoopInfo->getLoopFor(
|
|
HoistableLoopPreheader->getSingleSuccessorBlock());
|
|
}
|
|
|
|
protected:
|
|
void specializeLoopNest();
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
static SILValue createStructExtract(SILBuilder &B, SILLocation Loc,
|
|
SILValue Opd, unsigned FieldNo) {
|
|
SILType Ty = Opd->getType();
|
|
auto SD = Ty.getStructOrBoundGenericStruct();
|
|
auto Properties = SD->getStoredProperties();
|
|
unsigned Counter = 0;
|
|
for (auto *D : Properties)
|
|
if (Counter++ == FieldNo)
|
|
return B.createStructExtract(Loc, Opd, D);
|
|
llvm_unreachable("Wrong field number");
|
|
}
|
|
|
|
static Identifier getBinaryFunction(StringRef Name, SILType IntSILTy,
|
|
ASTContext &C) {
|
|
auto IntTy = IntSILTy.castTo<BuiltinIntegerType>();
|
|
unsigned NumBits = IntTy->getWidth().getFixedWidth();
|
|
// Name is something like: add_Int64
|
|
std::string NameStr = Name;
|
|
NameStr += "_Int" + llvm::utostr(NumBits);
|
|
return C.getIdentifier(NameStr);
|
|
}
|
|
|
|
/// Create a binary and function.
|
|
static SILValue createAnd(SILBuilder &B, SILLocation Loc, SILValue Opd1,
|
|
SILValue Opd2) {
|
|
auto AndFn = getBinaryFunction("and", Opd1->getType(), B.getASTContext());
|
|
SILValue Args[] = {Opd1, Opd2};
|
|
return B.createBuiltin(Loc, AndFn, Opd1->getType(), {}, Args);
|
|
}
|
|
|
|
/// Create a check over all array.props calls that they have the 'fast native
|
|
/// swift' array value: isNative && !needsElementTypeCheck must be true.
|
|
static SILValue
|
|
createFastNativeArraysCheck(SmallVectorImpl<ArraySemanticsCall> &ArrayProps,
|
|
SILBuilder &B) {
|
|
assert(!ArrayProps.empty() && "Must have array.pros calls");
|
|
|
|
SILType IntBoolTy = SILType::getBuiltinIntegerType(1, B.getASTContext());
|
|
SILValue Result =
|
|
B.createIntegerLiteral((*ArrayProps[0]).getLoc(), IntBoolTy, 1);
|
|
|
|
for (auto Call : ArrayProps) {
|
|
auto Loc = (*Call).getLoc();
|
|
auto CallKind = Call.getKind();
|
|
if (CallKind == ArrayCallKind::kArrayPropsIsNativeTypeChecked) {
|
|
auto Val = createStructExtract(B, Loc, SILValue(Call), 0);
|
|
Result = createAnd(B, Loc, Result, Val);
|
|
}
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
/// Collect all array.props calls in the cloned basic blocks stored in the map,
|
|
/// asserting that we found at least one.
|
|
static void collectArrayPropsCalls(RegionCloner &Cloner,
|
|
SmallVectorImpl<SILBasicBlock *> &ExitBlocks,
|
|
SmallVectorImpl<ArraySemanticsCall> &Calls) {
|
|
for (auto *origBB : Cloner.originalPreorderBlocks()) {
|
|
auto clonedBB = Cloner.getOpBasicBlock(origBB);
|
|
for (auto &Inst : *clonedBB) {
|
|
ArraySemanticsCall ArrayProps(&Inst, "array.props", true);
|
|
if (!ArrayProps)
|
|
continue;
|
|
Calls.push_back(ArrayProps);
|
|
}
|
|
}
|
|
assert(!Calls.empty() && "Should have a least one array.props call");
|
|
}
|
|
|
|
/// Replace an array.props call by the 'fast swift array' value.
|
|
///
|
|
/// This is true for array.props.isNative and false for
|
|
/// array.props.needsElementTypeCheck.
