mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
3415 lines
105 KiB
Swift
3415 lines
105 KiB
Swift
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
import SwiftShims
|
|
|
|
/// An unordered collection of unique elements.
|
|
///
|
|
/// You use a set instead of an array when you need to test efficiently for
|
|
/// membership and you aren't concerned with the order of the elements in the
|
|
/// collection, or when you need to ensure that each element appears only once
|
|
/// in a collection.
|
|
///
|
|
/// You can create a set with any element type that conforms to the `Hashable`
|
|
/// protocol. By default, most types in the standard library are hashable,
|
|
/// including strings, numeric and Boolean types, enumeration cases without
|
|
/// associated values, and even sets themselves.
|
|
///
|
|
/// Swift makes it as easy to create a new set as to create a new array. Simply
|
|
/// assign an array literal to a variable or constant with the `Set` type
|
|
/// specified.
|
|
///
|
|
/// let ingredients: Set = ["cocoa beans", "sugar", "cocoa butter", "salt"]
|
|
/// if ingredients.contains("sugar") {
|
|
/// print("No thanks, too sweet.")
|
|
/// }
|
|
/// // Prints "No thanks, too sweet."
|
|
///
|
|
/// Set Operations
|
|
/// ==============
|
|
///
|
|
/// Sets provide a suite of mathematical set operations. For example, you can
|
|
/// efficiently test a set for membership of an element or check its
|
|
/// intersection with another set:
|
|
///
|
|
/// - Use the `contains(_:)` method to test whether a set contains a specific
|
|
/// element.
|
|
/// - Use the "equal to" operator (`==`) to test whether two sets contain the
|
|
/// same elements.
|
|
/// - Use the `isSubset(of:)` method to test whether a set contains all the
|
|
/// elements of another set or sequence.
|
|
/// - Use the `isSuperset(of:)` method to test whether all elements of a set
|
|
/// are contained in another set or sequence.
|
|
/// - Use the `isStrictSubset(of:)` and `isStrictSuperset(of:)` methods to test
|
|
/// whether a set is a subset or superset of, but not equal to, another set.
|
|
/// - Use the `isDisjoint(with:)` method to test whether a set has any elements
|
|
/// in common with another set.
|
|
///
|
|
/// You can also combine, exclude, or subtract the elements of two sets:
|
|
///
|
|
/// - Use the `union(_:)` method to create a new set with the elements of a set
|
|
/// and another set or sequence.
|
|
/// - Use the `intersection(_:)` method to create a new set with only the
|
|
/// elements common to a set and another set or sequence.
|
|
/// - Use the `symmetricDifference(_:)` method to create a new set with the
|
|
/// elements that are in either a set or another set or sequence, but not in
|
|
/// both.
|
|
/// - Use the `subtracting(_:)` method to create a new set with the elements of
|
|
/// a set that are not also in another set or sequence.
|
|
///
|
|
/// You can modify a set in place by using these methods' mutating
|
|
/// counterparts: `formUnion(_:)`, `formIntersection(_:)`,
|
|
/// `formSymmetricDifference(_:)`, and `subtract(_:)`.
|
|
///
|
|
/// Set operations are not limited to use with other sets. Instead, you can
|
|
/// perform set operations with another set, an array, or any other sequence
|
|
/// type.
|
|
///
|
|
/// var primes: Set = [2, 3, 5, 7]
|
|
///
|
|
/// // Tests whether primes is a subset of a Range<Int>
|
|
/// print(primes.isSubset(of: 0..<10))
|
|
/// // Prints "true"
|
|
///
|
|
/// // Performs an intersection with an Array<Int>
|
|
/// let favoriteNumbers = [5, 7, 15, 21]
|
|
/// print(primes.intersection(favoriteNumbers))
|
|
/// // Prints "[5, 7]"
|
|
///
|
|
/// Sequence and Collection Operations
|
|
/// ==================================
|
|
///
|
|
/// In addition to the `Set` type's set operations, you can use any nonmutating
|
|
/// sequence or collection methods with a set.
|
|
///
|
|
/// if primes.isEmpty {
|
|
/// print("No primes!")
|
|
/// } else {
|
|
/// print("We have \(primes.count) primes.")
|
|
/// }
|
|
/// // Prints "We have 4 primes."
|
|
///
|
|
/// let primesSum = primes.reduce(0, +)
|
|
/// // 'primesSum' == 17
|
|
///
|
|
/// let primeStrings = primes.sorted().map(String.init)
|
|
/// // 'primeStrings' == ["2", "3", "5", "7"]
|
|
///
|
|
/// You can iterate through a set's unordered elements with a `for`-`in` loop.
|
|
///
|
|
/// for number in primes {
|
|
/// print(number)
|
|
/// }
|
|
/// // Prints "5"
|
|
/// // Prints "7"
|
|
/// // Prints "2"
|
|
/// // Prints "3"
|
|
///
|
|
/// Many sequence and collection operations return an array or a type-erasing
|
|
/// collection wrapper instead of a set. To restore efficient set operations,
|
|
/// create a new set from the result.
|
|
///
|
|
/// let morePrimes = primes.union([11, 13, 17, 19])
|
|
///
|
|
/// let laterPrimes = morePrimes.filter { $0 > 10 }
|
|
/// // 'laterPrimes' is of type Array<Int>
|
|
///
|
|
/// let laterPrimesSet = Set(morePrimes.filter { $0 > 10 })
|
|
/// // 'laterPrimesSet' is of type Set<Int>
|
|
///
|
|
/// Bridging Between Set and NSSet
|
|
/// ==============================
|
|
///
|
|
/// You can bridge between `Set` and `NSSet` using the `as` operator. For
|
|
/// bridging to be possible, the `Element` type of a set must be a class, an
|
|
/// `@objc` protocol (a protocol imported from Objective-C or marked with the
|
|
/// `@objc` attribute), or a type that bridges to a Foundation type.
|
|
///
|
|
/// Bridging from `Set` to `NSSet` always takes O(1) time and space. When the
|
|
/// set's `Element` type is neither a class nor an `@objc` protocol, any
|
|
/// required bridging of elements occurs at the first access of each element,
|
|
/// so the first operation that uses the contents of the set (for example, a
|
|
/// membership test) can take O(*n*).
|
|
///
|
|
/// Bridging from `NSSet` to `Set` first calls the `copy(with:)` method
|
|
/// (`- copyWithZone:` in Objective-C) on the set to get an immutable copy and
|
|
/// then performs additional Swift bookkeeping work that takes O(1) time. For
|
|
/// instances of `NSSet` that are already immutable, `copy(with:)` returns the
|
|
/// same set in constant time; otherwise, the copying performance is
|
|
/// unspecified. The instances of `NSSet` and `Set` share buffer using the
|
|
/// same copy-on-write optimization that is used when two instances of `Set`
|
|
/// share buffer.
|
|
@_fixed_layout
|
|
public struct Set<Element: Hashable> {
|
|
@usableFromInline
|
|
internal var _variant: _Variant
|
|
|
|
/// Creates an empty set with preallocated space for at least the specified
|
|
/// number of elements.
|
|
///
|
|
/// Use this initializer to avoid intermediate reallocations of a set's
|
|
/// storage buffer when you know how many elements you'll insert into the set
|
|
/// after creation.
|
|
///
|
|
/// - Parameter minimumCapacity: The minimum number of elements that the
|
|
/// newly created set should be able to store without reallocating its
|
|
/// storage buffer.
|
|
@inlinable
|
|
public init(minimumCapacity: Int) {
|
|
_variant = .native(_NativeSet(capacity: minimumCapacity))
|
|
}
|
|
|
|
/// Private initializer.
|
|
@inlinable
|
|
internal init(_native: _NativeSet<Element>) {
|
|
_variant = .native(_native)
|
|
}
|
|
|
|
#if _runtime(_ObjC)
|
|
@inlinable
|
|
internal init(_cocoa: _CocoaSet) {
|
|
_variant = .cocoa(_cocoa)
|
|
}
|
|
|
|
/// Private initializer used for bridging.
|
|
///
|
|
/// Only use this initializer when both conditions are true:
|
|
///
|
|
/// * it is statically known that the given `NSSet` is immutable;
|
|
/// * `Element` is bridged verbatim to Objective-C (i.e.,
|
|
/// is a reference type).
|
|
@inlinable
|
|
public // SPI(Foundation)
|
|
init(_immutableCocoaSet: _NSSet) {
|
|
_sanityCheck(_isBridgedVerbatimToObjectiveC(Element.self),
|
|
"Set can be backed by NSSet _variant only when the member type can be bridged verbatim to Objective-C")
|
|
self.init(_cocoa: _CocoaSet(_immutableCocoaSet))
|
|
}
|
|
#endif
|
|
}
|
|
|
|
extension Set: ExpressibleByArrayLiteral {
|
|
/// Creates a set containing the elements of the given array literal.
|
|
///
|
|
/// Do not call this initializer directly. It is used by the compiler when
|
|
/// you use an array literal. Instead, create a new set using an array
|
|
/// literal as its value by enclosing a comma-separated list of values in
|
|
/// square brackets. You can use an array literal anywhere a set is expected
|
|
/// by the type context.
|
|
///
|
|
/// Here, a set of strings is created from an array literal holding only
|
|
/// strings.
|
|
///
|
|
/// let ingredients: Set = ["cocoa beans", "sugar", "cocoa butter", "salt"]
|
|
/// if ingredients.isSuperset(of: ["sugar", "salt"]) {
|
|
/// print("Whatever it is, it's bound to be delicious!")
|
|
/// }
|
|
/// // Prints "Whatever it is, it's bound to be delicious!"
|
|
///
|
|
/// - Parameter elements: A variadic list of elements of the new set.
|
|
@inlinable
|
|
public init(arrayLiteral elements: Element...) {
|
|
if elements.isEmpty {
|
|
self.init()
|
|
return
|
|
}
|
|
let native = _NativeSet<Element>(capacity: elements.count)
|
|
for element in elements {
|
|
let (index, found) = native.find(element)
|
|
if found {
|
|
// FIXME: Shouldn't this trap?
|
|
continue
|
|
}
|
|
native._unsafeInsertNew(element, at: index)
|
|
}
|
|
self.init(_native: native)
|
|
}
|
|
}
|
|
|
|
extension Set: Sequence {
|
|
/// Returns an iterator over the members of the set.
|
|
@inlinable
|
|
@inline(__always)
|
|
public __consuming func makeIterator() -> Iterator {
|
|
return _variant.makeIterator()
|
|
}
|
|
|
|
/// Returns a Boolean value that indicates whether the given element exists
|
|
/// in the set.
|
|
///
|
|
/// This example uses the `contains(_:)` method to test whether an integer is
|
|
/// a member of a set of prime numbers.
|
|
///
|
|
/// let primes: Set = [2, 3, 5, 7]
|
|
/// let x = 5
|
|
/// if primes.contains(x) {
|
|
/// print("\(x) is prime!")
|
|
/// } else {
|
|
/// print("\(x). Not prime.")
|
|
/// }
|
|
/// // Prints "5 is prime!"
|
|
///
|
|
/// - Parameter member: An element to look for in the set.
|
|
/// - Returns: `true` if `member` exists in the set; otherwise, `false`.
|
|
///
|
|
/// - Complexity: O(1)
|
|
@inlinable
|
|
public func contains(_ member: Element) -> Bool {
|
|
return _variant.contains(member)
|
|
}
|
|
|
|
@inlinable
|
|
public func _customContainsEquatableElement(_ member: Element) -> Bool? {
|
|
return contains(member)
|
|
}
|
|
}
|
|
|
|
// This is not quite Sequence.filter, because that returns [Element], not Self
|
|
// (RangeReplaceableCollection.filter returns Self, but Set isn't an RRC)
|
|
extension Set {
|
|
/// Returns a new set containing the elements of the set that satisfy the
|
|
/// given predicate.
|
|
///
|
|
/// In this example, `filter(_:)` is used to include only names shorter than
|
|
/// five characters.
|
|
///
|
|
/// let cast: Set = ["Vivien", "Marlon", "Kim", "Karl"]
|
|
/// let shortNames = cast.filter { $0.count < 5 }
|
|
///
|
|
/// shortNames.isSubset(of: cast)
|
|
/// // true
|
|
/// shortNames.contains("Vivien")
|
|
/// // false
|
|
///
|
|
/// - Parameter isIncluded: A closure that takes an element as its argument
|
|
/// and returns a Boolean value indicating whether the element should be
|
|
/// included in the returned set.
|
|
/// - Returns: A set of the elements that `isIncluded` allows.
|
|
@inlinable
|
|
@available(swift, introduced: 4.0)
|
|
public __consuming func filter(
|
|
_ isIncluded: (Element) throws -> Bool
|
|
) rethrows -> Set {
|
|
// FIXME(performance): Eliminate rehashes by using a bitmap.
|
|
var result = Set()
|
|
for element in self {
|
|
if try isIncluded(element) {
|
|
result.insert(element)
|
|
}
|
|
}
|
|
return result
|
|
}
|
|
}
|
|
|
|
extension Set: Collection {
|
|
/// The starting position for iterating members of the set.
|
|
///
|
|
/// If the set is empty, `startIndex` is equal to `endIndex`.
|
|
@inlinable
|
|
public var startIndex: Index {
|
|
return _variant.startIndex
|
|
}
|
|
|
|
/// The "past the end" position for the set---that is, the position one
|
|
/// greater than the last valid subscript argument.
|
|
///
|
|
/// If the set is empty, `endIndex` is equal to `startIndex`.
|
|
@inlinable
|
|
public var endIndex: Index {
|
|
return _variant.endIndex
|
|
}
|
|
|
|
/// Accesses the member at the given position.
|
|
@inlinable
|
|
public subscript(position: Index) -> Element {
|
|
return _variant.element(at: position)
|
|
}
|
|
|
|
@inlinable
|
|
public func index(after i: Index) -> Index {
|
|
return _variant.index(after: i)
|
|
}
|
|
|
|
// APINAMING: complexity docs are broadly missing in this file.
|
|
|
|
/// Returns the index of the given element in the set, or `nil` if the
|
|
/// element is not a member of the set.
|
|
///
|
|
/// - Parameter member: An element to search for in the set.
|
|
/// - Returns: The index of `member` if it exists in the set; otherwise,
|
|
/// `nil`.
|
|
///
|
|
/// - Complexity: O(1)
|
|
@inlinable
|
|
public func firstIndex(of member: Element) -> Index? {
|
|
return _variant.index(for: member)
|
|
}
|
|
|
|
@inlinable
|
|
public func _customIndexOfEquatableElement(
|
|
_ member: Element
|
|
) -> Index?? {
|
|
return Optional(firstIndex(of: member))
|
|
}
|
|
|
|
@inlinable
|
|
public func _customLastIndexOfEquatableElement(
|
|
_ member: Element
|
|
) -> Index?? {
|
|
// The first and last elements are the same because each element is unique.
|
|
return _customIndexOfEquatableElement(member)
|
|
}
|
|
|
|
/// The number of elements in the set.
|
|
///
|
|
/// - Complexity: O(1).
|
|
@inlinable
|
|
public var count: Int {
|
|
return _variant.count
|
|
}
|
|
|
|
/// A Boolean value that indicates whether the set is empty.
|
|
@inlinable
|
|
public var isEmpty: Bool {
|
|
return count == 0
|
|
}
|
|
|
|
/// The first element of the set.
|
|
///
|
|
/// The first element of the set is not necessarily the first element added
|
|
/// to the set. Don't expect any particular ordering of set elements.
|
|
///
|
|
/// If the set is empty, the value of this property is `nil`.
|
|
@inlinable
|
|
public var first: Element? {
|
|
var iterator = makeIterator()
|
|
return iterator.next()
|
|
}
|
|
}
|
|
|
|
// FIXME: rdar://problem/23549059 (Optimize == for Set)
|
|
// Look into initially trying to compare the two sets by directly comparing the
|
|
// contents of both buffers in order. If they happen to have the exact same
|
|
// ordering we can get the `true` response without ever hashing. If the two
|
|
// buffers' contents differ at all then we have to fall back to hashing the
|
|
// rest of the elements (but we don't need to hash any prefix that did match).
|
|
extension Set: Equatable {
|
|
/// Returns a Boolean value indicating whether two sets have equal elements.
|
|
///
|
|
/// - Parameters:
|
|
/// - lhs: A set.
|
|
/// - rhs: Another set.
|
|
/// - Returns: `true` if the `lhs` and `rhs` have the same elements; otherwise,
|
|
/// `false`.
|
|
@inlinable
|
|
public static func == (lhs: Set<Element>, rhs: Set<Element>) -> Bool {
|
|
switch (lhs._variant, rhs._variant) {
|
|
case (.native(let lhsNative), .native(let rhsNative)):
|
|
|
|
if lhsNative._storage === rhsNative._storage {
|
|
return true
|
|
}
|
|
|
|
if lhsNative.count != rhsNative.count {
|
|
return false
|
|
}
|
|
|
|
for member in lhsNative {
|
|
guard rhsNative.find(member).found else {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
|
|
#if _runtime(_ObjC)
|
|
case (.cocoa(let lhsCocoa), .cocoa(let rhsCocoa)):
|
|
return lhsCocoa == rhsCocoa
|
|
|
|
case (.native(let lhsNative), .cocoa(let rhsCocoa)):
|
|
if lhsNative.count != rhsCocoa.count {
|
|
return false
|
|
}
|
|
|
|
defer { _fixLifetime(lhsNative) }
|
|
for i in lhsNative.hashTable {
|
|
let key = lhsNative.element(at: i)
|
|
let bridgedKey = _bridgeAnythingToObjectiveC(key)
|
|
if rhsCocoa.contains(bridgedKey) {
|
|
continue
|
|
}
|
|
return false
|
|
}
|
|
return true
|
|
|
|
case (.cocoa, .native):
|
|
return rhs == lhs
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
extension Set: Hashable {
|
|
/// Hashes the essential components of this value by feeding them into the
|
|
/// given hasher.
|
|
///
|
|
/// - Parameter hasher: The hasher to use when combining the components
|
|
/// of this instance.
|
|
@inlinable
|
|
public func hash(into hasher: inout Hasher) {
|
|
// FIXME(ABI)#177: <rdar://problem/18915294> Cache Set<T> hashValue
|
|
var hash = 0
|
|
let seed = hasher._generateSeed()
|
|
for member in self {
|
|
hash ^= member._rawHashValue(seed: seed)
|
|
}
|
|
hasher.combine(hash)
|
|
}
|
|
}
|
|
|
|
extension Set: _HasCustomAnyHashableRepresentation {
|
|
public func _toCustomAnyHashable() -> AnyHashable? {
|
|
return AnyHashable(_box: _SetAnyHashableBox(self))
|
|
}
|
|
}
|
|
|
|
internal struct _SetAnyHashableBox<Element: Hashable>: _AnyHashableBox {
|
|
internal let _value: Set<Element>
|
|
internal let _canonical: Set<AnyHashable>
|
|
|
|
internal init(_ value: Set<Element>) {
|
|
self._value = value
|
|
self._canonical = value as Set<AnyHashable>
|
|
}
|
|
|
|
internal var _base: Any {
|
|
return _value
|
|
}
|
|
|
|
internal var _canonicalBox: _AnyHashableBox {
|
|
return _SetAnyHashableBox<AnyHashable>(_canonical)
|
|
}
|
|
|
|
internal func _isEqual(to other: _AnyHashableBox) -> Bool? {
|
|
guard let other = other as? _SetAnyHashableBox<AnyHashable> else {
|
|
return nil
|
|
}
|
|
return _canonical == other._value
|
|
}
|
|
|
|
internal var _hashValue: Int {
|
|
return _canonical.hashValue
|
|
}
|
|
|
|
internal func _hash(into hasher: inout Hasher) {
|
|
_canonical.hash(into: &hasher)
|
|
}
|
|
|
|
internal func _rawHashValue(_seed: Hasher._Seed) -> Int {
|
|
return _canonical._rawHashValue(seed: _seed)
|
|
}
|
|
|
|
internal func _unbox<T: Hashable>() -> T? {
|
|
return _value as? T
|
|
}
|
|
|
|
internal func _downCastConditional<T>(
|
|
into result: UnsafeMutablePointer<T>
|
|
) -> Bool {
|
|
guard let value = _value as? T else { return false }
|
|
result.initialize(to: value)
|
|
return true
|
|
}
|
|
}
|
|
|
|
extension Set: SetAlgebra {
|
|
|
|
/// Inserts the given element in the set if it is not already present.
|
|
///
|
|
/// If an element equal to `newMember` is already contained in the set, this
|
|
/// method has no effect. In the following example, a new element is
|
|
/// inserted into `classDays`, a set of days of the week. When an existing
|
|
/// element is inserted, the `classDays` set does not change.
|
|
///
|
|
/// enum DayOfTheWeek: Int {
|
|
/// case sunday, monday, tuesday, wednesday, thursday,
|
|
/// friday, saturday
|
|
/// }
|
|
///
|
|
/// var classDays: Set<DayOfTheWeek> = [.wednesday, .friday]
|
|
/// print(classDays.insert(.monday))
|
|
/// // Prints "(true, .monday)"
|
|
/// print(classDays)
|
|
/// // Prints "[.friday, .wednesday, .monday]"
|
|
///
|
|
/// print(classDays.insert(.friday))
|
|
/// // Prints "(false, .friday)"
|
|
/// print(classDays)
|
|
/// // Prints "[.friday, .wednesday, .monday]"
|
|
///
|
|
/// - Parameter newMember: An element to insert into the set.
|
|
/// - Returns: `(true, newMember)` if `newMember` was not contained in the
|
|
/// set. If an element equal to `newMember` was already contained in the
|
|
/// set, the method returns `(false, oldMember)`, where `oldMember` is the
|
|
/// element that was equal to `newMember`. In some cases, `oldMember` may
|
|
/// be distinguishable from `newMember` by identity comparison or some
|
|
/// other means.
|
|
@inlinable
|
|
@discardableResult
|
|
public mutating func insert(
|
|
_ newMember: Element
|
|
) -> (inserted: Bool, memberAfterInsert: Element) {
|
|
return _variant.insert(newMember)
|
|
}
|
|
|
|
/// Inserts the given element into the set unconditionally.
|
|
///
|
|
/// If an element equal to `newMember` is already contained in the set,
|
|
/// `newMember` replaces the existing element. In this example, an existing
|
|
/// element is inserted into `classDays`, a set of days of the week.
|
|
///
|
|
/// enum DayOfTheWeek: Int {
|
|
/// case sunday, monday, tuesday, wednesday, thursday,
|
|
/// friday, saturday
|
|
/// }
|
|
///
|
|
/// var classDays: Set<DayOfTheWeek> = [.monday, .wednesday, .friday]
|
|
/// print(classDays.update(with: .monday))
|
|
/// // Prints "Optional(.monday)"
|
|
///
|
|
/// - Parameter newMember: An element to insert into the set.
|
|
/// - Returns: An element equal to `newMember` if the set already contained
|
|
/// such a member; otherwise, `nil`. In some cases, the returned element
|
|
/// may be distinguishable from `newMember` by identity comparison or some
|
|
/// other means.
|
|
@inlinable
|
|
@discardableResult
|
|
public mutating func update(with newMember: Element) -> Element? {
|
|
return _variant.update(with: newMember)
|
|
}
|
|
|
|
/// Removes the specified element from the set.
|
|
///
|
|
/// This example removes the element `"sugar"` from a set of ingredients.
|
|
///
|
|
/// var ingredients: Set = ["cocoa beans", "sugar", "cocoa butter", "salt"]
|
|
/// let toRemove = "sugar"
|
|
/// if let removed = ingredients.remove(toRemove) {
|
|
/// print("The recipe is now \(removed)-free.")
|
|
/// }
|
|
/// // Prints "The recipe is now sugar-free."
|
|
///
|
|
/// - Parameter member: The element to remove from the set.
|
|
/// - Returns: The value of the `member` parameter if it was a member of the
|
|
/// set; otherwise, `nil`.
|
|
@inlinable
|
|
@discardableResult
|
|
public mutating func remove(_ member: Element) -> Element? {
|
|
return _variant.remove(member)
|
|
}
|
|
|
|
/// Removes the element at the given index of the set.
|
|
///
|
|
/// - Parameter position: The index of the member to remove. `position` must
|
|
/// be a valid index of the set, and must not be equal to the set's end
|
|
/// index.
|
|
/// - Returns: The element that was removed from the set.
|
|
@inlinable
|
|
@discardableResult
|
|
public mutating func remove(at position: Index) -> Element {
|
|
return _variant.remove(at: position)
|
|
}
|
|
|
|
/// Removes all members from the set.
|
|
///
|
|
/// - Parameter keepingCapacity: If `true`, the set's buffer capacity is
|
|
/// preserved; if `false`, the underlying buffer is released. The
|
|
/// default is `false`.
|
|
@inlinable
|
|
public mutating func removeAll(keepingCapacity keepCapacity: Bool = false) {
|
|
_variant.removeAll(keepingCapacity: keepCapacity)
|
|
}
|
|
|
|
/// Removes the first element of the set.
|
|
///
|
|
/// Because a set is not an ordered collection, the "first" element may not
|
|
/// be the first element that was added to the set. The set must not be
|
|
/// empty.
|
|
///
|
|
/// - Complexity: Amortized O(1) if the set does not wrap a bridged `NSSet`.
|
|
/// If the set wraps a bridged `NSSet`, the performance is unspecified.
|
|
///
|
|
/// - Returns: A member of the set.
|
|
@inlinable
|
|
@discardableResult
|
|
public mutating func removeFirst() -> Element {
|
|
_precondition(!isEmpty, "Can't removeFirst from an empty Set")
|
|
return remove(at: startIndex)
|
|
}
|
|
|
|
//
|
|
// APIs below this comment should be implemented strictly in terms of
|
|
// *public* APIs above. `_variant` should not be accessed directly.
|
|
//
|
|
// This separates concerns for testing. Tests for the following APIs need
|
|
// not to concern themselves with testing correctness of behavior of
|
|
// underlying buffer (and different variants of it), only correctness of the
|
|
// API itself.
|
|
//
|
|
|
|
/// Creates an empty set.
|
|
///
|
|
/// This is equivalent to initializing with an empty array literal. For
|
|
/// example:
|
|
///
|
|
/// var emptySet = Set<Int>()
|
|
/// print(emptySet.isEmpty)
|
|
/// // Prints "true"
|
|
///
|
|
/// emptySet = []
|
|
/// print(emptySet.isEmpty)
|
|
/// // Prints "true"
|
|
@inlinable
|
|
public init() {
|
|
self = Set<Element>(_native: _NativeSet())
|
|
}
|
|
|
|
/// Creates a new set from a finite sequence of items.
|
|
///
|
|
/// Use this initializer to create a new set from an existing sequence, for
|
|
/// example, an array or a range.
|
|
///
|
|
/// let validIndices = Set(0..<7).subtracting([2, 4, 5])
|
|
/// print(validIndices)
|
|
/// // Prints "[6, 0, 1, 3]"
|
|
///
|
|
/// This initializer can also be used to restore set methods after performing
|
|
/// sequence operations such as `filter(_:)` or `map(_:)` on a set. For
|
|
/// example, after filtering a set of prime numbers to remove any below 10,
|
|
/// you can create a new set by using this initializer.
|
|
///
|
|
/// let primes: Set = [2, 3, 5, 7, 11, 13, 17, 19, 23]
|
|
/// let laterPrimes = Set(primes.lazy.filter { $0 > 10 })
|
|
/// print(laterPrimes)
|
|
/// // Prints "[17, 19, 23, 11, 13]"
|
|
///
|
|
/// - Parameter sequence: The elements to use as members of the new set.
|
|
@inlinable
|
|
public init<Source: Sequence>(_ sequence: Source)
|
|
where Source.Element == Element {
|
|
self.init(minimumCapacity: sequence.underestimatedCount)
|
|
if let s = sequence as? Set<Element> {
|
|
// If this sequence is actually a native `Set`, then we can quickly
|
|
// adopt its native buffer and let COW handle uniquing only
|
|
// if necessary.
|
|
self._variant = s._variant
|
|
} else {
|
|
for item in sequence {
|
|
insert(item)
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Returns a Boolean value that indicates whether the set is a subset of the
|
|
/// given sequence.
|
|
///
|
|
/// Set *A* is a subset of another set *B* if every member of *A* is also a
|
|
/// member of *B*.
|
|
///
|
|
/// let employees = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
|
|
/// let attendees: Set = ["Alicia", "Bethany", "Diana"]
|
|
/// print(attendees.isSubset(of: employees))
|
|
/// // Prints "true"
|
|
///
|
|
/// - Parameter possibleSuperset: A sequence of elements. `possibleSuperset`
|
|
/// must be finite.
|
|
/// - Returns: `true` if the set is a subset of `possibleSuperset`;
|
|
/// otherwise, `false`.
|
|
@inlinable
|
|
public func isSubset<S: Sequence>(of possibleSuperset: S) -> Bool
|
|
where S.Element == Element {
|
|
// FIXME(performance): isEmpty fast path, here and elsewhere.
|
|
let other = Set(possibleSuperset)
|
|
return isSubset(of: other)
|
|
}
|
|
|
|
/// Returns a Boolean value that indicates whether the set is a strict subset
|
|
/// of the given sequence.
|
|
///
|
|
/// Set *A* is a strict subset of another set *B* if every member of *A* is
|
|
/// also a member of *B* and *B* contains at least one element that is not a
|
|
/// member of *A*.
|
|
///
|
|
/// let employees = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
|
|
/// let attendees: Set = ["Alicia", "Bethany", "Diana"]
|
|
/// print(attendees.isStrictSubset(of: employees))
|
|
/// // Prints "true"
|
|
///
|
|
/// // A set is never a strict subset of itself:
|
|
/// print(attendees.isStrictSubset(of: attendees))
|
|
/// // Prints "false"
|
|
///
|
|
/// - Parameter possibleStrictSuperset: A sequence of elements.
|
|
/// `possibleStrictSuperset` must be finite.
|
|
/// - Returns: `true` is the set is strict subset of
|
|
/// `possibleStrictSuperset`; otherwise, `false`.
|
|
@inlinable
|
|
public func isStrictSubset<S: Sequence>(of possibleStrictSuperset: S) -> Bool
|
|
where S.Element == Element {
|
|
// FIXME: code duplication.
|
|
let other = Set(possibleStrictSuperset)
|
|
return isStrictSubset(of: other)
|
|
}
|
|
|
|
/// Returns a Boolean value that indicates whether the set is a superset of
|
|
/// the given sequence.
|
|
///
|
|
/// Set *A* is a superset of another set *B* if every member of *B* is also a
|
|
/// member of *A*.
|
|
///
|
|
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
|
|
/// let attendees = ["Alicia", "Bethany", "Diana"]
|
|
/// print(employees.isSuperset(of: attendees))
|
|
/// // Prints "true"
|
|
///
|
|
/// - Parameter possibleSubset: A sequence of elements. `possibleSubset` must
|
|
/// be finite.
|
|
/// - Returns: `true` if the set is a superset of `possibleSubset`;
|
|
/// otherwise, `false`.
|
|
@inlinable
|
|
public func isSuperset<S: Sequence>(of possibleSubset: S) -> Bool
|
|
where S.Element == Element {
|
|
// FIXME(performance): Don't build a set; just ask if every element is in
|
|
// `self`.
|
|
let other = Set(possibleSubset)
|
|
return other.isSubset(of: self)
|
|
}
|
|
|
|
/// Returns a Boolean value that indicates whether the set is a strict
|
|
/// superset of the given sequence.
|
|
///
|
|
/// Set *A* is a strict superset of another set *B* if every member of *B* is
|
|
/// also a member of *A* and *A* contains at least one element that is *not*
|
|
/// a member of *B*.
|
|
///
|
|
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
|
|
/// let attendees = ["Alicia", "Bethany", "Diana"]
|
|
/// print(employees.isStrictSuperset(of: attendees))
|
|
/// // Prints "true"
|
|
/// print(employees.isStrictSuperset(of: employees))
|
|
/// // Prints "false"
|
|
///
|
|
/// - Parameter possibleStrictSubset: A sequence of elements.
|
|
/// `possibleStrictSubset` must be finite.
|
|
/// - Returns: `true` if the set is a strict superset of
|
|
/// `possibleStrictSubset`; otherwise, `false`.
|
|
@inlinable
|
|
public func isStrictSuperset<S: Sequence>(of possibleStrictSubset: S) -> Bool
|
|
where S.Element == Element {
|
|
let other = Set(possibleStrictSubset)
|
|
return other.isStrictSubset(of: self)
|
|
}
|
|
|
|
/// Returns a Boolean value that indicates whether the set has no members in
|
|
/// common with the given sequence.