|
|
static void replaceArrayPropsCall(SILBuilder &B, ArraySemanticsCall C) {
|
|
assert(C.getKind() == ArrayCallKind::kArrayPropsIsNativeTypeChecked);
|
|
ApplyInst *AI = C;
|
|
|
|
SILType IntBoolTy = SILType::getBuiltinIntegerType(1, B.getASTContext());
|
|
|
|
auto BoolTy = AI->getType();
|
|
auto C0 = B.createIntegerLiteral(AI->getLoc(), IntBoolTy, 1);
|
|
auto BoolVal = B.createStruct(AI->getLoc(), BoolTy, {C0});
|
|
|
|
(*C).replaceAllUsesWith(BoolVal);
|
|
// Remove call to array.props.read/write.
|
|
C.removeCall();
|
|
}
|
|
|
|
/// Collects all loop dominated blocks outside the loop that are immediately
|
|
/// dominated by the loop.
|
|
static void
|
|
collectImmediateLoopDominatedBlocks(const SILLoop *Lp, DominanceInfoNode *Node,
|
|
SmallVectorImpl<SILBasicBlock *> &Blocks) {
|
|
SILBasicBlock *BB = Node->getBlock();
|
|
|
|
// Base case: First loop dominated block outside of loop.
|
|
if (!Lp->contains(BB)) {
|
|
Blocks.push_back(BB);
|
|
return;
|
|
}
|
|
|
|
// Loop contains the basic block. Look at immediately dominated nodes.
|
|
for (auto *Child : *Node)
|
|
collectImmediateLoopDominatedBlocks(Lp, Child, Blocks);
|
|
}
|
|
|
|
void ArrayPropertiesSpecializer::specializeLoopNest() {
|
|
auto *Lp = getLoop();
|
|
assert(Lp);
|
|
|
|
// Split of a new empty preheader. We don't want to duplicate the whole
|
|
// original preheader it might contain instructions that we can't clone.
|
|
// This will be block that will contain the check whether to execute the
|
|
// 'native swift array' loop or the original loop.
|
|
SILBuilder B(HoistableLoopPreheader);
|
|
auto *CheckBlock = splitBasicBlockAndBranch(B,
|
|
HoistableLoopPreheader->getTerminator(), DomTree, nullptr);
|
|
|
|
auto *Header = CheckBlock->getSingleSuccessorBlock();
|
|
assert(Header);
|
|
|
|
// Collect all loop dominated blocks (e.g exit blocks could be among them). We
|
|
// need to update their dominator.
|
|
SmallVector<SILBasicBlock *, 16> LoopDominatedBlocks;
|
|
collectImmediateLoopDominatedBlocks(Lp, DomTree->getNode(Header),
|
|
LoopDominatedBlocks);
|
|
|
|
// Collect all exit blocks.
|
|
SmallVector<SILBasicBlock *, 16> ExitBlocks;
|
|
Lp->getExitBlocks(ExitBlocks);
|
|
|
|
// Split the preheader before the first instruction.
|
|
SILBasicBlock *NewPreheader =
|
|
splitBasicBlockAndBranch(B, &*CheckBlock->begin(), DomTree, nullptr);
|
|
|
|
// Clone the region from the new preheader up to (not including) the exit
|
|
// blocks. This creates a second loop nest.
|
|
RegionCloner Cloner(NewPreheader, *DomTree);
|
|
auto *ClonedPreheader = Cloner.cloneRegion(ExitBlocks);
|
|
|
|
// Collect the array.props call that we will specialize on that we have
|
|
// cloned in the cloned loop.
|
|
SmallVector<ArraySemanticsCall, 16> ArrayPropCalls;
|
|
collectArrayPropsCalls(Cloner, ExitBlocks, ArrayPropCalls);
|
|
|
|
// Move them to the check block.
|
|
SmallVector<ArraySemanticsCall, 16> HoistedArrayPropCalls;
|
|
for (auto C: ArrayPropCalls)
|
|
HoistedArrayPropCalls.push_back(
|
|
ArraySemanticsCall(C.copyTo(CheckBlock->getTerminator(), DomTree)));
|
|
|
|
// Create a conditional branch on the fast condition being true.