|
|
///
|
|
/// In the following example, the `employees` set is disjoint with the
|
|
/// elements of the `visitors` array because no name appears in both.
|
|
///
|
|
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
|
|
/// let visitors = ["Marcia", "Nathaniel", "Olivia"]
|
|
/// print(employees.isDisjoint(with: visitors))
|
|
/// // Prints "true"
|
|
///
|
|
/// - Parameter other: A sequence of elements. `other` must be finite.
|
|
/// - Returns: `true` if the set has no elements in common with `other`;
|
|
/// otherwise, `false`.
|
|
@inlinable
|
|
public func isDisjoint<S: Sequence>(with other: S) -> Bool
|
|
where S.Element == Element {
|
|
// FIXME(performance): Don't need to build a set.
|
|
let otherSet = Set(other)
|
|
return isDisjoint(with: otherSet)
|
|
}
|
|
|
|
/// Returns a new set with the elements of both this set and the given
|
|
/// sequence.
|
|
///
|
|
/// In the following example, the `attendeesAndVisitors` set is made up
|
|
/// of the elements of the `attendees` set and the `visitors` array:
|
|
///
|
|
/// let attendees: Set = ["Alicia", "Bethany", "Diana"]
|
|
/// let visitors = ["Marcia", "Nathaniel"]
|
|
/// let attendeesAndVisitors = attendees.union(visitors)
|
|
/// print(attendeesAndVisitors)
|
|
/// // Prints "["Diana", "Nathaniel", "Bethany", "Alicia", "Marcia"]"
|
|
///
|
|
/// If the set already contains one or more elements that are also in
|
|
/// `other`, the existing members are kept. If `other` contains multiple
|
|
/// instances of equivalent elements, only the first instance is kept.
|
|
///
|
|
/// let initialIndices = Set(0..<5)
|
|
/// let expandedIndices = initialIndices.union([2, 3, 6, 6, 7, 7])
|
|
/// print(expandedIndices)
|
|
/// // Prints "[2, 4, 6, 7, 0, 1, 3]"
|
|
///
|
|
/// - Parameter other: A sequence of elements. `other` must be finite.
|
|
/// - Returns: A new set with the unique elements of this set and `other`.
|
|
@inlinable
|
|
public func union<S: Sequence>(_ other: S) -> Set<Element>
|
|
where S.Element == Element {
|
|
var newSet = self
|
|
newSet.formUnion(other)
|
|
return newSet
|
|
}
|
|
|
|
/// Inserts the elements of the given sequence into the set.
|
|
///
|
|
/// If the set already contains one or more elements that are also in
|
|
/// `other`, the existing members are kept. If `other` contains multiple
|
|
/// instances of equivalent elements, only the first instance is kept.
|
|
///
|
|
/// var attendees: Set = ["Alicia", "Bethany", "Diana"]
|
|
/// let visitors = ["Diana", "Marcia", "Nathaniel"]
|
|
/// attendees.formUnion(visitors)
|
|
/// print(attendees)
|
|
/// // Prints "["Diana", "Nathaniel", "Bethany", "Alicia", "Marcia"]"
|
|
///
|
|
/// - Parameter other: A sequence of elements. `other` must be finite.
|
|
@inlinable
|
|
public mutating func formUnion<S: Sequence>(_ other: S)
|
|
where S.Element == Element {
|
|
for item in other {
|
|
insert(item)
|
|
}
|
|
}
|
|
|
|
/// Returns a new set containing the elements of this set that do not occur
|
|
/// in the given sequence.
|
|
///
|
|
/// In the following example, the `nonNeighbors` set is made up of the
|
|
/// elements of the `employees` set that are not elements of `neighbors`:
|
|
///
|
|
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
|
|
/// let neighbors = ["Bethany", "Eric", "Forlani", "Greta"]
|
|
/// let nonNeighbors = employees.subtracting(neighbors)
|
|
/// print(nonNeighbors)
|
|
/// // Prints "["Chris", "Diana", "Alicia"]"
|
|
///
|
|
/// - Parameter other: A sequence of elements. `other` must be finite.
|
|
/// - Returns: A new set.
|
|
@inlinable
|
|
public func subtracting<S: Sequence>(_ other: S) -> Set<Element>
|
|
where S.Element == Element {
|
|
return self._subtracting(other)
|
|
}
|
|
|
|
@inlinable
|
|
internal func _subtracting<S: Sequence>(_ other: S) -> Set<Element>
|
|
where S.Element == Element {
|
|
var newSet = self
|
|
newSet.subtract(other)
|
|
return newSet
|
|
}
|
|
|
|
/// Removes the elements of the given sequence from the set.
|
|
///
|
|
/// In the following example, the elements of the `employees` set that are
|
|
/// also elements of the `neighbors` array are removed. In particular, the
|
|
/// names `"Bethany"` and `"Eric"` are removed from `employees`.
|
|
///
|
|
/// var employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
|
|
/// let neighbors = ["Bethany", "Eric", "Forlani", "Greta"]
|
|
/// employees.subtract(neighbors)
|
|
/// print(employees)
|
|
/// // Prints "["Chris", "Diana", "Alicia"]"
|
|
///
|
|
/// - Parameter other: A sequence of elements. `other` must be finite.
|
|
@inlinable
|
|
public mutating func subtract<S: Sequence>(_ other: S)
|
|
where S.Element == Element {
|
|
_subtract(other)
|
|
}
|
|
|
|
@inlinable
|
|
internal mutating func _subtract<S: Sequence>(_ other: S)
|
|
where S.Element == Element {
|
|
for item in other {
|
|
remove(item)
|
|
}
|
|
}
|
|
|
|
/// Returns a new set with the elements that are common to both this set and
|
|
/// the given sequence.
|
|
///
|
|
/// In the following example, the `bothNeighborsAndEmployees` set is made up
|
|
/// of the elements that are in *both* the `employees` and `neighbors` sets.
|
|
/// Elements that are in only one or the other are left out of the result of
|
|
/// the intersection.
|
|
///
|
|
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
|
|
/// let neighbors = ["Bethany", "Eric", "Forlani", "Greta"]
|
|
/// let bothNeighborsAndEmployees = employees.intersection(neighbors)
|
|
/// print(bothNeighborsAndEmployees)
|
|
/// // Prints "["Bethany", "Eric"]"
|
|
///
|
|
/// - Parameter other: A sequence of elements. `other` must be finite.
|
|
/// - Returns: A new set.
|
|
@inlinable
|
|
public func intersection<S: Sequence>(_ other: S) -> Set<Element>
|
|
where S.Element == Element {
|
|
let otherSet = Set(other)
|
|
return intersection(otherSet)
|
|
}
|
|
|
|
/// Removes the elements of the set that aren't also in the given sequence.
|
|
///
|
|
/// In the following example, the elements of the `employees` set that are
|
|
/// not also members of the `neighbors` set are removed. In particular, the
|
|
/// names `"Alicia"`, `"Chris"`, and `"Diana"` are removed.
|
|
///
|
|
/// var employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
|
|
/// let neighbors = ["Bethany", "Eric", "Forlani", "Greta"]
|
|
/// employees.formIntersection(neighbors)
|
|
/// print(employees)
|
|
/// // Prints "["Bethany", "Eric"]"
|
|
///
|
|
/// - Parameter other: A sequence of elements. `other` must be finite.
|
|
@inlinable
|
|
public mutating func formIntersection<S: Sequence>(_ other: S)
|
|
where S.Element == Element {
|
|
// Because `intersect` needs to both modify and iterate over
|
|
// the left-hand side, the index may become invalidated during
|
|
// traversal so an intermediate set must be created.
|
|
//
|
|
// FIXME(performance): perform this operation at a lower level
|
|
// to avoid invalidating the index and avoiding a copy.
|
|
let result = self.intersection(other)
|
|
|
|
// The result can only have fewer or the same number of elements.
|
|
// If no elements were removed, don't perform a reassignment
|
|
// as this may cause an unnecessary uniquing COW.
|
|
if result.count != count {
|
|
self = result
|
|
}
|
|
}
|
|
|
|
/// Returns a new set with the elements that are either in this set or in the
|
|
/// given sequence, but not in both.
|
|
///
|
|
/// In the following example, the `eitherNeighborsOrEmployees` set is made up
|
|
/// of the elements of the `employees` and `neighbors` sets that are not in
|
|
/// both `employees` *and* `neighbors`. In particular, the names `"Bethany"`
|
|
/// and `"Eric"` do not appear in `eitherNeighborsOrEmployees`.
|
|
///
|
|
/// let employees: Set = ["Alicia", "Bethany", "Diana", "Eric"]
|
|
/// let neighbors = ["Bethany", "Eric", "Forlani"]
|
|
/// let eitherNeighborsOrEmployees = employees.symmetricDifference(neighbors)
|
|
/// print(eitherNeighborsOrEmployees)
|
|
/// // Prints "["Diana", "Forlani", "Alicia"]"
|
|
///
|
|
/// - Parameter other: A sequence of elements. `other` must be finite.
|
|
/// - Returns: A new set.
|
|
@inlinable
|
|
public func symmetricDifference<S: Sequence>(_ other: S) -> Set<Element>
|
|
where S.Element == Element {
|
|
var newSet = self
|
|
newSet.formSymmetricDifference(other)
|
|
return newSet
|
|
}
|
|
|
|
/// Replace this set with the elements contained in this set or the given
|
|
/// set, but not both.
|
|
///
|
|
/// In the following example, the elements of the `employees` set that are
|
|
/// also members of `neighbors` are removed from `employees`, while the
|
|
/// elements of `neighbors` that are not members of `employees` are added to
|
|
/// `employees`. In particular, the names `"Bethany"` and `"Eric"` are
|
|
/// removed from `employees` while the name `"Forlani"` is added.
|
|
///
|
|
/// var employees: Set = ["Alicia", "Bethany", "Diana", "Eric"]
|
|
/// let neighbors = ["Bethany", "Eric", "Forlani"]
|
|
/// employees.formSymmetricDifference(neighbors)
|
|
/// print(employees)
|
|
/// // Prints "["Diana", "Forlani", "Alicia"]"
|
|
///
|
|
/// - Parameter other: A sequence of elements. `other` must be finite.
|
|
@inlinable
|
|
public mutating func formSymmetricDifference<S: Sequence>(_ other: S)
|
|
where S.Element == Element {
|
|
let otherSet = Set(other)
|
|
formSymmetricDifference(otherSet)
|
|
}
|
|
}
|
|
|
|
extension Set: CustomStringConvertible, CustomDebugStringConvertible {
|
|
/// A string that represents the contents of the set.
|
|
public var description: String {
|
|
return _makeCollectionDescription(for: self, withTypeName: nil)
|
|
}
|
|
|
|
/// A string that represents the contents of the set, suitable for debugging.
|
|
public var debugDescription: String {
|
|
return _makeCollectionDescription(for: self, withTypeName: "Set")
|
|
}
|
|
}
|
|
|
|
#if _runtime(_ObjC)
|
|
@_silgen_name("swift_stdlib_CFSetGetValues")
|
|
@usableFromInline
|
|
internal
|
|
func _stdlib_CFSetGetValues(_ nss: _NSSet, _: UnsafeMutablePointer<AnyObject>)
|
|
|
|
/// Equivalent to `NSSet.allObjects`, but does not leave objects on the
|
|
/// autorelease pool.
|
|
@inlinable
|
|
internal func _stdlib_NSSet_allObjects(
|
|
_ nss: _NSSet
|
|
) -> _HeapBuffer<Int, AnyObject> {
|
|
let count = nss.count
|
|
let storage = _HeapBuffer<Int, AnyObject>(
|
|
_HeapBufferStorage<Int, AnyObject>.self, count, count)
|
|
_stdlib_CFSetGetValues(nss, storage.baseAddress)
|
|
return storage
|
|
}
|
|
#endif
|
|
|
|
//===--- Compiler conversion/casting entry points for Set<Element> --------===//
|
|
|
|
/// Perform a non-bridged upcast that always succeeds.
|
|
///
|
|
/// - Precondition: `BaseValue` is a base class or base `@objc`
|
|
/// protocol (such as `AnyObject`) of `DerivedValue`.
|
|
@inlinable
|
|
public func _setUpCast<DerivedValue, BaseValue>(_ source: Set<DerivedValue>)
|
|
-> Set<BaseValue> {
|
|
var builder = _SetBuilder<BaseValue>(count: source.count)
|
|
for x in source {
|
|
builder.add(member: x as! BaseValue)
|
|
}
|
|
return builder.take()
|
|
}
|
|
|
|
/// Called by the casting machinery.
|
|
@_silgen_name("_swift_setDownCastIndirect")
|
|
internal func _setDownCastIndirect<SourceValue, TargetValue>(
|
|
_ source: UnsafePointer<Set<SourceValue>>,
|
|
_ target: UnsafeMutablePointer<Set<TargetValue>>) {
|
|
target.initialize(to: _setDownCast(source.pointee))
|
|
}
|
|
|
|
/// Implements a forced downcast. This operation should have O(1) complexity.
|
|
///
|
|
/// The cast can fail if bridging fails. The actual checks and bridging can be
|
|
/// deferred.
|
|
///
|
|
/// - Precondition: `DerivedValue` is a subtype of `BaseValue` and both
|
|
/// are reference types.
|
|
@inlinable
|
|
public func _setDownCast<BaseValue, DerivedValue>(_ source: Set<BaseValue>)
|
|
-> Set<DerivedValue> {
|
|
|
|
#if _runtime(_ObjC)
|
|
if _isClassOrObjCExistential(BaseValue.self)
|
|
&& _isClassOrObjCExistential(DerivedValue.self) {
|
|
switch source._variant {
|
|
case .native(let nativeSet):
|
|
return Set(_immutableCocoaSet: nativeSet.bridged())
|
|
case .cocoa(let cocoaSet):
|
|
return Set(_immutableCocoaSet: cocoaSet.object)
|
|
}
|
|
}
|
|
#endif
|
|
return _setDownCastConditional(source)!
|
|
}
|
|
|
|
/// Called by the casting machinery.
|
|
@_silgen_name("_swift_setDownCastConditionalIndirect")
|
|
internal func _setDownCastConditionalIndirect<SourceValue, TargetValue>(
|
|
_ source: UnsafePointer<Set<SourceValue>>,
|
|
_ target: UnsafeMutablePointer<Set<TargetValue>>
|
|
) -> Bool {
|
|
if let result: Set<TargetValue> = _setDownCastConditional(source.pointee) {
|
|
target.initialize(to: result)
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
/// Implements a conditional downcast.
|
|
///
|
|
/// If the cast fails, the function returns `nil`. All checks should be
|
|
/// performed eagerly.
|
|
///
|
|
/// - Precondition: `DerivedValue` is a subtype of `BaseValue` and both
|
|
/// are reference types.
|
|
@inlinable
|
|
public func _setDownCastConditional<BaseValue, DerivedValue>(
|
|
_ source: Set<BaseValue>
|
|
) -> Set<DerivedValue>? {
|
|
var result = Set<DerivedValue>(minimumCapacity: source.count)
|
|
for member in source {
|
|
if let derivedMember = member as? DerivedValue {
|
|
result.insert(derivedMember)
|
|
continue
|
|
}
|
|
return nil
|
|
}
|
|
return result
|
|
}
|
|
|
|
extension Set {
|
|
/// Removes the elements of the given set from this set.
|
|
///
|
|
/// In the following example, the elements of the `employees` set that are
|
|
/// also members of the `neighbors` set are removed. In particular, the
|
|
/// names `"Bethany"` and `"Eric"` are removed from `employees`.
|
|
///
|
|
/// var employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
|
|
/// let neighbors: Set = ["Bethany", "Eric", "Forlani", "Greta"]
|
|
/// employees.subtract(neighbors)
|
|
/// print(employees)
|
|
/// // Prints "["Diana", "Chris", "Alicia"]"
|
|
///
|
|
/// - Parameter other: Another set.
|
|
@inlinable
|
|
public mutating func subtract(_ other: Set<Element>) {
|
|
_subtract(other)
|
|
}
|
|
|
|
/// Returns a Boolean value that indicates whether this set is a subset of
|
|
/// the given set.
|
|
///
|
|
/// Set *A* is a subset of another set *B* if every member of *A* is also a
|
|
/// member of *B*.
|
|
///
|
|
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
|
|
/// let attendees: Set = ["Alicia", "Bethany", "Diana"]
|
|
/// print(attendees.isSubset(of: employees))
|
|
/// // Prints "true"
|
|
///
|
|
/// - Parameter other: Another set.
|
|
/// - Returns: `true` if the set is a subset of `other`; otherwise, `false`.
|
|
@inlinable
|
|
public func isSubset(of other: Set<Element>) -> Bool {
|
|
guard self.count <= other.count else { return false }
|
|
for member in self {
|
|
if !other.contains(member) {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
/// Returns a Boolean value that indicates whether this set is a superset of
|
|
/// the given set.
|
|
///
|
|
/// Set *A* is a superset of another set *B* if every member of *B* is also a
|
|
/// member of *A*.
|
|
///
|
|
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
|
|
/// let attendees: Set = ["Alicia", "Bethany", "Diana"]
|
|
/// print(employees.isSuperset(of: attendees))
|
|
/// // Prints "true"
|
|
///
|
|
/// - Parameter other: Another set.
|
|
/// - Returns: `true` if the set is a superset of `other`; otherwise,
|
|
/// `false`.
|
|
@inlinable
|
|
public func isSuperset(of other: Set<Element>) -> Bool {
|
|
return other.isSubset(of: self)
|
|
}
|
|
|
|
/// Returns a Boolean value that indicates whether this set has no members in
|
|
/// common with the given set.
|
|
///
|
|
/// In the following example, the `employees` set is disjoint with the
|
|
/// `visitors` set because no name appears in both sets.
|
|
///
|
|
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
|
|
/// let visitors: Set = ["Marcia", "Nathaniel", "Olivia"]
|
|
/// print(employees.isDisjoint(with: visitors))
|
|
/// // Prints "true"
|
|
///
|
|
/// - Parameter other: Another set.
|
|
/// - Returns: `true` if the set has no elements in common with `other`;
|
|
/// otherwise, `false`.
|
|
@inlinable
|
|
public func isDisjoint(with other: Set<Element>) -> Bool {
|
|
for member in self {
|
|
if other.contains(member) {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
/// Returns a new set containing the elements of this set that do not occur
|
|
/// in the given set.
|
|
///
|
|
/// In the following example, the `nonNeighbors` set is made up of the
|
|
/// elements of the `employees` set that are not elements of `neighbors`:
|
|
///
|
|
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
|
|
/// let neighbors: Set = ["Bethany", "Eric", "Forlani", "Greta"]
|
|
/// let nonNeighbors = employees.subtracting(neighbors)
|
|
/// print(nonNeighbors)
|
|
/// // Prints "["Diana", "Chris", "Alicia"]"
|
|
///
|
|
/// - Parameter other: Another set.
|
|
/// - Returns: A new set.
|
|
@inlinable
|
|
public func subtracting(_ other: Set<Element>) -> Set<Element> {
|
|
return self._subtracting(other)
|
|
}
|
|
|
|
/// Returns a Boolean value that indicates whether the set is a strict
|
|
/// superset of the given sequence.
|
|
///
|
|
/// Set *A* is a strict superset of another set *B* if every member of *B* is
|
|
/// also a member of *A* and *A* contains at least one element that is *not*
|
|
/// a member of *B*.
|
|
///
|
|
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
|
|
/// let attendees: Set = ["Alicia", "Bethany", "Diana"]
|
|
/// print(employees.isStrictSuperset(of: attendees))
|
|
/// // Prints "true"
|
|
/// print(employees.isStrictSuperset(of: employees))
|
|
/// // Prints "false"
|
|
///
|
|
/// - Parameter other: Another set.
|
|
/// - Returns: `true` if the set is a strict superset of
|
|
/// `other`; otherwise, `false`.
|
|
@inlinable
|
|
public func isStrictSuperset(of other: Set<Element>) -> Bool {
|
|
return self.isSuperset(of: other) && self != other
|
|
}
|
|
|
|
/// Returns a Boolean value that indicates whether the set is a strict subset
|
|
/// of the given sequence.
|
|
///
|
|
/// Set *A* is a strict subset of another set *B* if every member of *A* is
|
|
/// also a member of *B* and *B* contains at least one element that is not a
|
|
/// member of *A*.
|
|
///
|
|
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
|
|
/// let attendees: Set = ["Alicia", "Bethany", "Diana"]
|
|
/// print(attendees.isStrictSubset(of: employees))
|
|
/// // Prints "true"
|
|
///
|
|
/// // A set is never a strict subset of itself:
|
|
/// print(attendees.isStrictSubset(of: attendees))
|
|
/// // Prints "false"
|
|
///
|
|
/// - Parameter other: Another set.
|
|
/// - Returns: `true` if the set is a strict subset of
|
|
/// `other`; otherwise, `false`.
|
|
@inlinable
|
|
public func isStrictSubset(of other: Set<Element>) -> Bool {
|
|
return other.isStrictSuperset(of: self)
|
|
}
|
|
|
|
/// Returns a new set with the elements that are common to both this set and
|
|
/// the given sequence.
|
|
///
|
|
/// In the following example, the `bothNeighborsAndEmployees` set is made up
|
|
/// of the elements that are in *both* the `employees` and `neighbors` sets.
|
|
/// Elements that are in only one or the other are left out of the result of
|
|
/// the intersection.
|
|
///
|
|
/// let employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
|
|
/// let neighbors: Set = ["Bethany", "Eric", "Forlani", "Greta"]
|
|
/// let bothNeighborsAndEmployees = employees.intersection(neighbors)
|
|
/// print(bothNeighborsAndEmployees)
|
|
/// // Prints "["Bethany", "Eric"]"
|
|
///
|
|
/// - Parameter other: Another set.
|
|
/// - Returns: A new set.
|
|
@inlinable
|
|
public func intersection(_ other: Set<Element>) -> Set<Element> {
|
|
var newSet = Set<Element>()
|
|
for member in self {
|
|
if other.contains(member) {
|
|
newSet.insert(member)
|
|
}
|
|
}
|
|
return newSet
|
|
}
|
|
|
|
/// Removes the elements of the set that are also in the given sequence and
|
|
/// adds the members of the sequence that are not already in the set.
|
|
///
|
|
/// In the following example, the elements of the `employees` set that are
|
|
/// also members of `neighbors` are removed from `employees`, while the
|
|
/// elements of `neighbors` that are not members of `employees` are added to
|
|
/// `employees`. In particular, the names `"Alicia"`, `"Chris"`, and
|
|
/// `"Diana"` are removed from `employees` while the names `"Forlani"` and
|
|
/// `"Greta"` are added.
|
|
///
|
|
/// var employees: Set = ["Alicia", "Bethany", "Chris", "Diana", "Eric"]
|
|
/// let neighbors: Set = ["Bethany", "Eric", "Forlani", "Greta"]
|
|
/// employees.formSymmetricDifference(neighbors)
|
|
/// print(employees)
|
|
/// // Prints "["Diana", "Chris", "Forlani", "Alicia", "Greta"]"
|
|
///
|
|
/// - Parameter other: Another set.
|
|
@inlinable
|
|
public mutating func formSymmetricDifference(_ other: Set<Element>) {
|
|
for member in other {
|
|
if contains(member) {
|
|
remove(member)
|
|
} else {
|
|
insert(member)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// This protocol is only used for compile-time checks that
|
|
/// every buffer type implements all required operations.
|
|
internal protocol _SetBuffer {
|
|
associatedtype Element
|
|
associatedtype Index
|
|
|
|
var startIndex: Index { get }
|
|
var endIndex: Index { get }
|
|
func index(after i: Index) -> Index
|
|
func index(for element: Element) -> Index?
|
|
var count: Int { get }
|
|
|
|
func contains(_ member: Element) -> Bool
|
|
func element(at i: Index) -> Element
|
|
}
|
|
|
|
/// An instance of this class has all `Set` data tail-allocated.
|
|
/// Enough bytes are allocated to hold the bitmap for marking valid entries,
|
|
/// keys, and values. The data layout starts with the bitmap, followed by the
|
|
/// keys, followed by the values.
|
|
//
|
|
// See the docs at the top of the file for more details on this type
|
|
//
|
|
// NOTE: The precise layout of this type is relied on in the runtime
|
|
// to provide a statically allocated empty singleton.
|
|
// See stdlib/public/stubs/GlobalObjects.cpp for details.
|
|
@_fixed_layout // FIXME(sil-serialize-all)
|
|
@usableFromInline
|
|
@_objc_non_lazy_realization
|
|
internal class _RawSetStorage: _SwiftNativeNSSet {
|
|
/// The current number of occupied entries in this set.
|
|
@usableFromInline
|
|
@nonobjc
|
|
internal final var _count: Int
|
|
|
|
/// The maximum number of elements that can be inserted into this set without
|
|
/// exceeding the hash table's maximum load factor.
|
|
@usableFromInline
|
|
@nonobjc
|
|
internal final var _capacity: Int
|
|
|
|
/// The scale of this set. The number of buckets is 2 raised to the
|
|
/// power of `scale`.
|
|
@usableFromInline
|
|
@nonobjc
|
|
internal final var _scale: Int
|
|
|
|
@usableFromInline
|
|
internal final var _seed: Hasher._Seed
|
|
|
|
@usableFromInline
|
|
@nonobjc
|
|
internal final var _rawElements: UnsafeMutableRawPointer
|
|
|
|
// This type is made with allocWithTailElems, so no init is ever called.
|
|
// But we still need to have an init to satisfy the compiler.
|
|
@nonobjc
|
|
internal init(_doNotCallMe: ()) {
|
|
_sanityCheckFailure("This class cannot be directly initialized")
|
|
}
|
|
|
|
@inlinable
|
|
@nonobjc
|
|
internal final var _bucketCount: Int {
|
|
@inline(__always) get { return 1 &<< _scale }
|
|
}
|
|
|
|
@inlinable
|
|
@nonobjc
|
|
internal final var _metadata: UnsafeMutablePointer<_HashTable.Word> {
|
|
@inline(__always) get {
|
|
let address = Builtin.projectTailElems(self, _HashTable.Word.self)
|
|
return UnsafeMutablePointer(address)
|
|
}
|
|
}
|
|
|
|
// The _HashTable struct contains pointers into tail-allocated storage, so
|
|
// this is unsafe and needs `_fixLifetime` calls in the caller.
|
|
@inlinable
|
|
@nonobjc
|
|
internal final var _hashTable: _HashTable {
|
|
@inline(__always) get {
|
|
return _HashTable(words: _metadata, bucketCount: _bucketCount)
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The storage class for the singleton empty set.
|
|
/// The single instance of this class is created by the runtime.
|
|
@_fixed_layout
|
|
@usableFromInline
|
|
internal class _EmptySetSingleton: _RawSetStorage {
|
|
@nonobjc
|
|
override internal init(_doNotCallMe: ()) {
|
|
_sanityCheckFailure("This class cannot be directly initialized")
|
|
}
|
|
|
|
#if _runtime(_ObjC)
|
|
@objc
|
|
internal required init(objects: UnsafePointer<AnyObject?>, count: Int) {
|
|
_sanityCheckFailure("This class cannot be directly initialized")
|
|
}
|
|
#endif
|
|
}
|
|
|
|
extension _RawSetStorage {
|
|
/// The empty singleton that is used for every single Set that is created
|
|
/// without any elements. The contents of the storage must never be mutated.
|
|
@inlinable
|
|
@nonobjc
|
|
internal static var empty: _EmptySetSingleton {
|
|
return Builtin.bridgeFromRawPointer(
|
|
Builtin.addressof(&_swiftEmptySetSingleton))
|
|
}
|
|
}
|
|
|
|
extension _EmptySetSingleton: _NSSetCore {
|
|
#if _runtime(_ObjC)
|
|
//
|
|
// NSSet implementation, assuming Self is the empty singleton
|
|
//
|
|
@objc(copyWithZone:)
|
|
internal func copy(with zone: _SwiftNSZone?) -> AnyObject {
|
|
return self
|
|
}
|
|
|
|
@objc
|
|
internal var count: Int {
|
|
return 0
|
|
}
|
|
|
|
@objc(member:)
|
|
internal func member(_ object: AnyObject) -> AnyObject? {
|
|
return nil
|
|
}
|
|
|
|
@objc
|
|
internal func objectEnumerator() -> _NSEnumerator {
|
|
return _SwiftEmptyNSEnumerator()
|
|
}
|
|
|
|
@objc(countByEnumeratingWithState:objects:count:)
|
|
internal func countByEnumerating(
|
|
with state: UnsafeMutablePointer<_SwiftNSFastEnumerationState>,
|
|
objects: UnsafeMutablePointer<AnyObject>?, count: Int
|
|
) -> Int {
|
|
// Even though we never do anything in here, we need to update the
|
|
// state so that callers know we actually ran.
|
|
var theState = state.pointee
|
|
if theState.state == 0 {
|
|
theState.state = 1 // Arbitrary non-zero value.
|
|
theState.itemsPtr = AutoreleasingUnsafeMutablePointer(objects)
|
|
theState.mutationsPtr = _fastEnumerationStorageMutationsPtr
|
|
}
|
|
state.pointee = theState
|
|
return 0
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// See the docs at the top of this file for a description of this type
|
|
@_fixed_layout // FIXME(sil-serialize-all)
|
|
@usableFromInline
|
|
final internal class _SetStorage<Element: Hashable>
|
|
: _RawSetStorage, _NSSetCore {
|
|
// This type is made with allocWithTailElems, so no init is ever called.
|
|
// But we still need to have an init to satisfy the compiler.
|
|
@nonobjc
|
|
override internal init(_doNotCallMe: ()) {
|
|
_sanityCheckFailure("This class cannot be directly initialized")
|
|
}
|
|
|
|
deinit {
|
|
guard _count > 0 else { return }
|
|
if !_isPOD(Element.self) {
|
|
let elements = _elements
|
|
for index in _hashTable {
|
|
(elements + index.bucket).deinitialize(count: 1)
|
|
}
|
|
}
|
|
_fixLifetime(self)
|
|
}
|
|
|
|
@inlinable
|
|
final internal var _elements: UnsafeMutablePointer<Element> {
|
|
@inline(__always)
|
|
get {
|
|
return self._rawElements.assumingMemoryBound(to: Element.self)
|
|
}
|
|
}
|
|
|
|
internal var asNative: _NativeSet<Element> {
|
|
return _NativeSet(self)
|
|
}
|
|
|
|
#if _runtime(_ObjC)
|
|
@objc
|
|
internal required init(objects: UnsafePointer<AnyObject?>, count: Int) {
|
|
_sanityCheckFailure("don't call this designated initializer")
|
|
}
|
|
|
|
@objc(copyWithZone:)
|
|
internal func copy(with zone: _SwiftNSZone?) -> AnyObject {
|
|
return self
|
|
}
|
|
|
|
@objc
|
|
internal var count: Int {
|
|
return _count
|
|
}
|
|
|
|
@objc
|
|
internal func objectEnumerator() -> _NSEnumerator {
|
|
return _SwiftSetNSEnumerator<Element>(asNative)
|
|
}
|
|
|
|
@objc(countByEnumeratingWithState:objects:count:)
|
|
internal func countByEnumerating(
|
|
with state: UnsafeMutablePointer<_SwiftNSFastEnumerationState>,
|
|
objects: UnsafeMutablePointer<AnyObject>?, count: Int
|
|
) -> Int {
|
|
var theState = state.pointee
|
|
if theState.state == 0 {
|
|
theState.state = 1 // Arbitrary non-zero value.
|
|
theState.itemsPtr = AutoreleasingUnsafeMutablePointer(objects)
|
|
theState.mutationsPtr = _fastEnumerationStorageMutationsPtr
|
|
theState.extra.0 = CUnsignedLong(asNative.startIndex.bucket)
|
|
}
|
|
|
|
// Test 'objects' rather than 'count' because (a) this is very rare anyway,
|
|
// and (b) the optimizer should then be able to optimize away the
|
|
// unwrapping check below.
|
|
if _slowPath(objects == nil) {
|
|
return 0
|
|
}
|
|
|
|
let unmanagedObjects = _UnmanagedAnyObjectArray(objects!)