|
|
B.setInsertionPoint(CheckBlock->getTerminator());
|
|
auto IsFastNativeArray =
|
|
createFastNativeArraysCheck(HoistedArrayPropCalls, B);
|
|
B.createCondBranch(CheckBlock->getTerminator()->getLoc(),
|
|
IsFastNativeArray, ClonedPreheader, NewPreheader);
|
|
CheckBlock->getTerminator()->eraseFromParent();
|
|
|
|
// Fixup the loop dominated blocks. They are now dominated by the check block.
|
|
for (auto *BB : LoopDominatedBlocks)
|
|
DomTree->changeImmediateDominator(DomTree->getNode(BB),
|
|
DomTree->getNode(CheckBlock));
|
|
|
|
// Replace the array.props calls uses in the cloned loop by their 'fast'
|
|
// value.
|
|
SILBuilder B2(ClonedPreheader->getTerminator());
|
|
for (auto C : ArrayPropCalls)
|
|
replaceArrayPropsCall(B2, C);
|
|
|
|
// We have potentially cloned a loop - invalidate loop info.
|
|
LoopAnalysis->invalidate(Header->getParent(),
|
|
SILAnalysis::InvalidationKind::FunctionBody);
|
|
}
|
|
|
|
namespace {
|
|
class SwiftArrayOptPass : public SILFunctionTransform {
|
|
|
|
void run() override {
|
|
if (!ShouldSpecializeArrayProps)
|
|
return;
|
|
|
|
auto *Fn = getFunction();
|
|
|
|
// Don't hoist array property calls at Osize.
|
|
if (Fn->optimizeForSize())
|
|
return;
|
|
|
|
DominanceAnalysis *DA = PM->getAnalysis<DominanceAnalysis>();
|
|
SILLoopAnalysis *LA = PM->getAnalysis<SILLoopAnalysis>();
|
|
SILLoopInfo *LI = LA->get(Fn);
|
|
|
|
bool HasChanged = false;
|
|
|
|
// Check whether we can hoist 'array.props' calls out of loops, collecting
|
|
// the preheader we can hoist to. We only hoist out of loops if 'all'
|
|
// array.props call can be hoisted for a given loop nest.
|
|
// We process the loop tree preorder (top-down) to hoist over the biggest
|
|
// possible loop-nest.
|
|
SmallVector<SILBasicBlock *, 16> HoistableLoopNests;
|
|
std::function<void(SILLoop *)> processChildren = [&](SILLoop *L) {
|
|
ArrayPropertiesAnalysis Analysis(L, DA);
|
|
if (Analysis.run()) {
|
|
// Hoist in the current loop nest.
|
|
HasChanged = true;
|
|
HoistableLoopNests.push_back(L->getLoopPreheader());
|
|
} else {
|
|
// Otherwise, try hoisting sub-loops.
|
|
for (auto *SubLoop : *L)
|
|
processChildren(SubLoop);
|
|
}
|
|
};
|
|
for (auto *L : *LI)
|
|
processChildren(L);
|
|
|
|
// Specialize the identified loop nest based on the 'array.props' calls.
|
|
if (HasChanged) {
|
|
LLVM_DEBUG(getFunction()->viewCFG());
|
|
DominanceInfo *DT = DA->get(getFunction());
|
|
|
|
// Process specialized loop-nests in loop-tree post-order (bottom-up).
|
|
std::reverse(HoistableLoopNests.begin(), HoistableLoopNests.end());
|
|
|
|
// Hoist the loop nests.
|
|
for (auto &HoistableLoopNest : HoistableLoopNests)
|
|
ArrayPropertiesSpecializer(DT, LA, HoistableLoopNest).run();
|
|
|
|
// Verify that no illegal critical edges were created.
|
|
getFunction()->verifyCriticalEdges();
|
|
|
|
LLVM_DEBUG(getFunction()->viewCFG());
|
|
|
|
// We preserve the dominator tree. Let's invalidate everything
|
|
// else.
|
|
DA->lockInvalidation();
|
|
invalidateAnalysis(SILAnalysis::InvalidationKind::FunctionBody);
|
|
DA->unlockInvalidation();
|
|
}
|
|
}
|
|
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
SILTransform *swift::createSwiftArrayOpts() {
|
|
return new SwiftArrayOptPass();
|
|
}
|