|
|
var index = _HashTable.Index(bucket: Int(theState.extra.0))
|
|
let endIndex = asNative.endIndex
|
|
_precondition(index == endIndex || _hashTable.isValid(index))
|
|
var stored = 0
|
|
for i in 0..<count {
|
|
if index == endIndex { break }
|
|
let element = _elements[index.bucket]
|
|
unmanagedObjects[i] = _bridgeAnythingToObjectiveC(element)
|
|
stored += 1
|
|
index = asNative.index(after: index)
|
|
}
|
|
theState.extra.0 = CUnsignedLong(index.bucket)
|
|
state.pointee = theState
|
|
return stored
|
|
}
|
|
|
|
@objc(member:)
|
|
internal func member(_ object: AnyObject) -> AnyObject? {
|
|
guard let native = _conditionallyBridgeFromObjectiveC(object, Element.self)
|
|
else { return nil }
|
|
|
|
let (index, found) = asNative.find(native)
|
|
guard found else { return nil }
|
|
return _bridgeAnythingToObjectiveC(_elements[index.bucket])
|
|
}
|
|
#endif
|
|
}
|
|
|
|
extension _SetStorage {
|
|
@usableFromInline
|
|
@_effects(releasenone)
|
|
internal static func reallocate(
|
|
original: _RawSetStorage,
|
|
capacity: Int
|
|
) -> (storage: _SetStorage, rehash: Bool) {
|
|
_sanityCheck(capacity >= original._count)
|
|
let scale = _HashTable.scale(forCapacity: capacity)
|
|
let rehash = (scale != original._scale)
|
|
let newStorage = _SetStorage<Element>.allocate(scale: scale)
|
|
return (newStorage, rehash)
|
|
}
|
|
|
|
@usableFromInline
|
|
@_effects(releasenone)
|
|
static internal func allocate(capacity: Int) -> _SetStorage {
|
|
let scale = _HashTable.scale(forCapacity: capacity)
|
|
return allocate(scale: scale)
|
|
}
|
|
|
|
static internal func allocate(scale: Int) -> _SetStorage {
|
|
// The entry count must be representable by an Int value; hence the scale's
|
|
// peculiar upper bound.
|
|
_sanityCheck(scale >= 0 && scale < Int.bitWidth - 1)
|
|
|
|
let bucketCount = 1 &<< scale
|
|
let wordCount = _UnsafeBitset.wordCount(forCapacity: bucketCount)
|
|
let storage = Builtin.allocWithTailElems_2(
|
|
_SetStorage<Element>.self,
|
|
wordCount._builtinWordValue, _HashTable.Word.self,
|
|
bucketCount._builtinWordValue, Element.self)
|
|
|
|
let metadataAddr = Builtin.projectTailElems(storage, _HashTable.Word.self)
|
|
let elementsAddr = Builtin.getTailAddr_Word(
|
|
metadataAddr, wordCount._builtinWordValue, _HashTable.Word.self,
|
|
Element.self)
|
|
storage._count = 0
|
|
storage._capacity = _HashTable.capacity(forScale: scale)
|
|
storage._scale = scale
|
|
storage._rawElements = UnsafeMutableRawPointer(elementsAddr)
|
|
|
|
// We use a slightly different hash seed whenever we change the size of the
|
|
// hash table, so that we avoid certain copy operations becoming quadratic,
|
|
// without breaking value semantics. (For background details, see
|
|
// https://bugs.swift.org/browse/SR-3268)
|
|
|
|
// FIXME: Use true per-instance seeding instead. Per-capacity seeding still
|
|
// leaves hash values the same in same-sized tables, which may affect
|
|
// operations on two tables at once. (E.g., union.)
|
|
storage._seed = (
|
|
Hasher._seed.0 ^ UInt64(truncatingIfNeeded: scale),
|
|
Hasher._seed.1)
|
|
|
|
// Initialize hash table metadata.
|
|
storage._hashTable.clear()
|
|
return storage
|
|
}
|
|
}
|
|
|
|
/// A wrapper around _RawSetStorage that provides most of the
|
|
/// implementation of Set.
|
|
@usableFromInline
|
|
@_fixed_layout
|
|
internal struct _NativeSet<Element: Hashable> {
|
|
/// See the comments on _RawSetStorage and its subclasses to understand why we
|
|
/// store an untyped storage here.
|
|
@usableFromInline
|
|
internal var _storage: _RawSetStorage
|
|
|
|
/// Constructs an instance from the empty singleton.
|
|
@inlinable
|
|
@inline(__always)
|
|
internal init() {
|
|
self._storage = _RawSetStorage.empty
|
|
}
|
|
|
|
/// Constructs a native set adopting the given storage.
|
|
@inlinable
|
|
@inline(__always)
|
|
internal init(_ storage: _RawSetStorage) {
|
|
self._storage = storage
|
|
}
|
|
|
|
@usableFromInline
|
|
@_effects(releasenone)
|
|
internal init(capacity: Int) {
|
|
let scale = _HashTable.scale(forCapacity: capacity)
|
|
self._storage = _SetStorage<Element>.allocate(scale: scale)
|
|
}
|
|
|
|
#if _runtime(_ObjC)
|
|
@inlinable
|
|
internal init(_ cocoa: _CocoaSet) {
|
|
self.init(cocoa, capacity: cocoa.count)
|
|
}
|
|
|
|
@inlinable
|
|
internal init(_ cocoa: _CocoaSet, capacity: Int) {
|
|
_sanityCheck(cocoa.count <= capacity)
|
|
self.init(capacity: capacity)
|
|
for element in cocoa {
|
|
let nativeElement = _forceBridgeFromObjectiveC(element, Element.self)
|
|
insertNew(nativeElement, isUnique: true)
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
extension _NativeSet { // Primitive fields
|
|
@inlinable
|
|
internal var capacity: Int {
|
|
@inline(__always)
|
|
get {
|
|
return _assumeNonNegative(_storage._capacity)
|
|
}
|
|
}
|
|
|
|
@inlinable
|
|
internal var hashTable: _HashTable {
|
|
@inline(__always) get {
|
|
return _storage._hashTable
|
|
}
|
|
}
|
|
|
|
// This API is unsafe and needs a `_fixLifetime` in the caller.
|
|
@inlinable
|
|
internal var _elements: UnsafeMutablePointer<Element> {
|
|
return _storage._rawElements.assumingMemoryBound(to: Element.self)
|
|
}
|
|
}
|
|
|
|
extension _NativeSet { // Low-level unchecked operations
|
|
@inlinable
|
|
@inline(__always)
|
|
internal func uncheckedElement(at index: Index) -> Element {
|
|
defer { _fixLifetime(self) }
|
|
_sanityCheck(hashTable.isOccupied(index))
|
|
return _elements[index.bucket]
|
|
}
|
|
|
|
@inlinable
|
|
@inline(__always)
|
|
internal func uncheckedInitialize(at index: Index, to element: Element) {
|
|
_sanityCheck(hashTable.isValid(index))
|
|
(_elements + index.bucket).initialize(to: element)
|
|
}
|
|
}
|
|
|
|
extension _NativeSet { // Low-level lookup operations
|
|
@inlinable
|
|
@inline(__always)
|
|
internal func hashValue(for element: Element) -> Int {
|
|
return element._rawHashValue(seed: _storage._seed)
|
|
}
|
|
|
|
@inlinable
|
|
@inline(__always)
|
|
internal func find(_ element: Element) -> (index: Index, found: Bool) {
|
|
return find(element, hashValue: self.hashValue(for: element))
|
|
}
|
|
|
|
/// Search for a given element, assuming it has the specified hash value.
|
|
///
|
|
/// If the element is not present in this set, return the position where it
|
|
/// could be inserted.
|
|
@inlinable
|
|
@inline(__always)
|
|
internal func find(
|
|
_ element: Element,
|
|
hashValue: Int
|
|
) -> (index: Index, found: Bool) {
|
|
let hashTable = self.hashTable
|
|
var index = hashTable.idealIndex(forHashValue: hashValue)
|
|
while hashTable._isOccupied(index) {
|
|
if uncheckedElement(at: index) == element {
|
|
return (index, true)
|
|
}
|
|
index = hashTable.index(wrappedAfter: index)
|
|
}
|
|
return (index, false)
|
|
}
|
|
}
|
|
|
|
extension _NativeSet { // ensureUnique
|
|
@inlinable
|
|
internal mutating func resize(capacity: Int) {
|
|
let capacity = Swift.max(capacity, self.capacity)
|
|
let result = _NativeSet(_SetStorage<Element>.allocate(capacity: capacity))
|
|
if count > 0 {
|
|
for index in hashTable {
|
|
let element = (self._elements + index.bucket).move()
|
|
result._unsafeInsertNew(element)
|
|
}
|
|
// Clear out old storage, ensuring that its deinit won't overrelease the
|
|
// elements we've just moved out.
|
|
_storage._hashTable.clear()
|
|
_storage._count = 0
|
|
}
|
|
_storage = result._storage
|
|
}
|
|
|
|
@inlinable
|
|
internal mutating func copy(capacity: Int) -> Bool {
|
|
let capacity = Swift.max(capacity, self.capacity)
|
|
let (newStorage, rehash) = _SetStorage<Element>.reallocate(
|
|
original: _storage,
|
|
capacity: capacity)
|
|
let result = _NativeSet(newStorage)
|
|
if count > 0 {
|
|
if rehash {
|
|
for index in hashTable {
|
|
result._unsafeInsertNew(self.uncheckedElement(at: index))
|
|
}
|
|
} else {
|
|
result.hashTable.copyContents(of: hashTable)
|
|
result._storage._count = self.count
|
|
for index in hashTable {
|
|
let element = uncheckedElement(at: index)
|
|
result.uncheckedInitialize(at: index, to: element)
|
|
}
|
|
}
|
|
}
|
|
_storage = result._storage
|
|
return rehash
|
|
}
|
|
|
|
/// Ensure storage of self is uniquely held and can hold at least `capacity`
|
|
/// elements. Returns true iff contents were rehashed.
|
|
@inlinable
|
|
@inline(__always)
|
|
internal mutating func ensureUnique(isUnique: Bool, capacity: Int) -> Bool {
|
|
if _fastPath(capacity <= self.capacity && isUnique) {
|
|
return false
|
|
}
|
|
guard isUnique else {
|
|
return copy(capacity: capacity)
|
|
}
|
|
resize(capacity: capacity)
|
|
return true
|
|
}
|
|
|
|
@inlinable
|
|
internal mutating func reserveCapacity(_ capacity: Int, isUnique: Bool) {
|
|
_ = ensureUnique(isUnique: isUnique, capacity: capacity)
|
|
}
|
|
}
|
|
|
|
extension _NativeSet: _SetBuffer {
|
|
@usableFromInline
|
|
internal typealias Index = _HashTable.Index
|
|
|
|
@inlinable
|
|
internal var startIndex: Index {
|
|
return hashTable.startIndex
|
|
}
|
|
|
|
@inlinable
|
|
internal var endIndex: Index {
|
|
return hashTable.endIndex
|
|
}
|
|
|
|
@inlinable
|
|
internal func index(after index: Index) -> Index {
|
|
return hashTable.index(after: index)
|
|
}
|
|
|
|
@inlinable
|
|
@inline(__always)
|
|
internal func index(for element: Element) -> Index? {
|
|
if count == 0 {
|
|
// Fast path that avoids computing the hash of the key.
|
|
return nil
|
|
}
|
|
let (index, found) = find(element)
|
|
return found ? index : nil
|
|
}
|
|
|
|
@inlinable
|
|
internal var count: Int {
|
|
@inline(__always) get {
|
|
return _assumeNonNegative(_storage._count)
|
|
}
|
|
}
|
|
|
|
@inlinable
|
|
@inline(__always)
|
|
internal func contains(_ member: Element) -> Bool {
|
|
// Fast path: Don't calculate the hash if the set has no elements.
|
|
if count == 0 { return false }
|
|
return find(member).found
|
|
}
|
|
|
|
@inlinable
|
|
@inline(__always)
|
|
internal func element(at index: Index) -> Element {
|
|
hashTable.checkOccupied(index)
|
|
return _elements[index.bucket]
|
|
}
|
|
}
|
|
|
|
#if _runtime(_ObjC)
|
|
extension _NativeSet { // Bridging
|
|
@usableFromInline
|
|
internal func bridged() -> _NSSet {
|
|
// We can zero-cost bridge if our keys are verbatim
|
|
// or if we're the empty singleton.
|
|
|
|
// Temporary var for SOME type safety before a cast.
|
|
let nsSet: _NSSetCore
|
|
|
|
if _storage === _RawSetStorage.empty || count == 0 {
|
|
nsSet = _RawSetStorage.empty
|
|
} else if _isBridgedVerbatimToObjectiveC(Element.self) {
|
|
nsSet = unsafeDowncast(_storage, to: _SetStorage<Element>.self)
|
|
} else {
|
|
nsSet = _SwiftDeferredNSSet(self)
|
|
}
|
|
|
|
// Cast from "minimal NSSet" to "NSSet"
|
|
// Note that if you actually ask Swift for this cast, it will fail.
|
|
// Never trust a shadow protocol!
|
|
return unsafeBitCast(nsSet, to: _NSSet.self)
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// This function has a highly visible name to make it stand out in stack traces.
|
|
@usableFromInline
|
|
@inline(never)
|
|
internal func ELEMENT_TYPE_OF_SET_VIOLATES_HASHABLE_REQUIREMENTS(
|
|
_ elementType: Any.Type
|
|
) -> Never {
|
|
_assertionFailure(
|
|
"Fatal error",
|
|
"""
|
|
Duplicate elements of type '\(elementType)' were found in a Set.
|
|
This usually means either that the type violates Hashable's requirements, or
|
|
that members of such a set were mutated after insertion.
|
|
""",
|
|
flags: _fatalErrorFlags())
|
|
}
|
|
|
|
extension _NativeSet { // Insertions
|
|
/// Insert a new element into uniquely held storage.
|
|
/// Storage must be uniquely referenced with adequate capacity.
|
|
/// The `element` must not be already present in the Set.
|
|
@inlinable
|
|
internal func _unsafeInsertNew(_ element: Element) {
|
|
_sanityCheck(count + 1 <= capacity)
|
|
let hashValue = self.hashValue(for: element)
|
|
if _isDebugAssertConfiguration() {
|
|
// In debug builds, perform a full lookup and trap if we detect duplicate
|
|
// elements -- these imply that the Element type violates Hashable
|
|
// requirements. This is generally more costly than a direct insertion,
|
|
// because we'll need to compare elements in case of hash collisions.
|
|
let (index, found) = find(element, hashValue: hashValue)
|
|
guard !found else {
|
|
ELEMENT_TYPE_OF_SET_VIOLATES_HASHABLE_REQUIREMENTS(Element.self)
|
|
}
|
|
hashTable.insert(index)
|
|
uncheckedInitialize(at: index, to: element)
|
|
} else {
|
|
let index = hashTable.insertNew(hashValue: hashValue)
|
|
uncheckedInitialize(at: index, to: element)
|
|
}
|
|
_storage._count += 1
|
|
}
|
|
|
|
/// Insert a new element into uniquely held storage.
|
|
/// Storage must be uniquely referenced.
|
|
/// The `element` must not be already present in the Set.
|
|
@inlinable
|
|
internal mutating func insertNew(_ element: Element, isUnique: Bool) {
|
|
_ = ensureUnique(isUnique: isUnique, capacity: count + 1)
|
|
_unsafeInsertNew(element)
|
|
}
|
|
|
|
@inlinable
|
|
internal func _unsafeInsertNew(_ element: Element, at index: Index) {
|
|
hashTable.insert(index)
|
|
uncheckedInitialize(at: index, to: element)
|
|
_storage._count += 1
|
|
}
|
|
|
|
@inlinable
|
|
internal mutating func insertNew(
|
|
_ element: Element,
|
|
at index: Index,
|
|
isUnique: Bool
|
|
) {
|
|
_sanityCheck(!hashTable.isOccupied(index))
|
|
var index = index
|
|
if ensureUnique(isUnique: isUnique, capacity: count + 1) {
|
|
let (i, f) = find(element)
|
|
if f {
|
|
ELEMENT_TYPE_OF_SET_VIOLATES_HASHABLE_REQUIREMENTS(Element.self)
|
|
}
|
|
index = i
|
|
}
|
|
_unsafeInsertNew(element, at: index)
|
|
}
|
|
|
|
@inlinable
|
|
internal mutating func update(
|
|
with element: Element,
|
|
isUnique: Bool
|
|
) -> Element? {
|
|
var (index, found) = find(element)
|
|
let rehashed = ensureUnique(
|
|
isUnique: isUnique,
|
|
capacity: count + (found ? 0 : 1))
|
|
if rehashed {
|
|
let (i, f) = find(element)
|
|
if f != found {
|
|
ELEMENT_TYPE_OF_SET_VIOLATES_HASHABLE_REQUIREMENTS(Element.self)
|
|
}
|
|
index = i
|
|
}
|
|
if found {
|
|
let old = (_elements + index.bucket).move()
|
|
uncheckedInitialize(at: index, to: element)
|
|
return old
|
|
}
|
|
_unsafeInsertNew(element, at: index)
|
|
return nil
|
|
}
|
|
}
|
|
|
|
extension _NativeSet: _HashTableDelegate {
|
|
@inlinable
|
|
@inline(__always)
|
|
internal func hashValue(at index: Index) -> Int {
|
|
return hashValue(for: uncheckedElement(at: index))
|
|
}
|
|
|
|
@inlinable
|
|
@inline(__always)
|
|
internal func moveEntry(from source: Index, to target: Index) {
|
|
(_elements + target.bucket)
|
|
.moveInitialize(from: _elements + source.bucket, count: 1)
|
|
}
|
|
}
|
|
|
|
extension _NativeSet { // Deletion
|
|
@inlinable
|
|
internal mutating func _delete(at index: Index) {
|
|
hashTable.delete(at: index, with: self)
|
|
_storage._count -= 1
|
|
}
|
|
|
|
@inlinable
|
|
@inline(__always)
|
|
internal mutating func uncheckedRemove(
|
|
at index: Index,
|
|
isUnique: Bool) -> Element {
|
|
_sanityCheck(hashTable.isOccupied(index))
|
|
let rehashed = ensureUnique(isUnique: isUnique, capacity: capacity)
|
|
_sanityCheck(!rehashed)
|
|
let old = (_elements + index.bucket).move()
|
|
_delete(at: index)
|
|
return old
|
|
}
|
|
|
|
@inlinable
|
|
@inline(__always)
|
|
internal mutating func remove(at index: Index, isUnique: Bool) -> Element {
|
|
_precondition(hashTable.isOccupied(index), "Invalid index")
|
|
return uncheckedRemove(at: index, isUnique: isUnique)
|
|
}
|
|
|
|
@usableFromInline
|
|
internal mutating func removeAll(isUnique: Bool) {
|
|
guard isUnique else {
|
|
let scale = self._storage._scale
|
|
_storage = _SetStorage<Element>.allocate(scale: scale)
|
|
return
|
|
}
|
|
for index in hashTable {
|
|
(_elements + index.bucket).deinitialize(count: 1)
|
|
}
|
|
hashTable.clear()
|
|
_storage._count = 0
|
|
}
|
|
}
|
|
|
|
#if _runtime(_ObjC)
|
|
/// An NSEnumerator that works with any _NativeSet of verbatim bridgeable
|
|
/// elements. Used by the various NSSet impls.
|
|
final internal class _SwiftSetNSEnumerator<Element: Hashable>
|
|
: _SwiftNativeNSEnumerator, _NSEnumerator {
|
|
|
|
@nonobjc internal var base: _NativeSet<Element>
|
|
@nonobjc internal var bridgedElements: _BridgingHashBuffer?
|
|
@nonobjc internal var nextIndex: _NativeSet<Element>.Index
|
|
@nonobjc internal var endIndex: _NativeSet<Element>.Index
|
|
|
|
@objc
|
|
internal override required init() {
|
|
_sanityCheckFailure("don't call this designated initializer")
|
|
}
|
|
|
|
internal init(_ base: _NativeSet<Element>) {
|
|
_sanityCheck(_isBridgedVerbatimToObjectiveC(Element.self))
|
|
self.base = base
|
|
self.bridgedElements = nil
|
|
self.nextIndex = base.startIndex
|
|
self.endIndex = base.endIndex
|
|
}
|
|
|
|
@nonobjc
|
|
internal init(_ deferred: _SwiftDeferredNSSet<Element>) {
|
|
_sanityCheck(!_isBridgedVerbatimToObjectiveC(Element.self))
|
|
self.base = deferred.native
|
|
self.bridgedElements = deferred.bridgeElements()
|
|
self.nextIndex = base.startIndex
|
|
self.endIndex = base.endIndex
|
|
}
|
|
|
|
private func bridgedElement(at index: _HashTable.Index) -> AnyObject {
|
|
_sanityCheck(base.hashTable.isOccupied(index))
|
|
if let bridgedElements = self.bridgedElements {
|
|
return bridgedElements[index]
|
|
}
|
|
return _bridgeAnythingToObjectiveC(base.element(at: index))
|
|
}
|
|
|
|
//
|
|
// NSEnumerator implementation.
|
|
//
|
|
// Do not call any of these methods from the standard library!
|
|
//
|
|
|
|
@objc
|
|
internal func nextObject() -> AnyObject? {
|
|
if nextIndex == endIndex {
|
|
return nil
|
|
}
|
|
let index = nextIndex
|
|
nextIndex = base.index(after: nextIndex)
|
|
return self.bridgedElement(at: index)
|
|
}
|
|
|
|
@objc(countByEnumeratingWithState:objects:count:)
|
|
internal func countByEnumerating(
|
|
with state: UnsafeMutablePointer<_SwiftNSFastEnumerationState>,
|
|
objects: UnsafeMutablePointer<AnyObject>,
|
|
count: Int
|
|
) -> Int {
|
|
var theState = state.pointee
|
|
if theState.state == 0 {
|
|
theState.state = 1 // Arbitrary non-zero value.
|
|
theState.itemsPtr = AutoreleasingUnsafeMutablePointer(objects)
|
|
theState.mutationsPtr = _fastEnumerationStorageMutationsPtr
|
|
}
|
|
|
|
if nextIndex == endIndex {
|
|
state.pointee = theState
|
|
return 0
|
|
}
|
|
|
|
// Return only a single element so that code can start iterating via fast
|
|
// enumeration, terminate it, and continue via NSEnumerator.
|
|
let unmanagedObjects = _UnmanagedAnyObjectArray(objects)
|
|
unmanagedObjects[0] = self.bridgedElement(at: nextIndex)
|
|
nextIndex = base.index(after: nextIndex)
|
|
state.pointee = theState
|
|
return 1
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if _runtime(_ObjC)
|
|
/// This class exists for Objective-C bridging. It holds a reference to a
|
|
/// _NativeSet, and can be upcast to NSSelf when bridging is necessary. This is
|
|
/// the fallback implementation for situations where toll-free bridging isn't
|
|
/// possible. On first access, a _NativeSet of AnyObject will be constructed
|
|
/// containing all the bridged elements.
|
|
final internal class _SwiftDeferredNSSet<Element: Hashable>
|
|
: _SwiftNativeNSSet, _NSSetCore {
|
|
|
|
// This stored property must be stored at offset zero. We perform atomic
|
|
// operations on it.
|
|
//
|
|
// Do not access this property directly.
|
|
@nonobjc
|
|
private var _bridgedElements_DoNotUse: AnyObject?
|
|
|
|
/// The unbridged elements.
|
|
internal var native: _NativeSet<Element>
|
|
|
|
internal init(_ native: _NativeSet<Element>) {
|
|
_sanityCheck(native.count > 0)
|
|
_sanityCheck(!_isBridgedVerbatimToObjectiveC(Element.self))
|
|
self.native = native
|
|
super.init()
|
|
}
|
|
|
|
/// Returns the pointer to the stored property, which contains bridged
|
|
/// Set elements.
|
|
@nonobjc
|
|
private var _bridgedElementsPtr: UnsafeMutablePointer<AnyObject?> {
|
|
return _getUnsafePointerToStoredProperties(self)
|
|
.assumingMemoryBound(to: Optional<AnyObject>.self)
|
|
}
|
|
|
|
/// The buffer for bridged Set elements, if present.
|
|
@nonobjc
|
|
private var _bridgedElements: _BridgingHashBuffer? {
|
|
guard let ref = _stdlib_atomicLoadARCRef(object: _bridgedElementsPtr) else {
|
|
return nil
|
|
}
|
|
return unsafeDowncast(ref, to: _BridgingHashBuffer.self)
|
|
}
|
|
|
|
/// Attach a buffer for bridged Set elements.
|
|
@nonobjc
|
|
private func _initializeBridgedElements(_ storage: _BridgingHashBuffer) {
|
|
_stdlib_atomicInitializeARCRef(
|
|
object: _bridgedElementsPtr,
|
|
desired: storage)
|
|
}
|
|
|
|
@nonobjc
|
|
internal func bridgeElements() -> _BridgingHashBuffer {
|
|
if let bridgedElements = _bridgedElements { return bridgedElements }
|
|
|
|
// Allocate and initialize heap storage for bridged objects.
|
|
let bridged = _BridgingHashBuffer.allocate(
|
|
owner: native._storage,
|
|
hashTable: native.hashTable)
|
|
for index in native.hashTable {
|
|
let object = _bridgeAnythingToObjectiveC(native.element(at: index))
|
|
bridged.initialize(at: index, to: object)
|
|
}
|
|
|
|
// Atomically put the bridged elements in place.
|
|
_initializeBridgedElements(bridged)
|
|
return _bridgedElements!
|
|
}
|
|
|
|
@objc
|
|
internal required init(objects: UnsafePointer<AnyObject?>, count: Int) {
|
|
_sanityCheckFailure("don't call this designated initializer")
|
|
}
|
|
|
|
@objc(copyWithZone:)
|
|
internal func copy(with zone: _SwiftNSZone?) -> AnyObject {
|
|
// Instances of this class should be visible outside of standard library as
|
|
// having `NSSet` type, which is immutable.
|
|
return self
|
|
}
|
|
|
|
@objc(member:)
|
|
internal func member(_ object: AnyObject) -> AnyObject? {
|
|
guard let element = _conditionallyBridgeFromObjectiveC(object, Element.self)
|
|
else { return nil }
|
|
|
|
let (index, found) = native.find(element)
|
|
guard found else { return nil }
|
|
let bridged = bridgeElements()
|
|
return bridged[index]
|
|
}
|
|
|
|
@objc
|
|
internal func objectEnumerator() -> _NSEnumerator {
|
|
return _SwiftSetNSEnumerator<Element>(self)
|
|
}
|
|
|
|
@objc
|
|
internal var count: Int {
|
|
return native.count
|
|
}
|
|
|
|
@objc(countByEnumeratingWithState:objects:count:)
|
|
internal func countByEnumerating(
|
|
with state: UnsafeMutablePointer<_SwiftNSFastEnumerationState>,
|
|
objects: UnsafeMutablePointer<AnyObject>?,
|
|
count: Int
|
|
) -> Int {
|
|
var theState = state.pointee
|
|
if theState.state == 0 {
|
|
theState.state = 1 // Arbitrary non-zero value.
|
|
theState.itemsPtr = AutoreleasingUnsafeMutablePointer(objects)
|
|
theState.mutationsPtr = _fastEnumerationStorageMutationsPtr
|
|
theState.extra.0 = CUnsignedLong(native.startIndex.bucket)
|
|
}
|
|
|
|
// Test 'objects' rather than 'count' because (a) this is very rare anyway,
|
|
// and (b) the optimizer should then be able to optimize away the
|
|
// unwrapping check below.
|
|
if _slowPath(objects == nil) {
|
|
return 0
|
|
}
|
|
|
|
let unmanagedObjects = _UnmanagedAnyObjectArray(objects!)
|
|
var index = _NativeSet<Element>.Index(bucket: Int(theState.extra.0))
|
|
let endIndex = native.endIndex
|
|
_precondition(index == endIndex || native.hashTable.isValid(index))
|
|
|
|
// Only need to bridge once, so we can hoist it out of the loop.
|
|
let bridgedElements = bridgeElements()
|
|
|
|
var stored = 0
|
|
for i in 0..<count {
|
|
if index == endIndex { break }
|
|
unmanagedObjects[i] = bridgedElements[index]
|
|
stored += 1
|
|
index = native.index(after: index)
|
|
}
|
|
theState.extra.0 = CUnsignedLong(index.bucket)
|
|
state.pointee = theState
|
|
return stored
|
|
}
|
|
}
|
|
#else
|
|
// FIXME: Remove this.
|
|
final internal class _SwiftDeferredNSSet<Element: Hashable> { }
|
|
#endif
|
|
|
|
#if _runtime(_ObjC)
|
|
@usableFromInline
|
|
@_fixed_layout
|
|
internal struct _CocoaSet {
|
|
@usableFromInline
|
|
internal let object: _NSSet
|
|
|
|
@inlinable
|
|
internal init(_ object: _NSSet) {
|
|
self.object = object
|
|
}
|
|
}
|
|
|
|
extension _CocoaSet {
|
|
@usableFromInline
|
|
@_effects(releasenone)
|
|
internal func member(for index: Index) -> AnyObject {
|
|
return index.allKeys[index.currentKeyIndex]
|
|
}
|
|
|
|
@inlinable
|
|
internal func member(for element: AnyObject) -> AnyObject? {
|
|
return object.member(element)
|
|
}
|
|
}
|
|
|
|
extension _CocoaSet: Equatable {
|
|
@usableFromInline
|
|
internal static func ==(lhs: _CocoaSet, rhs: _CocoaSet) -> Bool {
|
|
return _stdlib_NSObject_isEqual(lhs.object, rhs.object)
|
|
}
|
|
}
|
|
|
|
extension _CocoaSet: _SetBuffer {
|
|
@usableFromInline
|
|
internal typealias Element = AnyObject
|
|
|
|
@inlinable
|
|
internal var startIndex: Index {
|
|
return Index(self, startIndex: ())
|
|
}
|
|
|
|
@inlinable
|
|
internal var endIndex: Index {
|
|
return Index(self, endIndex: ())
|
|
}
|
|
|
|
@inlinable
|
|
internal func index(after i: Index) -> Index {
|
|
var i = i
|
|
formIndex(after: &i)
|
|
return i
|
|
}
|
|
|
|
@usableFromInline
|
|
@_effects(releasenone)
|
|
internal func formIndex(after i: inout Index) {
|
|
_precondition(i.base.object === self.object, "Invalid index")
|
|
_precondition(i.currentKeyIndex < i.allKeys.value,
|
|
"Cannot increment endIndex")
|
|
i.currentKeyIndex += 1
|
|
}
|
|
|
|
@usableFromInline
|
|
internal func index(for element: AnyObject) -> Index? {
|
|
// Fast path that does not involve creating an array of all keys. In case
|
|
// the key is present, this lookup is a penalty for the slow path, but the
|
|
// potential savings are significant: we could skip a memory allocation and
|
|
// a linear search.
|
|
if !contains(element) {
|
|
return nil
|
|
}
|
|
|
|
let allKeys = _stdlib_NSSet_allObjects(object)
|
|
var keyIndex = -1
|
|
for i in 0..<allKeys.value {
|
|
if _stdlib_NSObject_isEqual(element, allKeys[i]) {
|
|
keyIndex = i
|
|
break
|
|
}
|
|
}
|
|
_sanityCheck(keyIndex >= 0,
|
|
"Key was found in fast path, but not found later?")
|
|
return Index(self, allKeys, keyIndex)
|
|
}
|
|
|
|
@inlinable
|
|
internal var count: Int {
|
|
return object.count
|
|
}
|
|
|
|
@inlinable
|
|
internal func contains(_ element: AnyObject) -> Bool {
|
|
return object.member(element) != nil
|
|
}
|
|
|
|
@usableFromInline
|
|
internal func element(at i: Index) -> AnyObject {
|
|
let value: AnyObject? = i.allKeys[i.currentKeyIndex]
|
|
_sanityCheck(value != nil, "Item not found in underlying NSSet")
|
|
return value!
|
|
}
|
|
}
|
|
#endif
|
|
|
|
extension Set {
|
|
@usableFromInline
|
|
@_frozen
|
|
internal enum _Variant {
|
|
case native(_NativeSet<Element>)
|
|
#if _runtime(_ObjC)
|
|
case cocoa(_CocoaSet)
|
|
#endif
|
|
}
|
|
}
|
|
|
|
extension Set._Variant {
|
|
#if _runtime(_ObjC)
|
|
@usableFromInline
|
|
@_transparent
|
|
internal var guaranteedNative: Bool {
|
|
return _canBeClass(Element.self) == 0
|
|
}
|
|
|
|
/// Allow the optimizer to consider the surrounding code unreachable if
|
|
/// Set<Element> is guaranteed to be native.
|
|
@usableFromInline
|
|
@_transparent
|
|
internal func cocoaPath() {
|
|
if guaranteedNative {
|
|
_conditionallyUnreachable()
|
|
}
|
|
}
|
|
#endif
|
|
|
|
@inlinable
|
|
internal mutating func isUniquelyReferenced() -> Bool {
|
|
// Note that &self drills down through .native(_NativeSet) to the first
|
|
// property in _NativeSet, which is the reference to the storage.
|
|
switch self {
|
|
case .native:
|
|
return _isUnique_native(&self)
|
|
#if _runtime(_ObjC)
|
|
case .cocoa:
|
|
cocoaPath()
|
|
// Don't consider Cocoa buffer mutable, even if it is mutable and is
|
|
// uniquely referenced.
|
|
return false
|
|
#endif
|
|
}
|
|
}
|
|
|
|
@usableFromInline @_transparent
|
|
internal var asNative: _NativeSet<Element> {
|
|
get {
|
|
switch self {
|
|
case .native(let nativeSet):
|
|
return nativeSet
|
|
#if _runtime(_ObjC)
|
|
case .cocoa:
|
|
_sanityCheckFailure("internal error: not backed by native buffer")
|
|
#endif
|
|
}
|
|
}
|
|
set {
|
|
self = .native(newValue)
|
|
}
|
|
}
|
|
|
|
#if _runtime(_ObjC)
|
|
@inlinable
|
|
internal var asCocoa: _CocoaSet {
|
|
switch self {
|
|
case .native:
|
|
_sanityCheckFailure("internal error: not backed by NSSet")
|
|
case .cocoa(let cocoa):
|
|
return cocoa
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/// Reserves enough space for the specified number of elements to be stored
|
|
/// without reallocating additional storage.
|
|
@inlinable
|
|
internal mutating func reserveCapacity(_ capacity: Int) {
|
|
switch self {
|
|
case .native:
|
|
let isUnique = isUniquelyReferenced()
|
|
asNative.reserveCapacity(capacity, isUnique: isUnique)
|
|
#if _runtime(_ObjC)
|
|
case .cocoa(let cocoa):
|
|
cocoaPath()
|
|
let capacity = Swift.max(cocoa.count, capacity)
|
|
self = .native(_NativeSet(cocoa, capacity: capacity))
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/// The number of elements that can be stored without expanding the current
|
|
/// storage.
|
|
///
|
|
/// For bridged storage, this is equal to the current count of the
|
|
/// collection, since any addition will trigger a copy of the elements into
|
|
/// newly allocated storage. For native storage, this is the element count
|
|
/// at which adding any more elements will exceed the load factor.
|
|
@inlinable
|
|
internal var capacity: Int {
|
|
switch self {
|
|
case .native:
|
|
return asNative.capacity
|
|
#if _runtime(_ObjC)
|
|
case .cocoa(let cocoa):
|
|
cocoaPath()
|
|
return cocoa.count
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
extension Set._Variant: _SetBuffer {
|
|
@usableFromInline
|
|
internal typealias Index = Set<Element>.Index
|
|
|
|
@inlinable
|
|
internal var startIndex: Index {
|
|
switch self {
|
|
case .native:
|
|
return Index(_native: asNative.startIndex)
|
|
#if _runtime(_ObjC)
|
|
case .cocoa(let cocoaSet):
|
|
cocoaPath()
|
|
return Index(_cocoa: cocoaSet.startIndex)
|
|
#endif
|
|
}
|
|
}
|
|
|
|
@inlinable
|
|
internal var endIndex: Index {
|
|
switch self {
|
|
case .native:
|
|
return Index(_native: asNative.endIndex)
|
|
#if _runtime(_ObjC)
|
|
case .cocoa(let cocoaSet):
|
|
cocoaPath()
|
|
return Index(_cocoa: cocoaSet.endIndex)
|
|
#endif
|
|
}
|
|
}
|
|
|
|
@inlinable
|
|
internal func index(after i: Index) -> Index {
|
|
switch self {
|
|
case .native:
|
|
return Index(_native: asNative.index(after: i._asNative))
|
|
#if _runtime(_ObjC)
|
|
case .cocoa(let cocoaSet):
|
|
cocoaPath()
|
|
return Index(_cocoa: cocoaSet.index(after: i._asCocoa))
|
|
#endif
|
|
}
|
|
}
|
|
|
|
@inlinable
|
|
@inline(__always)
|
|
internal func index(for element: Element) -> Index? {
|
|
switch self {
|
|
case .native:
|
|
guard let index = asNative.index(for: element) else { return nil }
|
|
return Index(_native: index)
|
|
#if _runtime(_ObjC)
|
|
case .cocoa(let cocoa):
|
|
cocoaPath()
|
|
let cocoaElement = _bridgeAnythingToObjectiveC(element)
|
|
guard let index = cocoa.index(for: cocoaElement) else { return nil }
|
|
return Index(_cocoa: index)
|
|
#endif
|
|
}
|
|
}
|
|
|
|
@inlinable
|
|
internal var count: Int {
|
|
@inline(__always)
|
|
get {
|
|
switch self {
|
|
case .native:
|
|
return asNative.count
|
|
#if _runtime(_ObjC)
|
|
case .cocoa(let cocoa):
|
|
cocoaPath()
|
|
return cocoa.count
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
@inlinable
|
|
@inline(__always)
|
|
internal func contains(_ member: Element) -> Bool {
|
|
switch self {
|
|
case .native:
|
|
return asNative.contains(member)
|
|
#if _runtime(_ObjC)
|
|
case .cocoa(let cocoa):
|
|
cocoaPath()
|
|
return cocoa.contains(_bridgeAnythingToObjectiveC(member))
|
|
#endif
|
|
}
|
|
}
|
|
|
|
@inlinable
|
|
@inline(__always)
|
|
internal func element(at i: Index) -> Element {
|
|
switch self {
|
|
case .native:
|
|
return asNative.element(at: i._asNative)
|
|
#if _runtime(_ObjC)
|
|
case .cocoa(let cocoa):
|
|
cocoaPath()
|
|
let cocoaMember = cocoa.element(at: i._asCocoa)
|
|
return _forceBridgeFromObjectiveC(cocoaMember, Element.self)
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
extension Set._Variant {
|
|
@inlinable
|
|
internal mutating func update(with value: Element) -> Element? {
|
|
switch self {
|
|
case .native:
|
|
let isUnique = self.isUniquelyReferenced()
|
|
return asNative.update(with: value, isUnique: isUnique)
|
|
#if _runtime(_ObjC)
|
|
case .cocoa(let cocoa):
|
|
cocoaPath()
|
|
// Make sure we have space for an extra element.
|
|
var native = _NativeSet<Element>(cocoa, capacity: cocoa.count + 1)
|
|
let old = native.update(with: value, isUnique: true)
|
|
self = .native(native)
|
|
return old
|
|
#endif
|
|
}
|
|
}
|
|
|
|
@inlinable
|
|
internal mutating func insert(
|
|
_ element: Element
|
|
) -> (inserted: Bool, memberAfterInsert: Element) {
|
|
switch self {
|
|
case .native:
|
|
let (index, found) = asNative.find(element)
|
|
if found {
|
|
return (false, asNative.uncheckedElement(at: index))
|
|
}
|
|
let isUnique = self.isUniquelyReferenced()
|
|
asNative.insertNew(element, at: index, isUnique: isUnique)
|
|
return (true, element)
|
|
#if _runtime(_ObjC)
|
|
case .cocoa(let cocoa):
|
|
cocoaPath()
|
|
// Make sure we have space for an extra element.
|
|
let cocoaMember = _bridgeAnythingToObjectiveC(element)
|
|
if let m = cocoa.member(for: cocoaMember) {
|
|
return (false, _forceBridgeFromObjectiveC(m, Element.self))
|
|
}
|
|
var native = _NativeSet<Element>(cocoa, capacity: cocoa.count + 1)
|
|
native.insertNew(element, isUnique: true)
|
|
self = .native(native)
|
|
return (true, element)
|
|
#endif
|
|
}
|
|
}
|
|
|
|
@inlinable
|
|
@discardableResult
|
|
internal mutating func remove(at index: Index) -> Element {
|
|
switch self {
|
|
case .native:
|
|
let isUnique = isUniquelyReferenced()
|
|
return asNative.remove(at: index._asNative, isUnique: isUnique)
|
|
#if _runtime(_ObjC)
|
|
case .cocoa(let cocoa):
|
|
cocoaPath()
|
|
// We have to migrate the data first. But after we do so, the Cocoa
|
|
// index becomes useless, so get the element first.
|
|
let cocoaMember = cocoa.member(for: index._asCocoa)
|
|
let nativeMember = _forceBridgeFromObjectiveC(cocoaMember, Element.self)
|
|
return _migrateToNative(cocoa, removing: nativeMember)
|
|
#endif
|
|
}
|
|
}
|
|
|
|
@inlinable
|
|
@discardableResult
|
|
internal mutating func remove(_ member: Element) -> Element? {
|
|
switch self {
|
|
case .native:
|
|
let (index, found) = asNative.find(member)
|
|
guard found else { return nil }
|
|
let isUnique = isUniquelyReferenced()
|
|
return asNative.uncheckedRemove(at: index, isUnique: isUnique)
|
|
#if _runtime(_ObjC)
|
|
case .cocoa(let cocoa):
|
|
cocoaPath()
|
|
let cocoaMember = _bridgeAnythingToObjectiveC(member)
|
|
guard cocoa.contains(cocoaMember) else { return nil }
|
|
return _migrateToNative(cocoa, removing: member)
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#if _runtime(_ObjC)
|
|
@inlinable
|
|
internal mutating func _migrateToNative(
|
|
_ cocoa: _CocoaSet,
|
|
removing member: Element
|
|
) -> Element {
|
|
// FIXME(performance): fuse data migration and element deletion into one
|
|
// operation.
|
|
var native = _NativeSet<Element>(cocoa)
|
|
let (index, found) = native.find(member)
|
|
_precondition(found, "Bridging did not preserve equality")
|
|
let old = native.remove(at: index, isUnique: true)
|
|
_precondition(member == old, "Bridging did not preserve equality")
|
|
self = .native(native)
|
|
return old
|
|
}
|
|
#endif
|
|
|
|
@inlinable
|
|
internal mutating func removeAll(keepingCapacity keepCapacity: Bool) {
|
|
if !keepCapacity {
|
|
self = .native(_NativeSet<Element>())
|
|
return
|
|
}
|
|
guard count > 0 else { return }
|
|
|
|
switch self {
|
|
case .native:
|
|
let isUnique = isUniquelyReferenced()
|
|
asNative.removeAll(isUnique: isUnique)
|
|
#if _runtime(_ObjC)
|
|
case .cocoa(let cocoa):
|
|
cocoaPath()
|
|
self = .native(_NativeSet(capacity: cocoa.count))
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
extension Set._Variant {
|
|
/// Returns an iterator over the elements.
|
|
///
|
|
/// - Complexity: O(1).
|
|
@inlinable
|
|
@inline(__always)
|
|
__consuming internal func makeIterator() -> Set<Element>.Iterator {
|
|
switch self {
|
|
case .native(let native):
|
|
return Set.Iterator(_native: native.makeIterator())
|
|
#if _runtime(_ObjC)
|
|
case .cocoa(let cocoa):
|
|
cocoaPath()
|
|
return Set.Iterator(_cocoa: cocoa.makeIterator())
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
#if _runtime(_ObjC)
|
|
extension _CocoaSet {
|
|
@_fixed_layout // FIXME(sil-serialize-all)
|
|
@usableFromInline
|
|
internal struct Index {
|
|
// Assumption: we rely on NSDictionary.getObjects when being
|
|
// repeatedly called on the same NSDictionary, returning items in the same
|
|
// order every time.
|
|
// Similarly, the same assumption holds for NSSet.allObjects.
|
|
|
|
/// A reference to the NSSet, which owns members in `allObjects`,
|
|
/// or `allKeys`, for NSSet and NSDictionary respectively.
|
|
@usableFromInline // FIXME(sil-serialize-all)
|
|
internal let base: _CocoaSet
|
|
// FIXME: swift-3-indexing-model: try to remove the cocoa reference, but
|
|
// make sure that we have a safety check for accessing `allKeys`. Maybe
|
|
// move both into the dictionary/set itself.
|
|
|
|
/// An unowned array of keys.
|
|
@usableFromInline // FIXME(sil-serialize-all)
|
|
internal var allKeys: _HeapBuffer<Int, AnyObject>
|
|
|
|
/// Index into `allKeys`
|
|
@usableFromInline // FIXME(sil-serialize-all)
|
|
internal var currentKeyIndex: Int
|
|
|
|
@inlinable // FIXME(sil-serialize-all)
|
|
internal init(_ base: _CocoaSet, startIndex: ()) {
|
|
self.base = base
|
|
self.allKeys = _stdlib_NSSet_allObjects(base.object)
|
|
self.currentKeyIndex = 0
|
|
}
|
|
|
|
@inlinable // FIXME(sil-serialize-all)
|
|
internal init(_ base: _CocoaSet, endIndex: ()) {
|
|
self.base = base
|
|
self.allKeys = _stdlib_NSSet_allObjects(base.object)
|
|
self.currentKeyIndex = allKeys.value
|
|
}
|
|
|
|
@inlinable // FIXME(sil-serialize-all)
|
|
internal init(
|
|
_ base: _CocoaSet,
|
|
_ allKeys: _HeapBuffer<Int, AnyObject>,
|
|
_ currentKeyIndex: Int
|
|
) {
|
|
self.base = base
|
|
self.allKeys = allKeys
|
|
self.currentKeyIndex = currentKeyIndex
|
|
}
|
|
}
|
|
}
|
|
|
|
extension _CocoaSet.Index: Equatable {
|
|
@inlinable
|
|
internal static func == (lhs: _CocoaSet.Index, rhs: _CocoaSet.Index) -> Bool {
|
|
_precondition(lhs.base.object === rhs.base.object,
|
|
"Comparing indexes from different sets")
|
|
return lhs.currentKeyIndex == rhs.currentKeyIndex
|
|
}
|
|
}
|
|
|
|
extension _CocoaSet.Index: Comparable {
|
|
@inlinable
|
|
internal static func < (lhs: _CocoaSet.Index, rhs: _CocoaSet.Index) -> Bool {
|
|
_precondition(lhs.base.object === rhs.base.object,
|
|
"Comparing indexes from different sets")
|
|
return lhs.currentKeyIndex < rhs.currentKeyIndex
|
|
}
|
|
}
|
|
#endif
|
|
|
|
extension Set {
|
|
/// The position of an element in a set.
|
|
@_fixed_layout
|
|
public struct Index {
|
|
// Index for native buffer is efficient. Index for bridged NSSet is
|
|
// not, because neither NSEnumerator nor fast enumeration support moving
|
|
// backwards. Even if they did, there is another issue: NSEnumerator does
|
|
// not support NSCopying, and fast enumeration does not document that it is
|
|
// safe to copy the state. So, we cannot implement Index that is a value
|
|
// type for bridged NSSet in terms of Cocoa enumeration facilities.
|
|
|
|
@_frozen
|
|
@usableFromInline
|
|
internal enum _Variant {
|
|
case native(_NativeSet<Element>.Index)
|
|
#if _runtime(_ObjC)
|
|
case cocoa(_CocoaSet.Index)
|
|
#endif
|
|
}
|
|
|
|
@usableFromInline
|
|
internal var _variant: _Variant
|
|
|
|
@inlinable
|
|
@inline(__always)
|
|
internal init(_variant: _Variant) {
|
|
self._variant = _variant
|
|
}
|
|
|
|
@inlinable
|
|
@inline(__always)
|
|
internal init(_native index: _NativeSet<Element>.Index) {
|
|
self.init(_variant: .native(index))
|
|
}
|
|
|
|
#if _runtime(_ObjC)
|
|
@inlinable
|
|
@inline(__always)
|
|
internal init(_cocoa index: _CocoaSet.Index) {
|
|
self.init(_variant: .cocoa(index))
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
extension Set.Index {
|
|
#if _runtime(_ObjC)
|
|
@usableFromInline @_transparent
|
|
internal var _guaranteedNative: Bool {
|
|
return _canBeClass(Element.self) == 0
|
|
}
|
|
|
|
/// Allow the optimizer to consider the surrounding code unreachable if
|
|
/// Set<Element> is guaranteed to be native.
|
|
@usableFromInline
|
|
@_transparent
|
|
internal func _cocoaPath() {
|
|
if _guaranteedNative {
|
|
_conditionallyUnreachable()
|
|
}
|
|
}
|
|
#endif
|
|
|
|
@usableFromInline @_transparent
|
|
internal var _asNative: _NativeSet<Element>.Index {
|
|
switch _variant {
|
|
case .native(let nativeIndex):
|
|
return nativeIndex
|
|
#if _runtime(_ObjC)
|
|
case .cocoa:
|
|
_sanityCheckFailure("internal error: does not contain a native index")
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#if _runtime(_ObjC)
|
|
@usableFromInline @_transparent
|
|
internal var _asCocoa: _CocoaSet.Index {
|
|
switch _variant {
|
|
case .native:
|
|
_sanityCheckFailure("internal error: does not contain a Cocoa index")
|
|
case .cocoa(let cocoaIndex):
|
|
return cocoaIndex
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
extension Set.Index: Equatable {
|
|
@inlinable
|
|
public static func == (
|
|
lhs: Set<Element>.Index,
|
|
rhs: Set<Element>.Index
|
|
) -> Bool {
|
|
switch (lhs._variant, rhs._variant) {
|
|
case (.native(let lhsNative), .native(let rhsNative)):
|
|
return lhsNative == rhsNative
|
|
#if _runtime(_ObjC)
|
|
case (.cocoa(let lhsCocoa), .cocoa(let rhsCocoa)):
|
|
lhs._cocoaPath()
|
|
return lhsCocoa == rhsCocoa
|
|
default:
|
|
_preconditionFailure("Comparing indexes from different sets")
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
extension Set.Index: Comparable {
|
|
@inlinable
|
|
public static func < (
|
|
lhs: Set<Element>.Index,
|
|
rhs: Set<Element>.Index
|
|
) -> Bool {
|
|
switch (lhs._variant, rhs._variant) {
|
|
case (.native(let lhsNative), .native(let rhsNative)):
|
|
return lhsNative < rhsNative
|
|
#if _runtime(_ObjC)
|
|
case (.cocoa(let lhsCocoa), .cocoa(let rhsCocoa)):
|
|
lhs._cocoaPath()
|
|
return lhsCocoa < rhsCocoa
|
|
default:
|
|
_preconditionFailure("Comparing indexes from different sets")
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
extension Set.Index: Hashable {
|
|
/// Hashes the essential components of this value by feeding them into the
|
|
/// given hasher.
|
|
///
|
|
/// - Parameter hasher: The hasher to use when combining the components
|
|
/// of this instance.
|
|
@inlinable
|
|
public func hash(into hasher: inout Hasher) {
|
|
#if _runtime(_ObjC)
|
|
switch _variant {
|
|
case .native(let nativeIndex):
|
|
hasher.combine(0 as UInt8)
|
|
hasher.combine(nativeIndex.bucket)
|
|
case .cocoa(let cocoaIndex):
|
|
_cocoaPath()
|
|
hasher.combine(1 as UInt8)
|
|
hasher.combine(cocoaIndex.currentKeyIndex)
|
|
}
|
|
#else
|
|
hasher.combine(_asNative.bucket)
|
|
#endif
|
|
}
|
|
}
|
|
|
|
extension _NativeSet: Sequence {
|
|
@usableFromInline
|
|
@_fixed_layout
|
|
internal struct Iterator {
|
|
// The iterator is iterating over a frozen view of the collection state, so
|
|
// it keeps its own reference to the set.
|
|
@usableFromInline
|
|
internal let base: _NativeSet
|
|
@usableFromInline
|
|
internal var iterator: _HashTable.Iterator
|
|
|
|
@inlinable
|
|
init(_ base: _NativeSet) {
|
|
self.base = base
|
|
self.iterator = base.hashTable.makeIterator()
|
|
}
|
|
}
|
|
|
|
@inlinable
|
|
__consuming internal func makeIterator() -> Iterator {
|
|
return Iterator(self)
|
|
}
|
|
}
|
|
|
|
extension _NativeSet.Iterator: IteratorProtocol {
|
|
@inlinable
|
|
internal mutating func next() -> Element? {
|
|
guard let index = iterator.next() else { return nil }
|
|
return base.uncheckedElement(at: index)
|
|
}
|
|
}
|
|
|
|
#if _runtime(_ObjC)
|
|
extension _CocoaSet: Sequence {
|
|
@usableFromInline
|
|
final internal class Iterator {
|
|
// Cocoa Set iterator has to be a class, otherwise we cannot
|
|
// guarantee that the fast enumeration struct is pinned to a certain memory
|
|
// location.
|
|
|
|
// This stored property should be stored at offset zero. There's code below
|
|
// relying on this.
|
|
internal var _fastEnumerationState: _SwiftNSFastEnumerationState =
|
|
_makeSwiftNSFastEnumerationState()
|
|
|
|
// This stored property should be stored right after
|
|
// `_fastEnumerationState`. There's code below relying on this.
|
|
internal var _fastEnumerationStackBuf = _CocoaFastEnumerationStackBuf()
|
|
|
|
internal let base: _CocoaSet
|
|
|
|
internal var _fastEnumerationStatePtr:
|
|
UnsafeMutablePointer<_SwiftNSFastEnumerationState> {
|
|
return _getUnsafePointerToStoredProperties(self).assumingMemoryBound(
|
|
to: _SwiftNSFastEnumerationState.self)
|
|
}
|
|
|
|
internal var _fastEnumerationStackBufPtr:
|
|
UnsafeMutablePointer<_CocoaFastEnumerationStackBuf> {
|
|
return UnsafeMutableRawPointer(_fastEnumerationStatePtr + 1)
|
|
.assumingMemoryBound(to: _CocoaFastEnumerationStackBuf.self)
|
|
}
|
|
|
|
// These members have to be word-sized integers, they cannot be limited to
|
|
// Int8 just because our storage holds 16 elements: fast enumeration is
|
|
// allowed to return inner pointers to the container, which can be much
|
|
// larger.
|
|
internal var itemIndex: Int = 0
|
|
internal var itemCount: Int = 0
|
|
|
|
internal init(_ base: _CocoaSet) {
|
|
self.base = base
|
|
}
|
|
}
|
|
|
|
@usableFromInline
|
|
__consuming internal func makeIterator() -> Iterator {
|
|
return Iterator(self)
|
|
}
|
|
}
|
|
|
|
extension _CocoaSet.Iterator: IteratorProtocol {
|
|
@usableFromInline
|
|
internal typealias Element = AnyObject
|
|
|
|
@usableFromInline
|
|
internal func next() -> Element? {
|
|
if itemIndex < 0 {
|
|
return nil
|
|
}
|
|
let base = self.base
|
|
if itemIndex == itemCount {
|
|
let stackBufCount = _fastEnumerationStackBuf.count
|
|
// We can't use `withUnsafeMutablePointer` here to get pointers to
|
|
// properties, because doing so might introduce a writeback storage, but
|
|
// fast enumeration relies on the pointer identity of the enumeration
|
|
// state struct.
|
|
itemCount = base.object.countByEnumerating(
|
|
with: _fastEnumerationStatePtr,
|
|
objects: UnsafeMutableRawPointer(_fastEnumerationStackBufPtr)
|
|
.assumingMemoryBound(to: AnyObject.self),
|
|
count: stackBufCount)
|
|
if itemCount == 0 {
|
|
itemIndex = -1
|
|
return nil
|
|
}
|
|
itemIndex = 0
|
|
}
|
|
let itemsPtrUP =
|
|
UnsafeMutableRawPointer(_fastEnumerationState.itemsPtr!)
|
|
.assumingMemoryBound(to: AnyObject.self)
|
|
let itemsPtr = _UnmanagedAnyObjectArray(itemsPtrUP)
|
|
let key: AnyObject = itemsPtr[itemIndex]
|
|
itemIndex += 1
|
|
return key
|
|
}
|
|
}
|
|
#endif
|
|
|
|
extension Set {
|
|
/// An iterator over the members of a `Set<Element>`.
|
|
@_fixed_layout
|
|
public struct Iterator {
|
|
// Set has a separate IteratorProtocol and Index because of efficiency
|
|
// and implementability reasons.
|
|
//
|
|
// Native sets have efficient indices. Bridged NSSet instances don't.
|
|
//
|
|
// Even though fast enumeration is not suitable for implementing
|
|
// Index, which is multi-pass, it is suitable for implementing a
|
|
// IteratorProtocol, which is being consumed as iteration proceeds.
|
|
|
|
@usableFromInline
|
|
@_frozen
|
|
internal enum _Variant {
|
|
case native(_NativeSet<Element>.Iterator)
|
|
#if _runtime(_ObjC)
|
|
case cocoa(_CocoaSet.Iterator)
|
|
#endif
|
|
}
|
|
|
|
@usableFromInline
|
|
internal var _variant: _Variant
|
|
|
|
@inlinable
|
|
internal init(_variant: _Variant) {
|
|
self._variant = _variant
|
|
}
|
|
|
|
@inlinable
|
|
internal init(_native: _NativeSet<Element>.Iterator) {
|
|
self.init(_variant: .native(_native))
|
|
}
|
|
|
|
#if _runtime(_ObjC)
|
|
@usableFromInline
|
|
internal init(_cocoa: _CocoaSet.Iterator) {
|
|
self.init(_variant: .cocoa(_cocoa))
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
extension Set.Iterator {
|
|
#if _runtime(_ObjC)
|
|
@usableFromInline @_transparent
|
|
internal var _guaranteedNative: Bool {
|
|
return _canBeClass(Element.self) == 0
|
|
}
|
|
|
|
/// Allow the optimizer to consider the surrounding code unreachable if
|
|
/// Set<Element> is guaranteed to be native.
|
|
@usableFromInline @_transparent
|
|
internal func _cocoaPath() {
|
|
if _guaranteedNative {
|
|
_conditionallyUnreachable()
|
|
}
|
|
}
|
|
#endif
|
|
|
|
@usableFromInline @_transparent
|
|
internal var _asNative: _NativeSet<Element>.Iterator {
|
|
get {
|
|
switch _variant {
|
|
case .native(let nativeIterator):
|
|
return nativeIterator
|
|
#if _runtime(_ObjC)
|
|
case .cocoa:
|
|
_sanityCheckFailure("internal error: does not contain a native index")
|
|
#endif
|
|
}
|
|
}
|
|
set {
|
|
self._variant = .native(newValue)
|
|
}
|
|
}
|
|
}
|
|
|
|
extension Set.Iterator: IteratorProtocol {
|
|
/// Advances to the next element and returns it, or `nil` if no next element
|
|
/// exists.
|
|
///
|
|
/// Once `nil` has been returned, all subsequent calls return `nil`.
|
|
@inlinable
|
|
@inline(__always)
|
|
public mutating func next() -> Element? {
|
|
#if _runtime(_ObjC)
|
|
switch _variant {
|
|
case .native:
|
|
return _asNative.next()
|
|
case .cocoa(let cocoaIterator):
|
|
_cocoaPath()
|
|
if let cocoaElement = cocoaIterator.next() {
|
|
return _forceBridgeFromObjectiveC(cocoaElement, Element.self)
|
|
}
|
|
return nil
|
|
}
|
|
#else
|
|
return _asNative.next()
|
|
#endif
|
|
}
|
|
}
|
|
|
|
extension Set.Iterator: CustomReflectable {
|
|
/// A mirror that reflects the iterator.
|
|
public var customMirror: Mirror {
|
|
return Mirror(
|
|
self,
|
|
children: EmptyCollection<(label: String?, value: Any)>())
|
|
}
|
|
}
|
|
|
|
extension Set: CustomReflectable {
|
|
/// A mirror that reflects the set.
|
|
public var customMirror: Mirror {
|
|
let style = Mirror.DisplayStyle.`set`
|
|
return Mirror(self, unlabeledChildren: self, displayStyle: style)
|
|
}
|
|
}
|
|
|
|
/// Initializes a `Set` from unique members.
|
|
///
|
|
/// Using a builder can be faster than inserting members into an empty
|
|
/// `Set`.
|
|
@_fixed_layout
|
|
public // SPI(Foundation)
|
|
struct _SetBuilder<Element: Hashable> {
|
|
@usableFromInline
|
|
internal var _target: _NativeSet<Element>
|
|
@usableFromInline
|
|
internal let _requestedCount: Int
|
|
|
|
@inlinable
|
|
public init(count: Int) {
|
|
_target = _NativeSet(capacity: count)
|
|
_requestedCount = count
|
|
}
|
|
|
|
@inlinable
|
|
public mutating func add(member: Element) {
|
|
_precondition(_target.count < _requestedCount,
|
|
"Can't add more members than promised")
|
|
_target.insertNew(member, isUnique: true)
|
|
}
|
|
|
|
@inlinable
|
|
public mutating func take() -> Set<Element> {
|
|
_precondition(_target.capacity > 0 || _requestedCount == 0,
|
|
"Cannot take the result twice")
|
|
_precondition(_target.count == _requestedCount,
|
|
"The number of members added does not match the promised count")
|
|
|
|
// Prevent taking the result twice.
|
|
var result = _NativeSet<Element>()
|
|
swap(&result, &_target)
|
|
return Set(_native: result)
|
|
}
|
|
}
|
|
|
|
extension Set {
|
|
/// Removes and returns the first element of the set.
|
|
///
|
|
/// Because a set is not an ordered collection, the "first" element may not
|
|
/// be the first element that was added to the set.
|
|
///
|
|
/// - Returns: A member of the set. If the set is empty, returns `nil`.
|
|
@inlinable
|
|
public mutating func popFirst() -> Element? {
|
|
guard !isEmpty else { return nil }
|
|
return remove(at: startIndex)
|
|
}
|
|
|
|
/// The total number of elements that the set can contain without
|
|
/// allocating new storage.
|
|
@inlinable
|
|
public var capacity: Int {
|
|
return _variant.capacity
|
|
}
|
|
|
|
/// Reserves enough space to store the specified number of elements.
|
|
///
|
|
/// If you are adding a known number of elements to a set, use this
|
|
/// method to avoid multiple reallocations. This method ensures that the
|
|
/// set has unique, mutable, contiguous storage, with space allocated
|
|
/// for at least the requested number of elements.
|
|
///
|
|
/// Calling the `reserveCapacity(_:)` method on a set with bridged
|
|
/// storage triggers a copy to contiguous storage even if the existing
|
|
/// storage has room to store `minimumCapacity` elements.
|
|
///
|
|
/// - Parameter minimumCapacity: The requested number of elements to
|
|
/// store.
|
|
@inlinable
|
|
public mutating func reserveCapacity(_ minimumCapacity: Int) {
|
|
_variant.reserveCapacity(minimumCapacity)
|
|
_sanityCheck(self.capacity >= minimumCapacity)
|
|
}
|
|
}
|
|
|
|
//===--- Bridging ---------------------------------------------------------===//
|
|
|
|
#if _runtime(_ObjC)
|
|
extension Set {
|
|
@inlinable
|
|
public func _bridgeToObjectiveCImpl() -> _NSSetCore {
|
|
switch _variant {
|
|
case .native(let nativeSet):
|
|
return nativeSet.bridged()
|
|
case .cocoa(let cocoaSet):
|
|
return cocoaSet.object
|
|
}
|
|
}
|
|
|
|
/// Returns the native Dictionary hidden inside this NSDictionary;
|
|
/// returns nil otherwise.
|
|
public static func _bridgeFromObjectiveCAdoptingNativeStorageOf(
|
|
_ s: AnyObject
|
|
) -> Set<Element>? {
|
|
|
|
// Try all three NSSet impls that we currently provide.
|
|
|
|
if let deferred = s as? _SwiftDeferredNSSet<Element> {
|
|
return Set(_native: deferred.native)
|
|
}
|
|
|
|
if let nativeStorage = s as? _SetStorage<Element> {
|
|
return Set(_native: _NativeSet(nativeStorage))
|
|
}
|
|
|
|
if s === _RawSetStorage.empty {
|
|
return Set()
|
|
}
|
|
|
|
// FIXME: what if `s` is native storage, but for different key/value type?
|
|
return nil
|
|
}
|
|
}
|
|
#endif
|
|
|
|
public typealias SetIndex<Element: Hashable> = Set<Element>.Index
|
|
public typealias SetIterator<Element: Hashable> = Set<Element>.Iterator
|